2020高考数学-立体几何中的常用模型
立体几何专题:外接球问题中常见的8种模型(学生版)
立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。
推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。
推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。
高中数学中的常用几何模型及构造方法大全
高中数学中的常用几何模型及构造方法大全一、全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转1、对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2、对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
3、旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题4、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
5、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称6、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
二、模型变换说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
1、中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
高考数学中的立体几何相关知识点详解
高考数学中的立体几何相关知识点详解在高考数学中,立体几何是一个非常重要的知识点,占据了不少的分值。
因此,我们需要对立体几何有一个深刻的认识,掌握一些基本的概念和方法。
本文就想通过对立体几何相关知识点的详解,帮助大家更好地掌握这一领域。
第一部分:立体几何的基本概念立体几何,是研究空间图形及其相互关系的一门数学学科。
它是数学中几何学的重要分支,具有重要的理论价值和实际应用价值。
其中,基本概念包括点、线、面、体等。
一、点点是立体几何中最基本的概念,它是没有大小和形状的。
在空间中,点用坐标来表示。
常用的坐标系包括直角坐标系、柱面坐标系、球面坐标系等。
二、线线是由两个点之间的连续运动形成的实体,它也没有大小和形状。
线可以分为直线和曲线两种。
直线是由相邻两个点之间的连续运动形成的实体,它的长度是无限的。
曲线是由不相邻的两个点之间的连续运动形成的实体,它的长度是有限的。
三、面面是由三条或者更多的线围成的平面,它有大小和形状。
我们能够看到的物体表面就是由一个个的面组成的。
面可以分为平面和曲面两种。
平面是由三条交于一点的直线围成的,它的形状可以是正方形、长方形、三角形等。
曲面则是由曲线相交而成的,如球面、圆柱面、圆锥面等。
四、体体是由若干个平面或曲面围成的实体,它的大小和形状是有限的。
通常我们所说的“物体”就是指体。
体可以分为两类,一类是单铰体,即无论如何旋转都只有一个面对着我们,如长方体、正方体等;另一类是双铰体,即无论如何旋转都有两个面对着我们,如圆柱体、圆锥体等。
第二部分:立体几何中的重要公式和定理除了基本概念外,立体几何中还有很多重要的公式和定理,这些公式和定理是处理数学题目时不可或缺的。
一、立体图形的表面积和体积公式立体图形的表面积和体积公式是处理立体几何问题时,最基本的公式。
以下是一些常见的立体图形表面积和体积公式:①长方体表面积:$S=2(ab+bc+ac)$,体积:$V=abc$。
②正方体表面积:$S=6a^2$,体积:$V=a^3$。
立体几何四个重要模型
立体几何四个重要模型广州市第六十五中学朱星如模型1:在棱长为a 的正面体ABCD 中:1.求证它是一个正三棱锥。
证明:即证顶点A 在底面BCD 的中心H 的连线与底面垂直。
取BC 的中点E,BD 的中点F,连CF,DE 相交于点H,则H 是三角形BCD 的中心,且H 是CF,DE 的一个三等分点,连AH,由BC ⊥DE,BC ⊥AE,AE 交DE=E,AE,DE 的平面AED 内,得BC ⊥平面AED,由此得BC ⊥AH,即AH ⊥BC。
(1)同理:AH ⊥BD。
(2)由BC 交BD=B,BC,BD 在平面BCD 内及(1)(2)得:AH ⊥平面BCD。
所以四面体ABCD 是正三棱锥。
2.设E、F、S、T 分别是BC、BD、AD、AC 的中点,求证:四边形EFST 是正方形。
证明:由于E、F、S、T 分别是BC、BD、AD、AC 的中点,故有ST 12DC EF,ST EF,所四边形EFST 是平行四边形。
同理:SF 12AB TE ,DC=AB ,所以四边形EFST 是菱形。
仿题1可证DC ⊥平面ABH,故DC ⊥AB,故有四边形EFST 是正方形。
注;由此可得到相对的两棱所成角为90o 。
3.设E、S 分别是BC、AD 的中点,求证:ES ⊥BC,ES ⊥AD,并求ES 的长。
证明:可证BC ⊥平面AED,从而BC ⊥ES;可得AD ⊥平面BCS,从而AD ⊥ES。
在直角三角形SBE 中,SB=32a,BE=12a,从而,2222ES SB BE =-=4.求任何一条棱与它相交的面所成角的正弦值。
解:只要求AB 与平面BCD 所成的角。
AH ⊥平面BCD,∴AB 与平面BCD 所成的角是ABH ∠。
22333323BH DE ==⨯=,在直角三角形ABH 中,2263AH AB BH =-=,故6sin 3AH ABH AB ∠==。
5.求相邻两个面的夹角的余弦值。
解:只要求二面角A-BD-C 的平面的余弦值。
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版
【教材导读】 1.平行投影和中心投影的区别和联系? 提示:中心投影与人们感官的视觉效果是一致的,它常用来进行绘 画;平行投影中,与投影面平行的平面图形留下的影子,与这个平面图 形的形状和大小完全相同.
