2016年山东省高考理科数学试题及答案

合集下载

2016年高考山东卷理科数学 【答案加解析】

2016年高考山东卷理科数学 【答案加解析】

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B = (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )133+π(C )136+π(D )16+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )(x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东省高考理科数学试题及答案

2016年山东省高考理科数学试题及答案

精心整理绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第H卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

I / _ ------------ .注意事项:1. 答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2. 第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第H卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)二P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z满足2z其中i为虚数单位,则z=(A) 1+2i (B) 1 -2i (C) -1 2i ( D) -1-2ix 2(2)设集合A二{y|y =2 ,x R}, B 二{X|x -v::0},则A U B二(B ) (0,1)(C )(胡,--)(D )(0,--)(3)某高校调查了 200名学生每周的自习 (单位:小时),制成了如图所示的频率分 图,其中自习时间的范围是[17.5,30],样本方图,这200名学生中每周的自习时间不少 小时的人数是(A ) 56 ( B ) 60 (C ) 120 ( D ) 140 看x+ y? 2, 拿x- 3y ? 9,(4) 若变量x ,y 满足锍0,则x 2+ y2的最大值是(A ) 4 (B ) 9 (C ) 10 (D ) 12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(6) 已知直线a ,b 分别在两个不同的平面 a ,B 内•则“直线a 和直线b 相交”是“平面a 和 平面B 相交”的(A )充分不必要条件(B )必要不充分条件学.科.网 (C )充要条件(D )既不充分也不必要条件 (7) 函数 f (x ) = ( .3sin x+cosx ) ( 3 cosx - sin x )的最小正周期是n 3 n (A ) n ( B )n( C )——(D 2n2 2(8) 已知非零向量 m n 满足4丨ml =3 I n I ,cos<m n>=-.若门丄(tm+ n ),则实数t 的值为3(A ) 4 (B )- 4 (C ) 9 ( D )-9441(9) 已知函数 f (x)的定义域为 R.当 x<0 时,f (x) = x 3 T ;当 -1 _ x -1 时,f (-x) - - f (x);当 x - 1 1时,f (X 2)= f (X -2).则 f (6)=(A ) ?2 (B ) ?1 (C ) 0 (D 2(10) 若函数y=f(x)的图象上存在两点,学科.网使得函数的图象在 这两点处的切线互相垂直,则称y=f (x)具有T 性质.下列函数中具有 T 性质的是(A ) 1 2n 3 3(B )(D )6时间 布直方 数据分根据直 于 22.5x 3 (A) y=sinx ( B) y=lnx (C) y=e ( D y=x第H卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东省高考数学试卷(含文理及解析)

2016年山东省高考数学试卷(含文理及解析)

2016山东数学文理试题及解析(一)2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin(2x+),∴T=π,故选:B8.已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,故答案为:312.若(ax2+)5的展开式中x5的系数是﹣80,则实数a= .解:(ax2+)5的展开式的通项公式T r+1=(ax2)5﹣r=a5﹣r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.13.已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD 的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.14.在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.故答案为:.15.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.17.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2AB=BC,求二面角F﹣BC﹣A的余弦值.证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH∥,又∵EF BO,∴GQ BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>===﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.18.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.19.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 0 1 2 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==20.已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.∵e x>1+x,∴x>ln(1+x),∴e x﹣1>x,则x﹣1>lnx,∴F(x)>=.令φ(x)=,则φ′(x)=(x∈[1,2]).∴φ(x)在[1,2]上为减函数,则,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.21.平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S 2=|PM|•|x 0﹣|=(y 0+)•=x 0•,则=,令1+2x 02=t (t ≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x 0=时,取得最大值,此时点P 的坐标为(,).(二)2016年山东省高考数学试卷(文科)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

(精校版)2016年山东理数高考试题文档版(含答案)

(精校版)2016年山东理数高考试题文档版(含答案)
绝密★启用前 2016 年普通高等学校招生全国统一考试(山东卷) 理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页。满分 150 分。考试用时 120 分钟。考试结束后,将将本试
卷和答题卡一并交回。 注意事项:

功 1.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和
(14)在[- 1,1] 上随机地取一个数 k,则事件“直线 y=kx 与圆 (x - 5)2 + y2 = 9 相交”发生的概率为 .
! (15)已知函数
f
(x)
| x x2
|,
2mx
4m,
xm xm
其中
m
0
,学.科网若存在实数
b,使得关于
x
的方程
f(x)
=b 有三个不同的根,则 m 的取值范围是________________.
三、解答题:本答题共 6 小题,共 75 分。

(16)(本小题满分 12 分)

到 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 2(tan A tan B) tan A tan B. cos B cos A
(Ⅰ)证明:a+b=2c;
(Ⅱ)求 cosC 的最小值. 17(本小题满分 12 分)
(i)求证:点 M 在定直线上;
(ii)直线 l 与 y 轴交于点 G,记
PFG 的面积为 S1 ,
PDM
的面积为 S2 ,求
S1 S2
的最大值及取得最大值
时点 P 的坐标.
! 功 成 到 马 考 高 您 祝
2016 年普听高等学校招生全国统一考试(山东卷)
理科数学试题参考答案

2016年高考理科数学山东卷(含答案解析)

2016年高考理科数学山东卷(含答案解析)

