倒虹吸计算书

倒虹吸计算书
倒虹吸计算书

旧寨倒虹吸计算书

一、基本资料

设计流量:2.35 m3/s

加大流量:2.94 m3/s

进口渠底高程:1488.137m

进口渠宽:2.0m

进口渠道设计水深:1.31m

加大流量水深:1.56m

出口渠底高程:1487.220m

进口渠道设计水深:1.43m

加大流量水深:1.70m

进出口渠道形式:矩形

进口管中心高程:1487.385m

出口管中心高程:1486.69m

管径DN:1.6m

二、设计采用的主要技术规范及书籍

1、《灌溉与排水工程设计规范》GB50288—99;

2、《水电站压力钢管设计规范》SL284—2003

3、《混凝土结构设计规范》SL/T191—96;

4、《水工建筑物抗震设计规范》DL5073—1997;

5、《小型水电站机电设计手册-金属结构》;。

6、《水力计算手册》

7、《倒虹吸管》

三、进口段

1、渐变段尺寸确定

L=C(B1-B2)

或L=C1h;

C取1.5~2.5;

C1取3~5:

h上游渠道水深;

经计算取L=4m;

2、进口沉沙池尺寸确定

(1) 拟定池内水深H;

H=h+T

T=(1/3~1/4)h;

T为进口渠底至沉沙池底的高差;取0.8m;

(2) 沉沙池宽B

B=Q/(Hv);

v池内平均流速0.25~0.5m/s;

经计算取B=3.5m;

(3) 沉沙池长L’

L’≥(4~5)h

经计算取L =8m;

(4) 通气孔

通气孔最小断面面积按下式计算:

P

C KQ A △1265

A 为通气管最小断面面积m 2;Q 为通气管进风量,近似取钢管内流量,m 3/s ;C 为通气管流量系数;如采用通气阀,C 取0.5;无阀的通气管,C 取0.7;P △为钢管内外允许压力差,其值不大于0.1N/mm 2;K 为安全系数,采用K=2.8。

经计算A=0.0294 m 2;计算管内径为0.194m ,采用D273(δ=6mm)的螺旋钢管。 四、出口段

倒虹吸管出口消力池,池长L 及池深T ,按经验公式: L=(3~4)h T ≥0.5D 0+δ+0.3

经计算取L =6m ,T=1.2m 。 五、管身段

本倒虹吸管采用Q235B 板钢管,经初步布置和拟定后量得钢管长约410m 。根据地形在全线设4座镇墩,初定钢管内径DN1600mm ,壁厚δ为14和16mm 。下面分别对倒虹吸进行水力计算、钢管和镇墩结构计算: (一) 水力计算

倒虹吸的过水能力及总水头损失按《灌溉与排水工程设计规范》附录N 所列公式计算:

1、倒虹吸的过水能力按下式计算

Q=μωgZ 2

D

L /1λμ+∑=

ζ

λ=

28C

g C=R n

1

1/6

式中:Q -倒虹吸设计流量(m 3/s ); μ-流量系数;=0.383

ω-倒虹吸过水断面面积;=2.01 g -重力加速度(m/s 2)

Z -上、下游水位差(m );0.777m

∑ζ-局部水头损失系数的总和,包括进、出口拦污栅、闸门槽、伸缩节、进人孔、旁通管、转弯段、渐变段等损失系数; ξ闸

=0.2,ξ进口

=0.5,ξ

拦栅

=0.5,ξ

出口

=1,

ξ

弯头

=αξ

90,ξ90=0.36

1#镇墩弯头为14°59′,α=0.32,ξ弯头1

=0.32*0.36=0.115 2#镇墩弯头为37°47′,α=0.63,ξ弯头2

=0.63*0.36=0.227

3#镇墩弯头为44°4′,α=0.69,ξ弯头3

=0.69*0.36=0.248

4#镇墩弯头为11°,α=0.25,ξ弯头4

=0.25*0.36=0.09

∑ξ

弯头

=0.68

∑ζ=2.88

λ-能量损失系数;=0.015338 L -倒虹吸总长度(m );410 D -管内直径(m );1.6m

C -谢才系数;=71.53 n -糙率;取0.012

经计算Q=3.0 m 3/s 大于加大流量2.94 m 3/s ;所以选择钢管内径为1.6m 是合适的。

2、倒虹吸总水头损失按下式计算 hw=(∑ξ+λL/D )V 2/2g

v 管道流速设计时为1.17m/s ,加大流量时为1.46 m/s 。

所以设计时hw=0.48m 加大时hw=0.74m 。 (二) 钢管结构计算

管壁应力计算,根据《水电站压力钢管设计规范SL281-2003》规定,采用第四强度理论计算,其计算公式为:

[]σ?τσσσσσ≤+-+=yz y Z y Z 2

2213 []σ?χτσσσσσχχ≤+-+=z Z Z 22223 []σ?χτσσσσσχχ≤+-+=y y y 22233

式中:σ1、σ2、σ3-表示任意点作用有三个主应力;

σz -环向正应力; σx -轴向正应力; σy -径向正应力;

τ

yz 、τxz 、τxy -剪应力;

?-焊缝系数,取?=0.9;

[σ]-相应计算情况的允许应力;

不同钢材、板厚,相应计算情况的允许应力见下表

表1:允许应力表

由于本工程采用了鞍形支墩,设置支承环和刚性环,所以选择以下断面核算应力:

断面1:支墩间跨中断面;

断面2:加劲环的断面;

断面3:支承环的断面;

钢管按满水、温升设计,作用在钢管上的主要力有:

1)内水压力;

2)管重和水重在法向上分力;

3)各种轴向力

①水管自重的轴向分力;

②温升时管壁沿支墩面的磨擦力;

③温升时伸缩节内填料的磨擦力;

其余各力均较小,忽略不计。

以1#至2#镇墩之间的钢管为例说明其计算过程,计算简图如图一:

①基本数据

2#镇墩中心至上游伸缩节接头距离L′=57m;

2#镇墩中心至下游伸缩节接头距离L″=15m;

2#镇墩中心处钢管最大静水头H0=107.7m;支墩间距L=5.4m;

管轴与水平线夹角 =37°47′;

图一

1、管壁厚度拟定

管径D=1.6m ,钢管采用Q 235B 钢板焊接而成,基本荷载[σ]=129Mpa ,考虑局部应力的基本荷载[σ]=158Mpa 。

本倒虹吸水压试验压力按正常情况最高内水工作压力的1.25倍计算,所以最大设计水头H 设=1.25*107.7=134.6m 。

初估管壁厚度采用降低允许应力至75%,

]