返回导航
2.两面平行,其余各面都是平行四边形的几何体就 是棱柱吗?
提示:不是,其余各面中相邻两面的公共边不一定都平行,如图几何 体就不是棱柱.
返回导航
D 解析:A 错误,如图(1),由两个结构相同的三棱锥叠放在一起构 成的几何体,各面都是三角形,但它不是三棱锥.
返回导航
B 错误,如图(2)(3),若△ABC 不是直角三角形或是直角三角形,但 旋转轴不是直角边所在直线,所得的几何体都不是圆锥.
C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形. 由几何图形知,若以正六边形为底面,则侧棱长必然要大于底面边长. D 正确.
返回导航
2.一个正方体的展开图如图所示,A,B,C,D 为原正方体的顶点, 则在原来的正方体中( )
(A)AB∥CD (C)AB⊥CD 答案:D
返回导航
(B)AB 与 CD 相交 (D)AB 与 CD 所成的角为 60°
3.下图中的几何体是由下面哪个平面图形旋转得到的( )
答案:A
返回导航
4.(2018 全国Ⅰ卷)某圆柱的高为 2,底面周长为 16,其三视图如 右图.
返回导航
第 1 节 空间几何体的结构、三视图和直观图
最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描 述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的 三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们 的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形 的不同表示形式. 4.会画某些建筑物的三视图和直观图(在不影响图形特征的基础上,尺寸 线条等不作严格要求)
2020年高考数学专题讲解:立体几何(一)
年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。
几何图形的五大模型
几何图形的五大模型一、等积变换模型1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。
)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。
2020届高考数学专题:立体几何计算问题(答案不全)
立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。
高中数学立体几何外接球7大模型
02
03
04
例题1
已知长方体的长为3,宽为4 ,高为5,求其外接球的半径
。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(3^2+4^2+5^2)=
3/2*sqrt(10)。
例题2
已知长方体的长为6,宽为8 ,高为10,求其外接球的半
径。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(6^2+8^2+10^2) =1/2*sqrt(100+64+100)=1 /2*sqrt(264)=sqrt(66)。
长方体的每个面都是 矩形或正方形,相对 的两个面完全相同。
长方体外接球半径计算方法
01
设长方体的长、宽、高分别为a、 b、c,则长方体的体对角线长度 为sqrt(a^2+b^2+c^2)。
02
外接球的半径为体对角线长度的 一半,即 R=1/2*sqrt(a^2+b^2+c^2)。
典型例题解析
01
外接球半径$R = frac{sqrt{3}a}{3}$
典型例题解析
题目
在正四面体$P-ABC$中,点$P,A,B,C$都在同一球面上,若$angle PAB = angle PBA = angle BPC = angle ACP = 90^{circ}$,则该球的表面积为____.
解析
首先根据正四面体的性质,我们可以计算出外接球的半径$R = frac{sqrt{3}a}{3}$。然后 根据球的表面积公式$S = 4pi R^{2}$,我们可以计算出球的表面积为$S = 4pi (frac{sqrt{3}a}{3})^{2} = frac{4pi a^{2}}{3}$。
2020版 高考大题增分课4 立体几何中的高考热点问题
(四)立体几何中的高考热点问题[命题解读] 1.立体几何是高考的必考内容,几乎每年都考查一个解答题,两个选择或填空题,客观题主要考查空间概念,三视图及简单计算;解答题主要采用“论证与计算”相结合的模式,即利用定义、公理、定理证明空间线线、线面、面面平行或垂直,并与几何体的性质相结合考查几何体的计算.2.重在考查学生的空间想象能力、逻辑推理论证能力及数学运算能力.考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法.以空间几何体为载体,考查空间平行与垂直关系是高考的热点内容,并常与几何体的体积计算交汇命题,考查学生的空间想象能力、计算与数学推理论证能力,同时突出转化与化归思想方法的考查,试题难度中等.【例1】(本小题满分12分)(2019·哈尔滨模拟)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.[信息提取]看到四边形ABCD为菱形,想到对角线垂直;看到三棱锥的体积,想到利用体积列方程求边长.[规范解答](1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BE. 2分因为BD∩BE=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED. 4分(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x. 6分由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积V 三棱锥E -ACD =13×12·AC ·GD ·BE =624x 3=63,故x =2.9分从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E -ACD 的侧面积为3+2 5. 12分 [易错与防范] 易错误区:1.在第(1)问中,易忽视条件BD ∩BE =B .AC ⊂平面AEC 等条件,推理不严谨,导致扣分.2.在第(2)问中,需要计算的量较多,易计算失误,或漏算,导致结果错误. 防范措施:1.在书写证明过程中,应严格按照判定定理的条件写,防止扣分.2.在计算过程中,应牢记计算公式,逐步计算,做到不重不漏.[通性通法] 空间几何体体积的求法(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.