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z =( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10xA y y xB x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.12+33π B.12+33π C.12+36π D. 216π+6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12. 若251)ax x+(的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ;(Ⅱ)已知1232EF =FB =AC =,AB =BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是32,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【考点】并集及其运算【答案】D【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,231||||||043t n n n∴+=,104t∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数t的值.【考点】平面向量数量积的运算【答案】D12x>时,1122f x f x⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,11x-≤≤【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)22232b c a =,即为a.2b24,x mx m x m-+>⎩x m >时,程()f x b =m ∴的取值范围是【提示】作出函数(Ⅱ)2a b +=22)b a b =+0b >,∴由余弦定理231cos 122c ab -≥sin tan cos A A A =cos cos A B +G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∴∥且∴平面GQH GH ⊂面GQH GH ∴∥平面(Ⅱ)AB BC =数学试卷 第13页(共18页)数学试卷 第14页(共18页)数学试卷 第15页(共18页),又OO '⊥面OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,23,0)CB =,由题意可知面的法向量为(0,0,3)OO '=,设000(,,)n x y z FCB 的法向量,则00n FC n CB ⎧=⎪⎨=⎪⎩,即0=⎪⎩,取01x =,则1,2,n ⎛=-- ⎝7cos ,7||||OO n OO n OO n ''∴<>==-'二面角--F BC A 的平面角是锐角,二面角--F BC A 的余弦值为77n n a b =+1n n a b -∴=1n n a a -∴-11a b =+1112b =+14b ∴=,4n b ∴=+(Ⅱ)1)2nn C ,126[2232(1)2]n n T n ∴=++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]2(12)6(1)212)232n n n n n n n n n ++++++++-+--+-=-…,232n n +.【提示】(Ⅰ)求出数列{}n a 的通项公式,再求数列(Ⅱ)求出数列{}n c 的通项,利用错位相减法求数列【考点】数列的求和,数列递推式【答案】(Ⅰ)“星队”至少猜对22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为22321143144⎫⎛⎫--=⎪ ⎪⎭⎝⎭,22332322101111443433144⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯--+--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦323232323232323225111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭223322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示: 12346572 25144x 1)2x数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1a =32ln x x =-()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭220220)(41)(21)x x x ++,令12x +22221(122)(1)(21)2122t t t t t t t t t -⎫++-⎪+-+-⎭===0001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时【考点】椭圆的简单性质。

【精校版】2016年山东省高考数学(理)试题(Word版,含答案)

【精校版】2016年山东省高考数学(理)试题(Word版,含答案)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分、共4页。

满分150分。

考试用时120分钟。

考试结束后、将将本试卷和答题卡一并交回。

注意事项:1.答卷前、考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后、用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动、用橡皮擦干净后、在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答、答案必须写在答题卡各题目指定区域内相应的位置、不能写在试卷上;如需改动、先划掉原来的答案、然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案、解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥、那么P(A+B)=P(A)+P(B).如果事件A 、B 独立、那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、选择题:本大题共10小题、每小题5分、共50分、在每小题给出的四个选项中、只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位、则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时)、制成了如图所示的频率分布直方图、其中自习时间的范围是[17.5,30]、样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图、这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140(4)若变量x、y满足2,239,0,x yx yxì+?ïïïï-?íïï锍ïî则22x y+的最大值是()(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体、其三视图如图所示.则该几何体的体积为()(A)1233+π(B)13+(C)13+(D)1+(6)已知直线a、b分别在两个不同的平面α、β内.则“直线a和直线b相交”是“平面α和平面β相交”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m 、n 满足4│m │=3│n │、cos<m 、n >=13.若n ⊥(t m +n )、则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时、3()1f x x =-;当11x -≤≤时、()()f x f x -=-;当12x >时、11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点、使得函数的图象在这两点处的切线互相垂直、则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题、每小题5分、共25分。

2016年高考山东卷理数试题(教师版含解析)