[75.020

σδ?=

HD

=11.12mm

选用管壁计算厚度选δ=12mm ,考虑2mm 的防锈厚度,管壁的结构厚度取δ=14mm 。

2、管壁弹性稳定计算 计算壁厚δ=12mm<

130D =130

1600

=12.3mm ,需设置加劲环。 3、加劲环断面及间距计算 a 、加劲环对管壁影响范围:

t=0.78(r c *δ)0.5=0.78(0.806*0.012)0.5=0.077m ; 本倒虹吸选择角钢L63×63×6作为加劲环; b 、加劲环有效断面面积为: F R = 728.8+77*2*12+63*12 =3332.8mm 2

c 、加劲环有效断面重心轴距管中心距R : R=

12

63212778.728806

1221775.8298.728?+??+??+?=811.2mm

注:其中L63×63×6角钢的面积为728.8mm 2;重心在距离角钢外缘17.75mm 处;惯性矩为233820mm 4;

d 、加劲环有效断面惯性距:

J=233820+728.8*18.552+(1/12)*217*123+2604*0.82 =517516.5mm 4

e 、计算加劲环的间距:

L 劲=3

3KPR EJ

=352.8111.025.517516101.23?????=3053mm

加劲环间距为1.8m 。 4、管壁应力计算

断面1的计算

a 、径向内水压力产生的管壁径向压力

σy =-P

=1.32MPa

b 、径向内水压力产生的管壁环向应力

σ

Z1= (P

*D 0)/(2*δ)

=88 MPa

σ

Z2

很小,忽略不计。

c 、法向力产生的管壁弯曲轴向应力

σ

x1=±

δ

π2

4D M

M=10

2

qL

此处q=(g 管+g

+ g

地震

)cos α,D=1.614m ,δ=14mm ,

L=5.4m ,考虑12%的附加重g 水

=19.71*1.12=22.1kN/m ,g

=5.46*1.12 =6.11kN/m ,g

地震

=0.2*2.5*0.25*(22.1+6.11)=3.52

kN/m ,cos α=cos37°47′=0.79

故M=92.52kN.M

σx1=±δ

π2

2

104D qL =±3.83MPa d 、轴向力产生的管壁轴向应力

σ

x2=

δ

πr 2A

∑ 水管自重产生的轴向力A 1: 考虑12%的附加重

A 1= g 管*L*sin α=5.46*57*0.613*1.12=213.7kN 伸缩接头处内水压力A 5: A 5=

4

π

(D 12-D 22)H

上伸设

·γ

=(3.14/4)*(1.628*1.628-1.6*1.6)*70*9.81*1.25 =61kN

温度升高伸缩接头边缝间的磨擦力A 6: A 6=πD 1bfH

上伸设

·γ

此处b 2约为0.1D 这里取0.2,μ2=0.3

故A 6=π×1.628×0.2×0.3×686.7×1.25=263kN 温度升高管壁沿支墩面的摩擦力A 7: 考虑12%的附加重 A 7=f (g 水+g 管

)L ′cos α1此处f=0.5

=0.5*(19.71+5.46)*1.12*57*0.79

=634.7kN

∑A=213.7+61+263+634.7=1172.4kN 故σ

x2=-012

.0806.024

.1172??π=-19.3MPa

e 、应力校核:按温升情况计算。校核管顶应力时,σx

取负值(压应力),即

σx =-3.83-19.3= -23.13MPa

σ1=y z 2

23τσσσσ+-+y Z y Z

=0)32.1(88)32.1(8822+-?--+ =88.7Mpa <0.9×129=116.1Mpa

σ2=xz 223τσσσσ+-+z x z x

=088)13.23(88)13.23(22+?--+- =101.56Mpa <0.9×129=116.1Mpa

σ3=xy 223τσσσσ+-+y x y x

=0)32.1()13.23()32.1()13.23(22+-?---+- =22.5Mpa <0.9×129=116.1Mpa

断面2(加劲环)的计算

计算简图如图2:

图二

a 、径向内水压力产生的管壁环向应力

σZ2=( P 设*r 0(1-β))/δ

F R ’=7.288+1.2*6.3=14.848cm 2

β=t

*2a ''δδ+-R R F F (管壁外缘断面与环计算断面比值)

=0.22

σZ2=68.64MPa (拉)

横断面上的正应力

σx3=±1.816β

δ

设2P 0D =±35.2 MPa (内缘受拉,外缘受压)

σx2=-19.3MPa (压,同断面1)

管壁外缘应力为:

σx =-35.2-19.3=-54.5(外缘受压)

横断面上剪压力很小可以省去。 径向应力:σ

y =-P

=-1.32MPa (压)

存在局部应力基本荷载[σ]=158Mpa 。

σ1=y z 2

23τσσσσ+-+y Z y Z

=69.3 MPa <0.9×158=142.2Mpa

σ2=

xz 22

3τσσσσ+-+z x z x

=106.9<0.9×158=142.2Mpa

σ3=xy 2

23τσσσσ+-+y x y x

=53.9MPa <0.9×158=142.2Mpa

断面3(支承环)的计算

计算简图如图3:

支承环布置形式见支承环结构图,腹板肋板都采用δ=18mm 的钢板。其影响长度为0.077m 。

a 、 确定支承环的有效断面积: F R =200*18+82*18*2+314*12=10320mm 2

b 、 支承环有效断面重心轴距管中心距R : R=

12

3142188220018806

123148531882290320018?+??+???+???+??=853.28mm

c 、 支承环有效断面绕横轴惯性距:

J R =(18?823?(1/12)+0.282?82?18)?2+200?183?(1/12)+18?200?502+314?123?(1/12)+12?314?472

=19120263.44mm 4

支承环重心轴至环外缘、管壁外缘和管壁内缘距离Z R1、和Z R2、Z R3,各为58.72mm 、41.28mm 和53.28mm 。

d 、 计算由于支承环约束引起的环旁管壁局部轴向应力

图三

(整理)倒虹吸设计

1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 设计基本资料及主要参数 (4) 4 设计一般原则 (9) 5.布置要求与优化设计 (9) 6.水力计算 (11) 7.结构设计 (12) 8.有关构造、细部结构 (16) 9.观测设计 (16) 10.技术专题研究 (17) 11.工程量计算 (17) 12.应提供的设计成果 (17) .................

................. 1 引言 格节河 倒虹吸管是 引汤 灌区(电站或其他工程)的 引汤 引水渠上(桩号33+800~36+466)的输水(引水)建筑物,位于 黑龙江 省 汤原 县(市) 胜利 乡的 格节河 ,对外交通为 公路 ,距 哈尔滨—罗北 公路里程约 2 km 。 按初步设计报告,本倒虹吸管经审定为:设计流量 17.31 m 3/s ,采用 方 形过水断 面,管径(宽×高) 2.8×3 m ,根数 3 条,进出口设计水位差 0.54 m 。管体采用 结构,设计最大水头 0.57m ,由进口段、管道、出口段及管道支承结构等建筑物组成,全长 242 m 。 2 2.1 (1)初步设计文件(包括补充文件); 一、概况 引汤灌区位于汤旺河下游松花江的北岸,黑龙江省汤原县境内,引汤灌区近期灌区范围,西起引汤渠首,东至乌龙河合阿凌达河,南起汤旺河、松花江交界,北至阶地的夹长条状,区内地形西北、东南低,地面坡度在1/5000左右。近期灌区面积26.87万亩。 二、工程地质 引汤灌区的总干渠和干渠均布设在阶地的边缘。粘性土较厚,一般在2-4m 左右,其下层为中砂和砂砾石,除沟谷外地下水位较深,一般在4-6m ,大部分建筑物基础坐落在砂层上。根据地质剖面图显示从上而下4-8米均为含壤土的细砾层,垂直渗透系数0.0865厘米/秒,渗透损失较大,休止角为水上35.5°、水下34°。 据《中国地震动参数区划图》(GB18306--2001),该区地震动峰值加速度0.05g ,相当于地震基本烈度为VI 度,地震动反应谱特征周期为0.35s 。属区域构造稳定区。依据《水工建筑物抗震设计规范》SL203-1997,采用基本烈度作为设计烈度,不进行抗震设计。 三、总干渠36+466倒虹吸工程的格节河洪水按20年一遇洪水标准设计。按50年一遇洪水标准校核。 工程级别为3级。抗滑稳定安全系数:基本组合1.25,特殊组合1.10. 四、水利要素: 上下游水位、渠道比降、渠底高程、渠道边坡、渠道底宽、地面高程、设计流量等见表X (2)初步设计审批文件(包括对本工程的其他文件); (3)技术设计任务书; (4)其它有关文件及资料。 2.2 主要设计规范 (1)SDJ12-78 水利水电枢纽工程等级划分及设计标准和补充规定(山区、丘陵区部分) (试行); (2)SDJ217-87 水利水电枢纽工程等级划分及设计标准(平原、滨海部分)(试行);

第四章 静水压力计算习题及答案

第四章静水压力计算 一、是非题 1O重合。 2、静止液体中同一点各方向的静水压强数值相等。 3、直立平板静水总压力的作用点与平板的形心不重合。 4、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50kPa。 5、水深相同的静止水面一定是等压面。 6、静水压强的大小与受压面的方位无关。 7、恒定总流能量方程只适用于整个水流都是渐变流的情况。 二、选择题 1、根据静水压强的特性,静止液体中同一点各方向的压强 (1)数值相等 (2)数值不等 (3)水平方向数值相等 (4)铅直方向数值最大 m,则该点的相对压强为 2、液体中某点的绝对压强为100kN/2 m (1)1kN/2 m (2)2kN/2 m (3)5kN/2 m (4)10kN/2 m,则该点的相对压强为 3、液体中某点的绝对压强为108kN/2 m (1)1kN/2 m (2)2kN/2 m (3)8kN/2 m (4)10kN/2 4、静止液体中同一点沿各方向上的压强 (1)数值相等 (2)数值不等 (3)仅水平方向数值相等 5、在平衡液体中,质量力与等压面 (1)重合 (2)平行 (3)正交 6、图示容器中有两种液体,密度ρ2 > ρ1 ,则A、B 两测压管中的液面必为 (1)B 管高于A 管 (2)A 管高于B 管 (3)AB 两管同高。

7、盛水容器a 和b 的测压管水面位置如图(a)、(b) 所示,其底部压强分别为pa和pb。若两容器内水深相等,则pa和pb的关系为 (1)pa>pb (2)pa< pb (3)pa=pb (4)无法确定 8 (1)牛顿 (2)千帕 (3)水柱高 (4)工程大气压 三、问答题 1、什么是相对压强和绝对压强? 2、在什么条件下“静止液体内任何一个水平面都是等压面”的说法是正确的? 3、压力中心D和受压平面形心C的位置之间有什么关系?什么情况下D点与C点重合? 4、图示为几个不同形状的盛水容器,它们的底面积AB、水深h均相等。试说明: (1)各容器底面所受的静水总压力是否相等? (2)每个容器底面的静水总压力与地面对容器的反力是否相等?并说明理由(容器的重量不计)。 四、绘图题 1、绘出图中注有字母的各挡水面上的静水压强分布。

船舶静水力计算设计书

船舶静水力计算设计书 船舶静水力计算设计书 班级: 姓名: 成绩: 完成日期: 同组名单: 一.船舶静水力计算 1.船型简介(船名、线形特点、其他) 2.程序简要说明(开发单位、近似计算方法、程序语言、使用情况及可信度、其他) 3.列表计算指定纵倾(首、尾吃水)情况下,排水量△,浮心Xb,Zb。并在此基础上(按组)绘制费尔索夫曲线、v i-x i曲线和纵向下水曲线。 (1)绘制费尔索夫曲线的步骤 1) 在邦戎曲线上选取若干尾吃水d Ai,和若干首吃水d Fi。构成一族倾斜水线面。 2) 计算每根倾斜水线下的排水体积▽i 及浮心的坐标x Bi。并以首吃水为横坐标,以尾吃水为参数,绘制▽及x B 的辅助曲线图。 3) 读出排水体积▽(20)和浮心纵坐标 X B (0.0)等值线与各首吃水交点对应的尾吃水 4) 在费尔索夫曲线上绘制上述各等值线。

(2)计算vi–xi曲线。 1) 绘制极限破舱水线 在邦戎曲线上绘出核算水线和安全限界线,并在安全限界线的最低点处画水平的极限破舱水线PP,然后在首尾垂线向下取Z≈1.6D-1.5d,并将其3~4等分,过各分点做限界线的切线,得到一组极限破舱水线。 2) 计算各极限破舱水线下体积▽i 及对舯的体积静矩Mi用邦戎曲线分别计算▽, M, ▽i, M i,并用下式计算 vi = ▽i - ▽ xi = (Mi - M) / vi 将结果绘成vi–xi 曲线。

(3)下水曲线计算 1)尾浮前用邦戎曲线计算船舶浮力和浮心。以滑程X为参数,根据龙骨坡度β确定倾斜水线。尾浮以后船体浮力和浮心的计算: 2)尾浮后以滑程X为参数,按龙骨坡度β确定最高倾斜水线。适当选择几个低尾吃水,分别计算船体排水体积和浮心,做辅助图,用浮力对前支架力矩等于重力对前支架力矩确定实际尾吃水和浮力。 二.稳性校核 1.概述(船名、船舶类型,依据规范,航区) 2.船舶主尺度:Loa,Lpp,Lw,B,D,d,f(梁拱),Pe(功率),V(航速),W(货船载重量),Ab(舭龙骨),其他3.稳性计算书使用说明 经校核本船虽满足稳性要求, 但船长应根据装载、天气、水流等情况谨慎驾驶,确保船舶航运安全。 4.各种核算状态稳性总表 序号项目符号及公式单位满载出港满载到港空载出港空载到港 1 载货量 2 平均吃水 3 排水量 4 全船重心高 5 初稳性高 6 修正后初稳性高 7 规范要求初稳性高 8 舱室进水角 9 30度静稳性臂L30 10 规范要求静稳性臂L30’ 11 最大静倾角