2016年高考山东卷理数试题(教师版含解析)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z满足232i,+=-其中i为虚数单位,则z=z z(A)1+2i (B)1-2i (C)12i-+(D)12i--【答案】B【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B = (A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【考点】本题涉及求函数值域、解不等式以及集合的运算【名师点睛】本题主要考查集合的并集运算,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与函数的值域、解不等式等相结合,增大了考查的覆盖面.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5, 25),[25,27.5),[27.5,30](A )56(B )60 (C )120 (D )140 【答案】D【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的识图、用图能力,以及应用数学知识解决实际问题的能力.(4)若变量x ,y 满足2,239,0,x y x y x 则22x y 的最大值是 (A )4(B )9 (C )10 (D )12【答案】C【考点】线性规划求最值 【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π (B )1233+π (C )1236+π (D )216+π 【答案】C【解析】试题分析:由三视图可知,上面是半径为22的半球,体积为3114222326V =⨯π⨯=π(),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 【考点】根据三视图求几何体的体积【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面地考查了考生的识图用图能力、空间想象能力、运算求解能力等.(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 【答案】A【考点】直线与平面的位置关系;充分、必要条件的判断【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和其他知识相结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好地考查考生分析问题、解决问题的能力及空间想象能力等.(7)函数f (x )=3sin x +cos x )3cos x –sin x )的最小正周期是(A )2π (B )π (C )23π (D )2π 【答案】B 【考点】三角函数化简,周期公式 【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好地考查考生的运算求解能力及对复杂式子的变形能力等.(8)已知非零向量m ,n 满足4|m |=3|n |,cos ,m n =13.若n ⊥(t m +n ),则实数t 的值为 (A )4(B )–4 (C )94 (D )–94 【答案】B【解析】试题分析:由43=m n ,可设3,4(0)k k k ==>m n ,又()t ⊥+n m n ,所以22221()cos ,34(4)41603t t n n t t k k k tk k ⋅+=⋅+⋅=⋅+=⨯⨯⨯+=+=n m n n m m n m n n ,所以4t =-,故选B.学科网【考点】平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从n ⊥(t m +n )出发,转化成为平面向量的数量积的计算.本题能较好地考查考生转化与化归思想、基本运算能力等.(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)=(A )−2(B )−1 (C )0 (D )2 【答案】D【考点】本题考查了函数的周期性、奇偶性【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x(B )y =ln x (C )y =e x (D )y =x 3【答案】A【解析】试题分析:当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A. 学科&网【考点】函数求导,导数的几何意义【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好地考查考生分析问题、解决问题的能力、基本计算能力及转化与化归思想的应用等. 第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.【答案】3【考点】循环结构的程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般来说难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握,本题能较好地考查考生应用所学知识分析问题、解决问题的能力等.(12)若(ax 2+51)x 的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2【解析】试题分析:因为51025521551C ()()C r r r r r r r T ax a x x ---+==,所以由510522r r -=⇒=,因此2525C 80 2.a a -=-⇒=- 【考点】二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项往往是考查的重点.本题难度不大,易于得分.能较好地考查考生的基本运算能力等.(13)已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2【考点】双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题中,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好地考查考生转化与化归思想、一般与特殊思想及基本运算能力等.(14)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 . 【答案】34【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.(15)已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩,, 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是_________.【答案】(3,)+∞【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (I )证明:a +b =2c ;(II )求cos C 的最小值. 【答案】(I )见解析;(II )12【解析】试题分析:(I )根据两角和的正弦公式、正切公式、正弦定理即可证明;(II )根据余弦定理公式表示出cos C ,由基本不等式求cos C 的最小值. 试题解析:(I )由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B+=+(),化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C ++=π,所以()()sin sin sin A B C C +=π-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.学科网【考点】两角和的正弦公式、正切公式、正弦定理、余弦定理及基本不等式.【名师点睛】此类题目是解三角形问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到证明目的.三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题覆盖面较广,能较好地考查考生的运算求解能力及对复杂式子的变形能力等.(17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线. (I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =23,AB =BC .求二面角F BC A --的余弦值. 【答案】(I )见解析;(II )77【解析】 试题分析:(I )根据线线、面面平行可得与直线GH 与平面ABC 平行;(II )解法一建立空间直角坐标系求解;解法二找到FNM ∠为二面角F BC A --的平面角直接求解.试题解析:( I )证明:设FC 的中点为I ,连接,GI HI ,在CEF △,因为G 是CE 的中点,所以,GI EF ∥又,EF OB ∥所以,GI OB ∥在CFB △中,因为H 是FB 的中点,所以HI BC ∥,又HI GI I =,所以平面GHI ∥平面ABC ,因为GH ⊂平面GHI ,所以GH ∥平面ABC .(II )解法一:连接OO',则OO'⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -, 由题意得(0,23,0)B ,(23,0,0)C -,过点F 作FM OB 垂直于点M ,所以223,FM FB BM =-=可得(0,3,3)F故(23,23,0),(0,3,3)BC BF =--=-.设(,,)x y z =m 是平面BCF 的法向量.由0,0BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m可得23230,330x y y z ⎧--=⎪⎨-+=⎪⎩可得平面BCF 的一个法向量3(1,1,),3=-m 因为平面ABC 的一个法向量(0,0,1),=n所以7cos ,||||7⋅<>==m n m n m n . 所以二面角F BC A --的余弦值为77. 解法二:连接OO',过点F 作FM OB ⊥于点M ,则有FM OO'∥,又OO'⊥平面ABC ,所以FM ⊥平面ABC,可得3,FM ==过点M 作MN BC 垂直于点N ,连接FN ,可得FN BC ⊥,从而FNM ∠为二面角F BC A --的平面角.又AB BC =,AC 是圆O 的直径, 所以6sin 452MN BM == 从而FN =,可得cos FNM ∠= 所以二面角FBC A --.学科&网 【考点】空间平行判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、基本运算能力及转化与化归思想等.(18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(I )求数列{}n b 的通项公式;(II )令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(I )13+=n b n ;(II )223+⋅=n n n T .【解析】试题分析:(I )根据1--=n n n S S a 及等差数列的通项公式求解;(II )根据(I )知数列{}n c 的通项公式,再用错位相减法求其前n 项和.试题解析:(I )由题意知当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ,所以56+=n a n .设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b d b 321721111,可解得3,41==d b , 所以13+=n b n .(II )由(I )知11(66)3(1)2(33)n n n n n c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得所以223+⋅=n n n T【考点】数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好地考查考生的逻辑思维能力及基本计算能力等.(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I )“星队”至少猜对3个成语的概率;(II )“星队”两轮得分之和为X 的分布列和数学期望EX .【答案】(I )23(II )分布列见解析,236=EX 试题解析:(I )记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,.E ABCD ABCD ABCD ABCD ABCD =++++ 由事件的独立性与互斥性,323212323132=24343434343432.3⎛⎫⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯ ⎪⎝⎭= , 所以“星队”至少猜对3个成语的概率为23. (II )由题意,随机变量X 的可能取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得()1111104343144P X ==⨯⨯⨯=, ()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯==⎪⎝⎭, ()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=, ()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯= ,()3231321260542=4343434314412P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭ ,()32321643434P X ==⨯⨯⨯=.可得随机变量X 的分布列为所以数学期望15251512301234614472144121246EX =⨯+⨯+⨯+⨯+⨯+⨯=. 【考点】独立事件的概率公式和互斥事件的概率加法公式,分布列和数学期望【名师点睛】本题主要考查独立事件的概率公式和互斥事件的概率加法公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用独立事件的概率公式和互斥事件的概率加法公式求解.本题较难,能很好的考查考生的数学应用意识、基本运算求解能力等.(20)(本小题满分13分)已知()221()ln ,x f x a x x a x-=-+∈R . (I )讨论()f x 的单调性;(II )当1a =时,证明()3()2f x f 'x +>对于任意的[]1,2x ∈成立. 【答案】(I )见解析;(II )见解析 【解析】试题分析:(I )求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性; (II )要证()3()2f x f 'x +>对于任意的[]1,2x ∈成立,即证3()()2f x f 'x ->,根据单调性求解. 试题解析:(I ))(x f 的定义域为),0(+∞;223322(2)(1)()a ax x f 'x a x x x x --=--+=. 当0≤a , )1,0(∈x 时,()0f 'x >,)(x f 单调递增;(1,),()0x f 'x ∈+∞<时,)(x f 单调递减.当0>a 时,3(1)()(a x f 'x x x x -=+. (1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,()0f 'x >,)(x f 单调递增; 当x ∈)2,1(a时,()0f 'x <,)(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,()0f 'x ≥,)(x f 单调递增;(3)2>a 时,120<<a, 当)2,0(ax ∈或x ∈),1(+∞时,()0f 'x >,)(x f 单调递增; 当x ∈)1,2(a时,()0f 'x <,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. 【考点】利用导函数判断函数的单调性,分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错误百出.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等. (21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>> 32E :22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记△PFG 的面积为1S ,△PDM 的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【答案】(I )1422=+y x ;(II )(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22( 试题解析:(I )由题意知2322=-a b a ,可得:b a 2=. 因为抛物线E 的焦点为)21,0(F ,所以21,1==b a , 所以椭圆C 的方程为1422=+y x .联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. (ii )由(i )知直线l 方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -, 又21(,),(0,),22m P m F D ))14(2,142(2223+-+m m m m , 所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=tt t t t S S , 当211=t ,即2=t 时,21S S 取得最大值49,此时22=m ,满足0∆>,所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(.【考点】椭圆方程;直线和抛物线的关系;二次函数求最值;运算求解能力.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e 的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法(如二次函数的性质、基本不等式、导数等)求“目标函数”的最值.本题的易错点是对复杂式子的变形能力不足,导致错漏百出..本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题和解决问题的能力等.。

2016年普通高等学校招生全国统一考试数学理山东卷试题及答案

2016年普通高等学校招生全国统一考试数学理山东卷试题及答案

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,zz +=-其中i 为虚数单位,则z =(A )1+2i(B )1-2i(C )12i -+ (D )12i --(2)设集合2{|2,},{|10},xA y y xB x x ==∈=-<R 则AB=(A )(1,1)- (B )(0,1) (C )(1,)-+∞(D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足则22x y+的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )133+π(C )136+π(D )16+π(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则f (6)=(A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东省高考数学(理科)试题参考答案

2016年山东省高考数学(理科)试题参考答案

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. ★注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.★参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一.选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.若复数z 满足2z+z=3-2i ,其中i 为虚数单位,则z=B(A )1+2i(B )1-2i(C )12i -+ (D )12i --2.设集合{}{}x 2A=y y=2,x R ,B =x x -1<0,x R ∈∈,则A B = C(A )(1,1)-(B )(0,1)(C )(1,)-+∞ (D )(0,)+∞3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是D(A )56(B )60(C )120(D )1404.若变量x ,y 满足x+y 22x-3y 9x 0≤⎧⎪≤⎨⎪≥⎩则22x +y 的最大值是C(A )4 (B )9 (C )10 (D )125.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为C(A )12+π33(B)13(C)13(D)6.已知直线a 、b 分别在两个不同的平面α、β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的A(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件7.函数f(x)=x+sinx)的最小正周期是B(A )π2(B )π (C )3π2(D )2π 8.已知非零向量m 、n 满足4m =3n ,cos<m,n>=13.若n ⊥(tm+n),则实数t 的值为B (A )4 (B )–4 (C )94(D )9-49.已知函数f(x)的定义域为R.当x<0时,3f(x)=x -1;当-1≤x ≤1时,f(x)=-f(x);当1x 2>时,11f(x+)=f(x-)22.则f(6)= D(A )−2(B )−1(C )0(D )210.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T 性质的是A(A )y=sinx (B )y=lnx (C )y=e x (D )y=x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考理科数学山东卷-答案

2016年高考理科数学山东卷-答案
【提示】可令 ,代入双曲线的方程,求得 ,再由题意设出 , , , 的坐标,由 ,可得 , , 的方程,运用离心率公式计算即可得到所求值.
【考点】双曲线的简单性质
14.【答案】
【解析】直线 与圆 相交,所以圆心 到直线 距离小于半径 ,
, , , , .
【提示】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的 ,最后根据几何概型的概率公式可求出所求.
(ⅱ)由直线 的方程为 ,令 ,可得 ,运用三角形的面积公式,可得 , ,化简整理,再 ,整理可得 的二次方程,进而得到最大值及此时 的坐标.
【考点】椭圆的简单性质
【提示】求得函数的周期为1,再利用当 时, ,得到 ,当 时, ,得到 ,即可得出结论.
【考点】抽象函数及其应用
10.【答案】A
【解析】(A)函数的特征是存在两点切线垂直,既存在两点导数值相乘为 ;
(B)选项中 的导数是 恒大于 ,斜率成绩不可能为 ;
(C)选项中 的导函数 恒大于 ,斜率成绩不可能为 ;
【考点】并集及其运算
3.【答案】D
【解析】由频率分布直方图可知:组距为2.5,故这200名学生中每周的自பைடு நூலகம்时间不少于22.5小时的频率为: , 人数是 人.
【提示】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.
【考点】频率分布直方图
4.【答案】C

(Ⅱ) ,
, ,且 ,当且仅当 时取等号,
又 , , ,
由余弦定理 ,
的最小值为 .
【提示】(Ⅰ)由切化弦公式 , ,带入 并整理可得 ,这样根据两角和的正弦公式即可得到 ,从而根据正弦定理便可得出 ;

2016年高考山东理科数学试题及答案(解析版)

2016年高考山东理科数学试题及答案(解析版)