倒虹吸计算书Word版

旧寨倒虹吸计算书 一、基本资料 设计流量:2.35 m3/s 加大流量:2.94 m3/s 进口渠底高程:1488.137m 进口渠宽:2.0m 进口渠道设计水深:1.31m 加大流量水深:1.56m 出口渠底高程:1487.220m 进口渠道设计水深:1.43m 加大流量水深:1.70m 进出口渠道形式:矩形 进口管中心高程:1487.385m 出口管中心高程:1486.69m 管径DN:1.6m 二、设计采用的主要技术规范及书籍 1、《灌溉与排水工程设计规范》GB50288—99; 2、《水电站压力钢管设计规范》SL284—2003 3、《混凝土结构设计规范》SL/T191—96; 4、《水工建筑物抗震设计规范》DL5073—1997; 5、《小型水电站机电设计手册-金属结构》;。 6、《水力计算手册》

7、《倒虹吸管》 三、进口段 1、渐变段尺寸确定 L=C(B1-B2) 或L=C1h; C取1.5~2.5; C1取3~5: h上游渠道水深; 经计算取L=4m; 2、进口沉沙池尺寸确定 (1) 拟定池内水深H; H=h+T T=(1/3~1/4)h; T为进口渠底至沉沙池底的高差;取0.8m; (2) 沉沙池宽B B=Q/(Hv); v池内平均流速0.25~0.5m/s; 经计算取B=3.5m; (3) 沉沙池长L’ L’≥(4~5)h 经计算取L =8m; (4) 通气孔

通气孔最小断面面积按下式计算: P C KQ A △1265 ; A 为通气管最小断面面积m 2;Q 为通气管进风量,近似取钢管内流量,m 3/s ;C 为通气管流量系数;如采用通气阀,C 取0.5;无阀的通气管,C 取0.7;P △为钢管内外允许压力差,其值不大于0.1N/mm 2;K 为安全系数,采用K=2.8。 经计算A=0.0294 m 2;计算管内径为0.194m ,采用D273(δ=6mm)的螺旋钢管。 四、出口段 倒虹吸管出口消力池,池长L 及池深T ,按经验公式: L=(3~4)h T ≥0.5D 0+δ+0.3 经计算取L =6m ,T=1.2m 。 五、管身段 本倒虹吸管采用Q235B 板钢管,经初步布置和拟定后量得钢管长约410m 。根据地形在全线设4座镇墩,初定钢管内径DN1600mm ,壁厚δ为14和16mm 。下面分别对倒虹吸进行水力计算、钢管和镇墩结构计算: (一) 水力计算 倒虹吸的过水能力及总水头损失按《灌溉与排水工程设计规范》附录N 所列公式计算: 1、倒虹吸的过水能力按下式计算

虹吸雨水的优势与技术规定

虹吸雨水的优势与技术规定 “雨虹(rainbow)”虹吸雨水排水系统是利用重力作用,在管道内产生局部真空从而产生虹吸现象。利用虹吸作用,排水系统可以在不需要任何坡度的情况下快速彻底排清屋面积水,广泛适用于任何材质和形状的屋面。 “雨虹(rainbow)”虹吸雨水排水系统是利用重力作用,在管道内产生局部真空从而产生虹吸现象。利用虹吸作用,排水系统可以在不需要任何坡度的情况下快速彻底排清屋面积水,广泛适用于任何材质和形状的屋面。 虹吸雨水系统的七大绝对优势 1、雨水斗在屋面上布点灵活,更能适应现代建筑的艺术造型,很容易满足不规则屋面的雨水排放。 2、单斗大排量,屋面开孔少,减少屋面漏水几率,减轻屋面防水压力。 3、落水管的数量和直径小,满足了现代建筑的美观要求以及大型标志性建筑,各种大跨度屋面及高层建筑群楼的雨水排放。

4、系统安全性高,管道走向可以根据需要设置,在不影响建筑功能及使用空间的同时满足现代大型购物广场,超市,厂房,仓库及各种网架结构金属屋面的雨水排放。 5、在设计流量下,系统中满管流无空气漩涡,排水高效且噪音小,更能完美配合现代影院,剧场,会展中心,旧点图书馆,学校医院的声学要求。 6、管路设计同时满足正负要求,能保证通过高层,超高层建筑全程管路满水试验检验验收,且能避免负压失控确保系统正常运行。 7、由于管路直径小,总长度和系统安装简便所带来的管道成本和安装费用减少,管道安装无特殊要求,使虹吸雨水排水系统得到众多的业主和施工单位青睐。 对于虹吸雨水设计时的技术规定,则按照下列标准执行。 虹吸雨水排水系统必须选用转用虹吸雨水斗,一个计算汇水面积内,宜放置不少于两个虹吸雨水斗,屋面汇水最低处至少应放置一个虹吸雨水斗;虹吸雨水斗的距离不宜大于20m;无天沟的平屋面宜采用YG50型虹吸雨水斗,同一悬吊管上接入的雨水斗应采用同一规格,其进水口应在同一水平面上;虹吸雨水排水系统的悬吊管设计流速不宜小于1m/s,设计流速不宜小于2.2/s,不宜大于10m/s,悬吊管计算负压值不大于80kpa。 同一系统不同支路的节点压差不应大于10kpa;排水管道总水头损失与流出水头之和不得大于雨水系统进、出口的几何高差;虹吸雨水排水系统接入市政重力流系统之前应放大管径,起流速不宜大于2.0m/s,否则需设置消能设施;凡设计虹吸雨水排水工程的建筑屋面均应设置溢流口(外檐沟除外),溢流堰,溢流管系等溢流设施。溢流排水设施不得危害建筑设施。在雨季前后,应及时清理屋面及虹吸雨水斗导流罩上的杂物。

(整理)倒虹吸管设计计算

倒虹吸管设计计算 一、倒虹吸管总体布置(根据地形和当地需水量情况确定) 1.布置原则;13P 2.布置型式;{地面式(露天或浅埋式)、架空式} 3.管路布置;(斜管式和竖井式) 4.进口段布置;{渐变段、拦污栅、节制闸、连接段﹙进水口、通汽孔﹚、沉沙、冲沙及泄水设施} 5.出口段布置;(设消力池) 二、倒虹吸管的构造 1.管身构造;(钢筋混泥土管、钢管、铸铁管) 2.支承结构;(管座、镇墩、支墩) 三、倒虹吸管的水力计算 1.管道断面尺寸的确定; ①灌溉面积的确定:(根据土地利用参加够调整表查出整理后土地的灌溉面积。) ②补水量的计算: 项目区水田和旱地需水量除去项目区降雨量即为需补给水量。项目区分为水田和旱地,主要农作物为水稻、玉米、油菜,各种农作物所在区需水量不同。根据贵州省《灌溉用水定额》编制分区图:项目区属Ⅰ区,灌溉定额根据贵州省灌溉用水定额编制Ⅰ区水稻净定额为2703m/亩,毛灌溉定额为6443m/亩。

需水量公式 W M A n =??毛需 W 需—— 农业生产总需水量,3 m ; M 毛—— 综合毛灌溉定额,3m ; A —— 灌溉面积,亩; n —— 农作物复种指数,采用综合灌溉定额时,已经考虑了复种指数,可不再计入。 M M η = 净 毛 M 净—— 作物净灌溉定额,3m /亩; η—— 灌溉水利用系数。Ⅰ区渠系水利系数为 0.465; 田间水利用系数为0.95,故灌溉水利用系数为0.465×0.95 得0.44。 ③.流量计算 根据当地全年水田需水量表、旱地需水量表和全年降雨量表查出全年需水量和降雨量的最大值和最小值,计算出最大补水量和最小补水量,以推出其流量。 ④.确定尺寸; o D (圆管) o D —— 管道内径,m;

倒虹吸设计

1. 引言 4 2. 设计依据文件和规范 . (4) 3. 设计基本资料及主要参数 . (4) 4 设计一般原则 . (9) 5. 布置要求与优化设计 . (9) 6. 水力计算 . (11) 7. 结构设计 . (12) 8. 有关构造、细部结构 . (16) 9. 观测设计 . (16) 10. 技术专题研究 . (17) 11. 工程量计算 . (17) 12. 应提供的设计成果 . (17)

1引言 格节河倒虹吸管是引汤灌区(电站或其他工程)的引汤引水渠上(桩号33 + 800?36+ 466)的输水(引水)建筑物,位于黑龙江省汤原县(市)胜利乡的格节河,对外交通为公路,距哈尔滨—罗北公路里程约2 km。 按初步设计报告,本倒虹吸管经审定为:设计流量17.31 m3/s,采用方形过水断 面,管径(宽X高)2.8x 3_m,根数二 __________ 条,进出口设计水位差 0.54 m。管体采用 结构,设计最大水头0.57m,由进口段、管道、出口段及管道支承结构等建筑物组成,全 长 242 m。 2 设计依据文件和规范 2.1 有关本工程主要文件 (1)初步设计文件(包括补充文件); 一、概况 引汤灌区位于汤旺河下游松花江的北岸,黑龙江省汤原县境内,引汤灌区近期灌区范围,西 起引汤渠首,东至乌龙河合阿凌达河,南起汤旺河、松花江交界,北至阶地的夹长条状,区内地形西北、东南低,地面坡度在 1/5000左右。近期灌区面积26.87万亩。 二、工程地质 引汤灌区的总干渠和干渠均布设在阶地的边缘。粘性土较厚,一般在2-4m左右,其下层为中砂和砂砾石,除沟谷外地下水位较深,一般在4-6m,大部分建筑物基础坐落在砂层上。根据地 质剖面图显示从上而下4-8米均为含壤土的细砾层,垂直渗透系数0.0865厘米/秒,渗透损失 较大,休止角为水上35.5 °、水下34°。 据《中国地震动参数区划图》(GB18306--2001),该区地震动峰值加速度 0.05g,相当于地震基本烈度为VI度,地震动反应谱特征周期为 0.35s。属区域构造稳定区。依据《水工建筑物抗震设计规范》SL203-1997,采用基本烈度作为设计烈度,不进行抗震设计。 三、总干渠36+466倒虹吸工程的格节河洪水按 20年一遇洪水标准设计。按 50年一遇洪水标准校核。 工程级别为3级。抗滑稳定安全系数:基本组合 1.25,特殊组合1.10. 四、水利要素: 上下游水位、渠道比降、渠底高程、渠道边坡、渠道底宽、地面高程、设计流量等见表X (2)初步设计审批文件(包括对本工程的其他文件); (3)技术设计任务书; (4)其它有关文件及资料。 2.2 主要设计规范 (1) SDJ12 — 78 水利水电枢纽工程等级划分及设计标准和补充规定(山区、丘陵区部分) (试行); (2) SDJ217 — 87水利水电枢纽工程等级划分及设计标准(平原、滨海部分)(试行); (3) SDJ10 — 78① 水工建筑物抗震设计规范(试行); (4) SDJ20-78②水工钢筋混凝土结构设计规范(试行); (5)SDJ207-82 水工混凝土施工规范; (6)SD303-88 水电站进水口设计规范(试行); 2.3 主要参考资料 [1]《水工建筑物》第三版天津大学

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

虹吸雨水系统知识

虹吸系统组成和材质 虹吸系统由虹吸试雨水斗、尾管、连接管、悬吊管、立管、埋地管、检查口和固定及悬吊系统组成。 虹吸试雨水斗: 雨水斗一般由反旋涡顶盖、格栅片、底座和底座支管组成。额定流量分12L/s、 25L/s、40L/s、60L/s和72L/s等,最常用的为25L/s和40L/s两种额定流量的雨水斗。 虹吸试雨水斗材质可采用铸铁、铝合金、不锈钢、高密度聚乙烯(HDPE)和聚丙烯(PP)等。 管材和管件: 用于虹吸式屋面雨水排水系统的管道,应采用铁管、钢管(镀锌钢管、涂塑钢管)、不锈钢管和高密度聚乙烯(HDPE)管等材料。用于同一系统的管材和管件以及与虹吸式雨水斗的连接管,宜采用相同的材质。这些管材除承受正压外,还应能承受负压。 固定件: 管道安装时应设置固定件。固定件必须能承受满流管道的重量和高速水流所产生的作用力。对高密度聚乙烯(HDPE)管道必须采用二次悬吊系统固定。)系统布置 根据所计算的有关数据,确定雨水斗的数目和分布位置,在图纸上绘制雨水斗位置和管道系统的布置设计,除了在建筑平面图纸上布置雨水斗和管道,还要进行系统的设计。 系统设计应符合有关规范规定并具备以下要求: 1、当连接有多个虹吸式雨水斗时,雨水斗宜与雨水立管做对称布置,以减少管道用量;雨水斗的排水连接管应连接在悬吊横管上,不得直接接在雨水立管的顶部。 2、虹吸式雨水斗应设置在每个汇水区域屋面的最低点或天沟内的最低点。 3、每个汇水区域的雨水斗数目不宜少于2个。 4、2个雨水斗之间的间隔不宜大于20m。 5、设置在裙房屋面上的雨水斗距裙房与塔楼交界处的间隔不应小于1m,且不大于10m。