2016年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年山东,理1,5分】若复数z 满足232i zz,其中i 为虚数为单位,则z ()(A )12i (B )12i (C )12i (D )12i 【答案】B 【解析】设,,zabi a bR ,则2()i23i32i zzz zz ab aab ,所以1,2a b,故选B .【点评】本题考查复数的代数形式混合运算,考查计算能力.(2)【2016年山东,理2,5分】已知集合22,,10xAy yxR B x x ,则A BU ()(A )1,1(B )0,1(C )1,(D )0,【答案】C【解析】由题意0,A,1,1B,所以1,A BU ,故选C .【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题.(3)【2016年山东,理3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20,20,22.5,22.5,25,25,27.5,27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A )56(B )60(C )120(D )140 【答案】D【解析】由图可知组距为 2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30,所以,每周自习时间不少于22.5小时的人数是20010.30140人,故选D .【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.(4)【2016年山东,理4,5分】若变量x ,y 满足22390xy x y x,则22xy 的最大值是()(A )4 (B )9 (C )10(D )12【答案】C 【解析】由22xy 是点,x y 到原点距离的平方,故只需求出三直线的交点0,2,0,3,3,1,所以3,1是最优解,22xy 的最大值是10,故选C .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.(5)【2016年山东,理5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为()(A )1233(B )1233(C )1236(D )216【答案】C【解析】由三视图可知,半球的体积为26,四棱锥的体积为13,所以该几何体的体积为1236,故选C .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(6)【2016年山东,理6,5分】已知直线,a b 分别在两个不同的平面,内,则“直线a 和直线b 相交”是“平面和平面相交”的()(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A【解析】由直线a 和直线b 相交,可知平面、有公共点,所以平面和平面相交.又如果平面和平面相交,直线a 和直线b 不一定相交,故选A .【点评】本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题.(7)【2016年山东,理7,5分】函数()3sin cos 3cos sin f x xxx x 的最小正周期是()(A )2(B )(C )32(D )2【答案】B 【解析】由()2sin cos 3cos22sin 23f x x xxx,所以,最小正周期是,故选B .【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.(8)【2016年山东,理8,5分】已知非零向量,m n 满足143,cos ,3m n m n,若ntmn 则实数t 的值为()(A )4 (B )4(C )94(D )94【答案】B 【解析】因为21cos ,4nmm n m nn ,由ntmn ,有20n tmn tmn n ,即2104t n,4t ,故选B .【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.(9)【2016年山东,理9,5分】已知函数()f x 的定义域为R ,当0x时,3()1f x x;当11x 时,()()f x f x ;当12x时,1122f xf x,则6f ()(A )2(B )1(C )0(D )2【答案】D 【解析】由1122f x f x,知当12x时,f x 的周期为1,所以61f f .又当11x 时,f xf x ,所以11f f.于是3611112f f f ,故选D .【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.(10)【2016年山东,理10,5分】若函数yf x 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y f x 具有T 性质.下列函数具有T 性质的是()(A )sin y x(B )ln yx(C )xye(D )3yx【答案】A 【解析】因为函数ln yx ,xye 的图象上任何一点的切线的斜率都是正数;函数3y x 的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2016年山东,理11,5分】执行右边的程序框图,若输入的的值分别为0和9,则输出i 的值为.【答案】 3【解析】i 1时,执行循环体后1,8a b ,a b 不成立;i 2时,执行循环体后3,6a b,a b不成立;i 3时,执行循环体后6,3a b ,a b 成立;所以i 3,故填 3. 【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(12)【2016年山东,理12,5分】若521ax x的展开式中5x 的系数是80,则实数a.【答案】2【解析】由23222355551C C 80axa xx x,得2a,所以应填2.【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.(13)【2016年山东,理13,5分】已知双曲线2222:10,0xyE a ba b,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23ABBC ,则E 的离心率为.【答案】 2 【解析】由题意BC 2c ,所以2AB3BC ,于是点3,2c c 在双曲线E 上,代入方程,得2222914c c ab,在由222ab c 得E 的离心率为2c ea.【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.(14)【2016年山东,理14,5分】在1,1上随机的取一个数k ,则事件“直线y kx 与圆2259x y相交”发生的概率为.【答案】34【解析】首先k 的取值空间的长度为2,由直线ykx 与圆22(5)9xy相交,得事件发生时k 的取值空间为33,44,其长度为32,所以所求概率为33224.【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.(15)【2016年山东,理15,5分】在已知函数2,24,x x m f xxmxm xm,其中0m ,若存在实数b ,使得关于x 的方程f xb 有三个不同的根,则m 的取值范围是.【答案】3,【解析】因为224g x x mxm 的对称轴为xm ,所以xm 时224f x x mx m 单调递增,只要b 大于224g xxmxm 的最小值24m m 时,关于x 的方程f x b 在x m 时有一根;又h xx 在x m ,0m 时,存在实数b ,使方程f x b 在xm 时有两个根,只需0b m ;故只需24m mm即可,解之,注意0m ,得3m ,故填3,.【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到24m mm 是难点,属于中档题.三、解答题:本大题共6题,共75分.(16)【2016年山东,理16,12分】在ABC 中,角,,A B C 的对边分别为a,b,c ,已知tan tan 2tan tan cos cos A B A BBA.(1)证明:2a b c ;(2)求cosC 的最小值.解:(1)由tan tan 2tan tan cos cos A BABB A得sin sin sin 2cos cos cos cos cos cos C A B A BA BA B,2sin sin sin C B C ,由正弦定理,得2ab c .(2)由222222cos 22a bab cabcCab ab222333111122222cc aba b.所以cosC 的最小值为12.【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为,以及三角函数的诱导公式,正余弦定理,不等式222a b ab 的应用,不等式的性质.(17)【2016年山东,理17,12分】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O 的直径,FB 是圆台的一条母线.(1)已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;(2)已知123,2EFFBAC ABBC ,求二面角FBCA 的余弦值.解:(1)连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC 平面ABC ,MH 平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH 平面GHM ,所以//GH 平面ABC .(2)连结OB ,AB BC Q OA OB ,以为O 原点,分别以,,OA OB OO 为,,x y z 轴,建立空间直角坐标系.123,2EFFBAC ABBC Q ,22()3OOBFBO FO ,于是有23,0,0A ,23,0,0C ,0,23,0B ,0,3,3F ,可得平面FBC 中的向量0,3,3BF uu u r,23,23,0CB u u u r ,于是得平面FBC 的一个法向量为13,3,1n u u r,又平面ABC 的一个法向量为20,0,1n u u r,设二面角F BC A 为,则121217cos 77n n n n u u r u u r u u r u u r.二面角F BC A 的余弦值为77.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.(18)【2016年山东,理18,12分】已知数列n a 的前n 项和238nS nn ,n b 是等差数列,且1n n n a b b .(1)求数列n b 的通项公式;(2)令1(1)(2)n n nnna cb .求数列n c 的前n 项和n T .解:(1)因为数列n a 的前n 项和238n S nn ,所以111a ,当2n时,221383(1)8(1)65nnna S S nn n n n,又65na n 对1n 也成立,所以65na n .又因为n b 是等差数列,设公差为d ,则12nn nna b b b d .当1n 时,1211b d ;当2n时,2217b d ,解得3d,所以数列n b 的通项公式为312nn a db n .(2)由111(1)(66)(33)2(2)(33)n n n nnnn n a n c n b n ,于是23416292122(33)2n nT n L ,两边同乘以2,得341226292(3)2(33)2n n n T n n L ,两式相减,得2341262323232(33)2n n n T nL 22232(12)32(33)212nn n 2221232(12)(33)232nn n nT nn .【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.(19)【2016年山东,理19,12分】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .解:(1)“至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”.设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B,,则1122332131225()4433443312P B C C;33221()44334P C .所以512()()()1243P A P B P C .(2)“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ;112212111131105(1)4343434314472P X C C;1211223311132125(2)443344334433144P X C;123211121(3)434314412P XC ;12321231605(4)()43434314412P XC ;3232361(6)43431444P X ;X 的分布列为:X12346P11445722514411251214X 的数学期望15251515522301234614472144121241446EX.【点评】本题考查离散型随机变量的分布列和数学期望,属中档题.(20)【2016年山东,理20,13分】已知221()(ln ),x f x a x x a R x.(1)讨论f x 的单调性;(2)当1a时,证明3()()2f x f x 对于任意的[1,2]x成立.解:(1)求导数3122()(1)x f x a x x---23(1)(2x ax x--),当0a时,x (0,1),()0f x ,()f x 单调递增,x ∈(1,),()0f x ,()f x 单调递减当0a时,23322112()a x x xx axa af x xx①当02a时,21a,x (0,1)或2x a∈,,()0f x ,()f x 单调递增,2x a∈1,,()0f x ,、()f x 单调递减;②当a 2时,21a,x (0,),()0f x ,()f x 单调递增,③当a 2时,201a,2xa 0,或x1,,()0f x ,()f x 单调递增,2xa,1,()0f x ,()f x 单调递减.(2)当1a时,221()ln x f x x x x--,2323(1)(212()1x x f x xx xx--)2--,于是2232112()()ln 1)x f x f x x xx x x x -2---(--23312ln 1x x x x x ,[1,2]x 令g ln xxx ,2332h()x x x x11,[1,2]x ,于是()()g(()f x f x x h x ),1g ()10x x xx1,g x 的最小值为11g ;又22344326326()xx h x xxxx,设2326xxx ,[1,2]x,因为11,210,所以必有0[1,2]x ,使得0x ,且01x x 时,0x,h x 单调递增;02x x 时,0x,h x 单调递减;又11h ,122h ,所以h x 的最小值为122h .所以13()()g(()g(1(2)122f x f x x h x h ))-.即3()()2f x f x 对于任意的[1,2]x 成立.【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.(21)【2016年山东,理21,14分】平面直角坐标系xOy 中,椭圆2222:10x y C a b ab的离心率是32,抛物线2:2E xy 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.解:(1)由离心率是32,有224ab ,又抛物线22xy 的焦点坐标为10,2F ,所以12b,于是1a ,所以椭圆C 的方程为2241xy .(2)(i )设P 点坐标为2,02mP m m,由22x y 得y x ,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22mymx,设1122,,,A x y B x y ,00,D x y ,将22mymx代入2241xy,得223214410m xm xm.于是3122414mx x m,31222214x x mx m,又2222214mm y mx m,于是直线OD 的方程为14yx m.联立方程14yx m与xm ,得M 的坐标为1,4M m .所以点M 在定直线14y上.(ii )在切线l 的方程为22mymx 中,令0x ,得22my,即点G 的坐标为20,2mG ,又2,2mP m ,10,2F ,所以211(1)24m mS mGF;再由32222,41241mmDmm,得22232222112122441841m m m mm S mm于是有221222241121m mS S m .令221t m,得12221211122tt S S tt t ,当112t 时,即2t 时,12S S 取得最大值94.此时212m ,22m ,所以P 点的坐标为21,24P.所以12S S 的最大值为94,取得最大值时点P 的坐标为21,24P.【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.。