6、对于汇水面条中大于5000m2的大型屋面,宜设置不少于2组独立的虹吸排水系统。在进行初步的图纸设计时应与设计院相关的设计职员沟通、协调以免与其他专业产 生冲突。 需要留意的是,管道布置根据不同的工程有不同的要求,可能在柱边,也可能有固 定的管道井,严格按要求来布置的。立管位置宜布置在间隔雨水井较近的位置,这 样可以减少埋地管道的长度和相应的施工量。 在虹吸屋面雨水排放系统中,高密度聚乙烯(HDPE)管材具有卓越的理化性能和耐 腐蚀性能,与金属管材相比,HDPE管同样具有一定的强度、钢度、柔韧性、搞冲击性、耐磨性、耐腐蚀性等。国外的使用经验表明,HDPE管连接方便、可靠施工简单 维修少,使用寿命长、经济上风明显,因此,较多的虹吸供给商选择了HDPE管材,并开发了配套组件和特别适合HDPE管固定安装的管道固定系统和固定件。 高密度聚乙烯管材(HDPE)的连接工艺 在虹吸屋面雨水排放系统应用中,HDPE管连接可采用对口热熔连接和电焊管箍连接。尽不可采用粘接口连接。热熔连接多用于预制管段,首先将管道放在专用焊接设备 的夹具上对齐,使两段管道的中心轴线保持在同一直线上,如管口有偏差应调平夹牢,清除管真个杂质,使用管口创刀或管道切割机具创切,管口应垂直于管中心轴线,移动管道对齐应使两段管道管端平整,紧密无间隙,然后用电加热板进行加热,加热时间应控制得当,可根据管道的壁厚和不同季节环境温度的影响适当调整,并 观察管端加热时管口的软化、膨胀情况,当管端软化程度与管壁厚一半相当,管口 膨胀高度相当于管壁厚的1/4时,即可撤除电加热盘,(留意加热时不可对管道加压) 电加热盘撤除后应立即将两管道段靠紧、施加压力,使熔融表面连成一体,此时两 管端表面会外翻,外翻半径到相当于管壁厚一半即可。施加压力应保持到接口自然 冷却,尽不能采用浇水或其它快速冷却方式。电焊管箍连接,此方式多用于预制完 成的管段在排水管道系统中的连接,具体操纵如下:对接的两管道管口应创切平整,对口无间隙或在答应的微小间隙范围内,管道端部表面就清洁无杂质,可使用细砂 布磨刷。套进电热熔套管前须用色笔作记号,记号应标明电热熔套管套进的深度以 确保两段管道紧密连接,套紧后用电熔焊机加进电流焊接。焊接时管道内应干燥, 尽不能有水滴溢出。电热熔焊接过程由电熔焊设备自动控制,但焊接完后应观察电

倒虹吸管水力计算书

倒虹吸管水力计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本设计资料 1.依据规范及参考书目: 武汉大学水利水电学院《水力计算手册》(第二版) 华东水利学院《水工设计手册》(第二版) 中国水利水电出版社《灌区建筑物的水力计算与结构计算》(熊启钧编著)2.计算参数: 计算目标: 已知流量及管径,求水头损失L。 设计流量Q = 20.000 m3/s 倒虹吸管断面形状:圆形;孔口数量:3孔 倒虹吸管孔直径D = 2.000m 管身长度L = 220.00m,斜管段边坡1 : 4.00 弯管中心半径R = 2.00倍管径,管身粗糙系数n = 0.0140 上游渠道流速V1 = 0.700 m/s,下游渠道流速V2 = 0.700 m/s 门槽局部水头损失系数ξ4 = 0.050,管进口局部水头损失系数ξ5 = 0.200 三、计算过程 门槽局部水头损失系数ξ4 = 0.050。 管进口局部水头损失系数ξ5 = 0.200 斜管段边坡1:4.00,相应弯道中心的圆心角为: α = tan-1(1/4.00) = 14.036° 弯道中心半径R=2.00D,每个弯道的局部水头损失为: ξ6 = [0.131+0.1632(H/R)3.5+(α/90)1/2 = {0.131+0.1632×[2.000/(2.00×2.00)]3.5}×(14.036/90)1/2=0.057 管身流速为:V管= Q/*3×π×(D/2)2] = 20.000/[3×3.14×(2.000/2)2] = 2.122 m/s 管出口局部水头损失系数为:

倒虹吸工程施工设计方案

贵塘(S206象山至金屯、X203金屯至塘湾)公路改 建工程 开工报告 倒虹吸 承包单位:中煤建设集团有限公司 监理单位:虎门技术咨询有限公司 日期:2016年4月25日

贵塘(S206象山至金屯、X203金屯至塘 湾)公路改建工程 倒虹吸施工方案 编制: 审核: 批准: 中煤建设集团有限公司 贵塘(S206象山至金屯、X203金屯至塘湾)公路改建工程经理部 二〇一六年四月二十五日

目录 一、施工技术方案及工艺流程 (1) 1.1、工程概况 (1) 1.2、适用围 (1) 1.3、施工技术方案 (1) 二、质量保证体系 (1) 2.1质量管理体系 (3) 2.2工程质量保证措施 (4) 三、安全、文明、环保保证措施 (5) 3.1安全保证措施 (5) 3.2环境保护措施 (6) 3.3文明施工保证措施 (7) 3.4、现场施工规化管理 (7) 3.5、材料堆放要求 (7) 四、施工进度安排 (8) 五、机械、材料进场情况和计划安排 (8) 六、附件............................................................. 错误!未定义书签。

一、施工技术方案及工艺流程 1.1、工程概况 倒虹吸1-Φ0.75共计11道,合计369.14m。 本项目倒虹吸地基基底换填砂砾垫层,洞口井身、井基础采用C20混凝土,竖井砼井基采用C15混凝土。涵洞全长围每4~6m设置一道沉降缝,沉降缝贯穿整个涵身断面,缝用沥青麻絮或不透水材料填塞,沉降缝与涵洞中心线垂直,填挖交界处及基底土石交界处均设置沉降缝。 本项目倒虹吸涵顶以上及涵身两侧在不小于2倍孔径围的填土分层对称夯实,压实度要求达到96%。 1.2、适用围 本方案适用于所有倒虹吸施工。 1.3、施工技术方案 1、倒虹吸施工工艺及方法 ⑴工艺流程 倒虹吸模管采用整体型钢筋混凝土圆涵,外套管、竖井、出入口矩形槽现场浇注,明挖基础采用机械开挖,人工清理。倒虹吸施工工艺流程见图1。 ⑵工艺方法 ①基础开挖及处理 开挖前先进行精密、准确放线,并复核无误后方可施工。 基坑开挖采用机械开挖辅助人工施工,机械开挖至设计高程以上20cm 左右时,采取人工开挖、凿除,以免影响地基稳固。挖至设计标高后,清

静水力计算

COMPASS 静水力计算 SRH11( Ver. 2010 ) 控 制 号 : 1234567 船 名 : 46 设 计 : 制 造 : 计算人员 : 建模日期 : 2014-10-18 计算日期 : 2014-10-21 中 国 船 级 社

垂线间长...............................................................................................................................................13.000m 型 宽................................................................................................................................................... 4.250m 型 深................................................................................................................................................... 1.913m 设计吃水...............................................................................................................................................0.589m 设计纵倾...............................................................................................................................................0.000m 单 位 定 义 ______________________________________________ 长度单位 : 米 [ m ] 重量单位 : 吨 [ t ] 角度单位 : 度 [deg] 坐 标 轴 定 义 ______________________________________________ X 轴 : 向右为正 Y 轴 : 向首为正 Z 轴 : 向上为正 纵倾 : 尾倾为正 横倾 : 右倾为正 _____________________________________________________________________________________________ 本程序可用于计算船舶的静水力数据。

某渠道倒虹吸工程施工组织设计

施工组织设计 一、工程概况 (2) 二、施工准备 (2) (一)技术准备 (3) (二)物资准备 (3) (三)劳动组织准备 (3) (四)施工现场准备 (3) 1. 测量 (3) 2. 施工道路 (4) 3. 风、水、电管线路布置 (4) 4. 渣场布置 (4) 三、单位工程主要施工方法 (5) (一)基础开挖 (5) (二)、基础回填 (6) (三)主体结构施工 (6) 1 施工方案 (6) 2 施工方法 (6) 3. 模板工程 (7) 4.钢筋工程 (8) 5.止水和预埋件施工 (9) 6.浇筑准备和仓面验收 (9) 7.混凝土工程 (10) ⑧混凝土浇筑质量保证措施 (10) ⑨混凝土浇筑安全保证措施 (11) 四、根据相关规范计算劳动力及施工机械需用量11 五、保证工程质量的技术组织措施 (11) 六、保证工程施工安全的技术组织措施 (12)

一、工程概况 某河渠道倒虹吸工程位于河南省辉县市赵固乡大沙窝村东北约1km,南距辉县~焦作公路约5km。倒虹吸进口渐变段起点桩号为总干渠Ⅳ93+928.8,出口渐变段终点桩号为总干渠Ⅳ94+379.8,建筑物总长451m,其中管身水平投影长320m。倒虹吸设计流量260m3/s,加大流量310m3/s,管身横向为4 孔箱形钢筋砼结构,单孔孔径为6.5m×6.6m(宽×高)。 某河渠道倒虹吸由进口渐变段、进口检修闸、管身段、出口控制闸和出口渐变段组成。 本标段跨某河、孙村和刘店干河三个工程地质段。 桩号HZ93+280~HZ94+450为粘、砂、砾多层结构段,渠底板主要位于黄土状壤土、砂壤土中,局部位于卵石层中;渠坡土岩性主要为砂壤土夹细砂、黄土状土和卵石夹中细砂,卵石和中、细砂层一般呈松散状。地下水位位于渠底板附近,局部高于渠底板,地下水具动态变化特征,该段地下水位受降雨和地表径流影响变化较大。 桩号HZ94+450~HZ97+950为粘砂多层结构,渠底板主要位于黄土状重粉质壤土中,局部位于卵石层中;渠坡土岩性主要为黄土状土、粉细砂和中砂,呈互层状或透镜体状分布。地下水位一般位于渠底板以下3~5m,由于地下水具动态变化特征,水位变化受降雨影响较大。 桩号HZ97+950~101+230为粘砾多层结构段,渠底板主要位于黄土状壤土、粉质壤土中,局部位于卵石透镜体中;渠坡土主要为黄土状重粉质壤土、重粉质壤土夹卵石薄层或透镜体。地下水低于渠底板2~7m,一般不存在施工排水问题,地下水具动态变化特征,水位变化受降雨影响较大。 场区地下水主要为第四系松散层孔隙水,部分渠段具承压性,主要赋存于砂、卵石层中,含水层单层厚度一般4~9m,局部厚度大于15m,渗透系数一般K=1.54×10-2~9.97×10-2cm/s,属强透水性,富水性好;部分渠段粉质壤土中赋存地下水,渗透系数一般K=7.92×10-6~8.5×10-5cm/s,属微~弱透水,富水性差。勘察期间地下水位埋深一般为4~19m,地下水具动态变化特征。地下水主要接受大气降水入渗及侧向迳流补给,主要以人工开采及侧向迳流排泄。 某河渠道倒虹吸施工营地场区附近民井深度一般25~40m,井水位埋深10m 左右。地下水化学类型为HCO3-Ca-Mg 型,对混凝土无腐蚀性。各营区附近地下水均可作为施工和生活饮用水水源。 本工程土方填筑部位主要是管身段和各部位混凝土后背回填,回填料包括土方和卵石,回填总工程量59万m3,回填用土料和卵石来自开挖可利用料。 二、施工准备 开工前应该做好充分的施工准备。

船舶静水力曲线计算

船舶静水力曲线计算 一、船舶静水力曲线计算任务书 1、设计课题 1)800t油船静水力曲线图绘制 2)9000t油船静水力曲线图绘制 3)86.75m简易货船静水力曲线图绘制 4)5200hp拖船静水力曲线图绘制 5)7000t油船静水力曲线图绘制 6)12.5m多功能工作艇静水力曲线图绘制 2、设计任务 船舶静水力曲线的计算是在完成船舶静力学课程的教学任务下,按照静水力曲线计算课程设计的要求,在提供所设计船舶全套型线图纸的前提下,完成静水力曲线的计算和绘制。 3、计算方法 (1)计算机程序计算 (2)手工计算(包括:梯形法、辛氏法、乞氏法等)。 本课程设计计算以梯形法为例,因其原理相同,其余方法在此不做介绍,可参考教材和相关书籍。 4、完成内容 静水力曲线计算书一份及静水力曲线图一张(用A3坐标纸) 二、船舶静水力曲线计算指导书 本静水力曲线计算指导书以内河20t机动驳计算实例为例。 (一)前言 静水力曲线是表达船在静水正浮各种吃水情况下的各浮性及初稳性系数,并作为稳性计算、纵倾计算及其他计算的基础。通过计算可得到船舶的各项性能参数,其主要内容见表1。

表1 静水力曲线图的内容 (二)设计前的准备和已知条件 1、设计前的预习与准备 静水力曲线计算,首先是要熟悉所计算船的主尺度及各船型参数,然后是熟悉各类计算公式,选用计算方法。其次是进行计算,按计算结果绘制曲线图,最后进行检验和修改,完成静水力曲线的计算任务。 2、已知条件 20t内河机动驳型线图一套,梯形法表格一套,见静水力曲线计算书。 (三)设计的主要任务 1、计算公式 A=ι[(y0+y1+······+y n-1+y n)- 1 2 (y0+y n)] 梯形法基本式 A=ι[(y0+y1)+(y1+y2)+······+(y n-1+y n) ] 梯形法变上限积分式 式中:ι—等分坐标间距。注:y1表示各站号的纵坐标值(i=1,···,n) 2、静水力曲线计算表格及算例 在实际的计算中,采用下述表格很方便。表中附20t内河机动驳计算实例,供同学自己推演。