(精校版)2016年山东理数高考试题文档版(含答案)

(精校版)2016年山东理数高考试题文档版(含答案)

绝密★启用前2016 年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4 页。

满分150 分。

考试用时120 分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共 50 分)一、选择题:本大题共10 小题,每小题5 分,共50 分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足2z +z = 3 - 2i, 其中i 为虚数单位,则z=()(A)1+2i (B)1 -2i (C)-1+ 2i (D)-1-2i(2)设集合A ={y | y = 2x , x ∈R}, B ={x | x2 -1< 0},则A B =()(A)(-1,1)(B)(0,1) (C)(-1, +∞) (D)(0, +∞)(3)某高校调查了200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30] ,样本数据分组为[17.5, 20),[20, 22.5),[22.5, 25),[25, 27.5),[27.5,30] .根据直方图,这200 名学生中每周的自习时间不少于22.5 小时的人数是()锍ï x(A )56(B )60(C )120(D )140ìï x + y ? 2,ï ïí 2x - ï (4)若变量 x ,y 满足î 3y ? 9, 0,则 x 2 + y 2 的最大值是()(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()1 +2 1 2 1 2 2(A ) π (B ) + π (C ) + π (D )1+ π3 3 3 3 3 6 6(6)已知直线 a ,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面 α 和平面 β 相交”的()(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f(x)=(πsin x+cos x)(3πcos x –sin x)的最小正周期是()(A)2(B)π(C)2(D)2π1(8)已知非零向量m,n 满足4│m│=3│n│,cos<m,n>=3.若n⊥(t m+n),则实数t 的值为()(A)4 (B)–4 (C)94(D )–94(9)已知函数f(x)的定义域为R.当x<0 时,f (x) =x3 -1 ;当-1 ≤x ≤ 1时,f (-x) =-f (x) ;当x >1 时,2f (x +1) =f (x -1)2 2.则f(6)= ()(A)−2(B)−1(C)0(D)2(10)若函数y=f(x)的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T 性质的是()(A)y=sin x(B)y=ln x(C)y=e x(D)y=x3第Ⅱ卷(共 100 分)二、填空题:本大题共 5 小题,每小题 5 分,共 25 分。

2016年高考理科数学山东卷(word版含答案)

2016年高考理科数学山东卷(word版含答案)

2016年普通高等学校招生全国统一考试(山东卷)理科数学参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A ,B 独立,那么P(AB)=P(A)·P(B) 一、选择题:本大题共10小题,每小题5分,共50分。

(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i(B )1-2i(C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56(B )60(C )120(D )140(4)若变量x ,y 满足 2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π(B)13+(C)13+(D)1+ (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的( ) (A )充分不必要条件(B )必要不充分条件学.科.网 (C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( )(A )−2 (B )−1 (C )0 (D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考数学山东省(理科)试题及答案【解析版】

2016年高考数学山东省(理科)试题及答案【解析版】

2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.【2016山东(理)】若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【答案】B【解析】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.【2016山东(理)】设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)【答案】C【解析】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).【2016山东(理)】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【答案】D【解析】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,【2016山东(理)】若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【答案】C【解析】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.【2016山东(理)】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,【2016山东(理)】已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,【2016山东(理)】函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π【答案】B【解析】解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin (2x+),∴T=π,【2016山东(理)】已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【答案】B【解析】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,【2016山东(理)】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2【答案】D【解析】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.【2016山东(理)】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【答案】A【解析】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;二、填空题:本大题共5小题,每小题5分,共25分.11.【2016山东(理)】执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.【答案】3【解析】解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,【2016山东(理)】若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.【答案】﹣2【解析】解:(ax2+)5的展开式的通项公式T r+1=(ax2)5﹣r=a5﹣r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.【2016山东(理)】已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.【答案】2【解析】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.【2016山东(理)】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.【答案】【解析】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.【2016山东(理)】已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.【答案】(3,+∞)【解析】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.【2016山东(理)】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解析】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.【2016山东(理)】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.【解析】证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH∥,又∵EF BO,∴GQ BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>==﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.【2016山东(理)】已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解析】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.【2016山东(理)】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【解析】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==X 0 1 2 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==【2016山东(理)】已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【解析】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数φ(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.【2016山东(理)】平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.【解析】解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S2=|PM|•|x0﹣|=(y0+)•=x0•,则=,令1+2x02=t(t≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,).2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.【2016山东(理)】若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.【2016山东(理)】设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)3.【2016山东(理)】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.【2016山东(理)】若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.【2016山东(理)】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.【2016山东(理)】已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.【2016山东(理)】函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π8.【2016山东(理)】已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.【2016山东(理)】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.210.【2016山东(理)】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.【2016山东(理)】执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.【2016山东(理)】若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.13.【2016山东(理)】已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.14.【2016山东(理)】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.【2016山东(理)】已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题,:本大题共6小题,共75分.16.【2016山东(理)】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.17.【2016山东(理)】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.18.【2016山东(理)】已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.19.【2016山东(理)】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.20.【2016山东(理)】已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.21.【2016山东(理)】平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.。

2016年高考理科数学试题山东卷答案

2016年高考理科数学试题山东卷答案

2016年普通高等学校招生全国统一考试(山东卷)理科数学答案(1)【解析】通解设z a bi =+(,)a b R ∈,则z a bi =-.故22()z z a bi a bi +=++-=3a bi +=3-2i ,所以错误!未找到引用源。

,解得错误!未找到引用源。

,所以12z i =-.故选B . 光速解法:设z a bi =+(,)a b R ∈,由复数的性质可得2z z a +=,故2()z z z z z +=++,故2z z +的虚部就是z 的虚部,实部是z 的实部的3倍.故12z i =-,选B .(2)【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .(3)【解析】由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D .(4)【解析】作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则22x y +表示2||OP .显然,当点P 与点A 重合时,2||OP 即22x y +取得最大值.由2239x y x y +=⎧⎨-=⎩错误!未找到引用源。

,解得31x y =⎧⎨=-⎩,错误!未找到引用源。

故A (3,-1).所以22x y +的最大值为32+2(1)-=10.故选C .(5)【解析】由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积21111133V =⨯⨯=.设半球的半径为R ,则22R =2R =,所以半球的体积32142326V π=⨯⨯=.故该几何体的体积12136V V V =+=+.故选C . (6)【解析】若直线,a b 相交,设交点为P ,则,P a P b ∈∈,又,a b αβ⊂⊂,所以,P P αβ∈∈,故,αβ相交.反之,若,αβ相交,则,a b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A . (7)【解析】由题意得()2sin()2cos()2sin(2)663f x x x x πππ=+⨯+=+,故该函数的最小正周期22T ππ==.故选B . (8)【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以222||31|cos |||3||t |||<,>|||=-=-=-=-⋅⋅⨯⨯n n n n m n m n m n m m n 4343=-⨯=-.故选B . (9)【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=,所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .(10)【解析】设函数()y f x =的图象上两点11(,)P x y ,22(,)Q x y ,则由导数的几何意义可知,点P ,Q 处切线的斜率分别为11()k f x '=,22()k f x '=若函数具有T 性质,则12k k ⋅=1()f x '2()f x '=-1.对于A 选项,()cos f x x '=,显然12k k ⋅=12cos cos x x =-1有无数组解,所以该函数具有T 性质;对于B 选项,1()(0)f x x x'=>,显然12k k ⋅=1211x x ⋅=-1无解,故该函数不具有T 性质;对于C 选项,()x f x e '=>0,显然12k k ⋅=12x x e e ⋅=-1无解,故该函数不具有T 性质;对于D 选项,2()3f x x '=≥0,显然12k k ⋅=221233x x ⋅=-1无解,故该函数不具有T 性质.故选A .(11)【解析】输入a =0,b =9,第一次循环:a =0+1=1,b =9-1=8,i =1+1=2;第二次循环:a =1+2=3,b =8-2=6,i =2+1=3;第三次循环:a =3+3=6,b =6-3=3,a >b 成立,所以输出i 的值为3.(12)【解析】(ax 2+x错误!未找到引用源。