计算书

1非溢流坝段设计计算 1.1设计校核洪水位的确定 由堰流公式 相应洪水位= 堰顶高程+ H0 H0=1.05H d B=Q/q n=B/b 式中:Q--流量m3/s B--溢流堰孔口宽m H0--堰顶以上作用水头 G--重力加速度9.8m3/s m—流量系数 n—孔口数 H d—堰面曲线定型设计水头 B—溢流孔的净宽 b—孔口净宽 q—单宽流量 --侧收循系数,根据闸墩厚度及墩头形状而定, =1, =0.95,m=0.502,q=60㎡/s,b=5m,堰顶高程=1057.00m 计算成果见表: 表5.2 堰顶高程 1.2坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用以下公式进行计算:

波浪要素按官厅公式计算。公式如下: 1/3 1/121022000.0076gh gD v v v -??= ???...............................① 1/3.75 1/2.15022000.331gL gD v v v -??= ??? ...............................② 2 12z h H h cth L L ππ= ...............................③ 库水位以上的超高h ?: 1c z h h h h ?=++ 式中1h --波浪高度,m z h --波浪中心线超出静水位的高度,m c h --安全超高,m(查规范得,设计情况取0.3m,校核情况取0.2m) o v --计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年 平均最大风速的1.5~2.0倍,取19m/s ,校核洪水位时,宜用相应洪水期多年平均最大风速,15 m/s D-风区长度;取800m L--波长;M H--坝前水深 1.2.1.1 设计情况下 gD/v 02=9.8×800/192=21.72,在20—250之间,故h 的累积频率为5%的波高,带入①中, 9.8×h 5%/192=0.0076×19-1/12×(9.81×800/192)1/3 得h 5%=0.55m 查《混凝土重力坝设计规范》表B.6.3得 h 5%/hm=1.95 hm=0.55/1.95=0.282m h 1%/hm=2.42 h 1%=0.282×2.42=0.682m 将各值带入②得

压力流(虹吸式)雨水系统设计计算步骤

一、压力流(虹吸式)雨水系统设计计算步骤 ⑴.计算屋面总的汇水面积; ⑵.计算总汇水面积上的暴雨量; ⑶.确定雨水斗的口径和数量; ⑷.布置雨水斗,组成屋面雨水排水管网系统; ⑸.绘制水力计算草图,标注各管段的长度,雨水斗、悬吊管和埋地干管起端与末端的标高; ⑹.估算计算管路的单位等效长度的阻力损失 ⑺.估算悬吊管的单位管长的阻力损失。 ⑻.初步确定管径。根据最小允许流速Vmin和悬吊管的单位管长的阻力损失Rxo查附录6-5虹吸式雨水管道水力计算表,初步确定悬吊管管径。立管与排出管管径可采用相应的控制流速初选管径,立管管径一般可比悬吊管末端管径小一号。 ⑼.列表进行水力计算求出各管段的沿程水头损失、局部水头损失、位置水头、各节点的压力。 ⑽.校核 ①系统的最大负压值(悬吊管与立管连接处); ②不同支路计算到某一节点的压力差 ③系统出口压力余量。 若不满足,则应对系统中某些管段的管径进行调整,必要时有可能对系统重新布置,然后再次进行水力计算,直至满足为止。 ⑾.按最后结果绘制正式图纸

二、压力流屋面雨水排水系统水力计算要点 水力计算的目的是充分利用系统提供的可利用的水头,减小管径,降低造价;使系统各节点由不同支路计算的压力差限定在一定的范围内,保证系统安全、可靠、正常地工作。 压力流屋面雨水排水系统的水力计算应包括对系统中每一管路的水力学工况作精确的计算。计算结果应包括每一计算管段的管径、计算长度、流量、流速、压力。 (1)压力流屋面雨水排水系统雨水斗至过渡段总水头损失与过渡段流速水头之和小于雨水斗至过渡段的几何高差,其压力余量宜大于-0.01MPa。 (2)雨水斗顶面至悬吊管管中的高差不宜小于1m。 (3)雨水斗顶面至过渡段的高差在立管管径小于DN75时宜大于3m,在立管管径大于等于DN90时宜大于5m。 (4)悬吊管设计流速不宜小于1m/s,使管道有良好的自净功能,立管设计流速宜小于6m/s,以减少水流动时的噪音。系统底部的排出管流速宜小于1.8m/s,减少水流对排水井的冲击,当流速大于1.8m/s 时,出口处应采取消能措施。 (5)压力流屋面雨水排水系统的最大负压值在悬吊管与雨水立管的交叉点。该点的负压值,应根据不同的管材而有不同的限定值。对于使用铸铁管和钢管的排水系统应小于-0.09MPa;对于塑料管道,管径DN50-DN150应小于-0.08MPa;管径DN200-DN300应小于- 0.07MPa。

(完整版)XX水库供水隧洞结构计算书.doc

龙洞河水电站有压引水隧洞结构计算书 1工程概况 公明供水调蓄工程供水隧洞是从鹅颈至公明水库连通隧洞L0+387 桩号接往石岩水库的一条供水隧洞,全长 6.397km,桩号为 G0+000~G6+397。根据初步设计报告供水隧洞为 2 级建筑物,设计流量为 10.24m3/s,采用圆型断面,内径为 3.4m。供水隧洞进口底高程为 29.60m,出口底高程为 27.50m,隧洞全段纵坡为 -0.0328%。供水隧洞Ⅱ类围岩 3576m、Ⅲ 类围岩 1836m、Ⅳ类围岩 345m、Ⅴ类围岩 310m。 2设计依据 2.1 规范、规程 《水工隧洞设计规范》( SL279-2002)(以下简称“隧洞规范”) 《水工隧洞设计规范》( DL/T 5195-2004)(电力行业标准,下称“电力隧洞规范”)《水工钢筋混凝土结构设计规范(试行)》(SDJ20-78)(以下简称“砼规” ) 《锚杆喷射混凝土支护技术规范》(GB 50086-2001) 2.2 参考资料 《深圳市公明水库调蓄工程初步设计报告》(深圳市水利规划设计院, 2007.05) 《G-12 隧洞衬砌内力及配筋计算通用程序》 《PC1500 程序集地下结构计算程序使用中的几个问题》(新疆水利厅,张校正) 《取水输水建筑物丛书-隧洞》 《水工设计手册-水电站建筑物》(水利电力出版社, 1989) 《水击理论与水击计算》(清华大学出版社, 1981) 《水力学-下册》(吴持恭,高等教育出版社,1982) 3计算方法 隧洞支护及衬砌结构按新奥法理论进行设计,支护型式采用锚喷支护通过工程类比确 定,喷锚支护类型及其参数参照电力隧洞规范附录 F 表 F.1 选取;衬砌型式采用钢筋混凝 土衬砌。根据隧洞规范 6.1.8 条第 2 点规定,围岩具有一定的抗渗能力、内水外渗可能造 成不良地质段的局部失稳,经处理不会造成危害者,宜提出一般防渗要求,本工程按限制

相关文档
最新文档