2016年高考理科数学山东卷及答案

2016年高考理科数学山东卷及答案

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z = ( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10x A y y x B x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A. 12+33πB. 1+3C. 13D. 1 6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12.若25ax (的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ; (Ⅱ)已知12EF =FB =AC ==BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,21||||||043t n n n∴+=,104∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数【考点】平面向量数量积的运算【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x 则22x y 的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )1233+π(C )1236+π(D )216+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.(12)若(a x 2+x)3的展开式中x 3的系数是—80,则实数a=_______. (13)已知双曲线E 1:22221x y a b-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.(14)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y 相交”发生的概率为 .(15)已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩其中0m >,学.科网若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.三、解答题:本答题共6小题,共75分。

(16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A+=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.17.在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线. (I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =23AB =BC .求二面角F BC A --的余弦值.(18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式; (Ⅱ)另1(1).(2)n n n n n a c b ++=+求数列{}n c 的前n 项和T n . (19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。

已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响。

各轮结果亦互不影响。

假设“星队”参加两轮活动,求:(I )“星队”至少猜对3个成语的概率;(II )“星队”两轮得分之和为X 的分布列和数学期望EX(20)(本小题满分13分)已知()221()ln ,x f x a x x a R x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立(21)本小题满分14分) 平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心3E :22x y =的焦点F 是C 的一个顶点。

(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,学科&网直线OD 与过P 且垂直于x 轴的直线交于点M.(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普听高等学校招生全国统一考试(山东卷)理科数学试题参考答案一、选择题(1)【答案】B(2)【答案】C(3)【答案】D(4)【答案】C(5)【答案】C(6)【答案】A(7)【答案】B(8)【答案】B(9)【答案】D(10)【答案】A第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)【答案】3(12)【答案】-2(13)【答案】2(14)【答案】34(15)【答案】(3,)+∞三、解答题(16)解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab+⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 考点:两角和的正弦公式、正切公式、正弦定理、余弦定理及基本不等式.(17)(I )证明:设FC 的中点为I ,连接,GI HI ,在CEF △,因为G 是CE 的中点,所以,GI F //E又,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC ,又HI GI I ⋂=,所以平面//GHI 平面ABC ,因为GH ⊂平面GHI ,所以//GH 平面ABC .(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得(0,23,0)B ,(23,0,0)C -,过点F 作FM OB 垂直于点M , 所以223,FM FB BM =-=可得(0,3,3)F故(23,23,0),(0,3,3)BC BF =--=-.设(,,)m x y z =是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩可得23230,330x y y z ⎧--=⎪⎨-+=⎪⎩ 可得平面BCF 的一个法向量3(1,1,),3m =- 因为平面ABC 的一个法向量(0,0,1),n =所以7cos ,||||m n m n m n ⋅<>==. 所以二面角F BC A --的余弦值为7. 解法二:连接'OO ,过点F 作FM OB ⊥于点M ,则有//'FM OO ,又'OO ⊥平面ABC ,所以FM ⊥平面ABC,可得223,FM FB BM =-=过点M 作MN BC 垂直于点N ,连接FN ,可得FN BC ⊥,从而FNM ∠为二面角F BC A --的平面角.又AB BC =,AC 是圆O 的直径,所以6sin 45,MN BM == 从而42FN =,可得7cos .FNM ∠= 所以二面角F BC A --的余弦值为7. 考点:空间平行判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力(18)(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ,所以56+=n a n .设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b d b 321721111,可解得3,41==d b , 所以13+=n b n . (Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n n n c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯ 224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法(19)(Ⅰ)记事件A:“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”. 由题意,.E ABCD ABCD ABCD ABCD ABCD =++++由事件的独立性与互斥性,()()()()()()P E P ABCD P ABCD P ABCD P ABCD P ABCD =++++()()()()()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P P A P B P C P D C P D =++++323212323132=24343434343432.3⎛⎫⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯ ⎪⎝⎭= , 所以“星队”至少猜对3个成语的概率为23. (Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性,得()1111104343144P X ==⨯⨯⨯= , ()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯== ⎪⎝⎭, ()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= , ()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯= , ()3231321260542=4343434314412P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭ , ()32321643434P X ==⨯⨯⨯=. 可得随机变量所以数学期望01234614472144121246EX =⨯+⨯+⨯+⨯+⨯+⨯=. 考点:独立事件的概率公式和互斥事件的概率加法公式;分布列和数学期望(20)(Ⅰ))(x f 的定义域为),0(+∞;3232/)1)(2(22)(x x ax x x x a a x f --=+--=. 当0≤a , )1,0(∈x 时,0)(/>x f ,)(x f 单调递增; /(1,),()0x f x ∈+∞<时,)(x f 单调递减.当0>a 时,/3(1)()(a x f x x x x -=+.(1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a 时,0)(/>x f ,)(x f 单调递增; 当x ∈)2,1(a时,0)(/<x f ,)(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,120<<a , 当)2,0(ax ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增; 当x ∈)1,2(a 时,0)(/<x f ,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增; 当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,/22321122()()ln (1)x f x f x x x x x x x --=-+---+23312ln 1x x x x x=-++--,]2,1[∈x , 令1213)(,ln )(32--+=-=x x x x h x x x g ,]2,1[∈x . 则)()()()(/x h x g x f x f +=-,由01)(/≥-=xx x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24326'()x x h x x--+=, 设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减,因为10)2(,1)1(-==ϕϕ,所以在]2,1[上存在0x 使得),1(0x x ∈ 时,)2,(,0)(0x x x ∈>ϕ时,0)(<x ϕ, 所以函数()h x 在),1(0x 上单调递增;在)2,(0x 上单调递减, 由于21)2(,1)1(==h h ,因此21)2()(=≥h x h ,当且仅当2=x 取得等号, 所以23)2()1()()(/=+>-h g x f x f , 即23)()(/+>x f x f 对于任意的]2,1[∈x 恒成立。

相关文档
最新文档