[解] (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以点N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2=5.由AM ∥BC 得点M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453.求点到平面的距离(几何体的高)求点到平面的距离(几何体的高)涉及到空间几何体的体积和线面垂直关系,是近几年高考考查的一个重要方向,重点考查学生的转化思想和运算求解能力.【例2】 (2019·开封模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,且∠DAB=60°,P A=PD,M为CD的中点,平面P AD⊥平面ABCD.(1)求证:BD⊥PM;(2)若∠APD=90°,P A=2,求点A到平面PBM的距离.[解](1)证明:取AD中点E,连接PE,EM,AC,∵底面ABCD是菱形,∴BD⊥AC,∵E,M分别是AD,DC的中点,∴EM∥AC,∴EM⊥BD.∵P A=PD,∴PE⊥AD,∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,∴PE ⊥平面ABCD ,∴PE ⊥BD ,∵EM ∩PE =E ,∴BD ⊥平面PEM ,∵PM ⊂平面PEM ,∴BD ⊥PM .(2)连接AM ,BE ,∵P A =PD =2,∠APD =90°,∠DAB =60°,∴AD =AB=BD =2,PE =1,EM =12AC =3,∴PM =PB =1+3=2.在等边三角形DBC 中,BM =3,∴S △PBM =394,S △ABM =12×2×3= 3.设三棱锥A -PBM 的高为h ,则由等体积可得13·394h =13×3×1,∴h =41313,∴点A 到平面PBM 的距离为41313.如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD 的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求点A到平面PBC的距离.[解](1)证明:设BD与AC的交点为O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)三棱锥P-ABD的体积V=16P A·AB·AD=36AB,由V=34,可得AB=32.由题设知BC⊥AB,BC⊥P A,所以BC⊥平面P AB,在平面P AB内作AH⊥PB交PB于点H,则BC⊥AH,故AH⊥平面PBC.又AH=P A·ABPB=P A·ABP A2+AB2=31313.所以点A到平面PBC的距离为313 13.是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.【例3】(2018·秦皇岛模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.[解](1)证明:如图所示,连接AC,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F.又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A.又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC.因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面P AD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG,EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.(2019·长沙模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,请说明理由.[证明](1)连接BD,设AC交BD于点O,连接SO,由题意得四棱锥S-ABCD 是正四棱锥,所以SO⊥AC.在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD.因为SD⊂平面SBD,所以AC⊥SD.(2)在棱SC上存在一点E,使得BE∥平面P AC.连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN,在△BDN中,易得BN∥PO.又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面P AC,PC⊂平面P AC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC.因为SN∶NP=2∶1,所以SE∶EC=2∶1.[大题增分专训]1.(2019·济南模拟)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PB的中点.(1)证明:PD∥平面CEF;(2)若PE⊥平面ABCD,PE=AB=2,求三棱锥P-DEF的体积.[解](1)证明:连接BE,BD,BD交CE于点O,连接OF(图略).∵E为线段AD的中点,AD∥BC,BC=12AD=ED,∴BC ED,∴四边形BCDE为平行四边形,∴O为BD的中点,又F是BP的中点,∴OF∥PD.又OF⊂平面CEF,PD⊄平面CEF,∴PD∥平面CEF.(2)由(1)知,BE=CD.∵四边形ABCD为等腰梯形,AB=BC=12AD,∴AB=AE=BE,∴三角形ABE是等边三角形,∴∠DAB=π3,过B作BH⊥AD于点H(图略),则BH= 3.∵PE⊥平面ABCD,PE⊂平面P AD,∴平面P AD⊥平面ABCD,又平面P AD∩平面ABCD=AD,BH⊥AD,BH⊂平面ABCD,∴BH ⊥平面P AD ,∴点B 到平面P AD 的距离为BH = 3.又F 为线段PB 的中点,∴点F 到平面P AD 的距离h 等于点B 到平面P AD的距离的一半,即h =32,又S △PDE =12PE ·DE =2,∴V 三棱锥P -DEF =13S △PDE ×h =13×2×32=33.2.(2019·石家庄模拟)如图,已知四棱锥P -ABCD ,底面ABCD 为正方形,且P A ⊥底面ABCD ,过AB 的平面ABFE 与侧面PCD 的交线为EF ,且满足S △PEF :S 四边形CDEF =1∶3.(1)证明:PB ∥平面ACE ;(2)当P A =2AD =2时,求点F 到平面ACE 的距离.[解] (1)证明:由题知四边形ABCD 为正方形,∴AB ∥CD ,∵CD ⊂平面PCD ,AB ⊄平面PCD ,∴AB ∥平面PCD .又AB⊂平面ABFE,平面ABFE∩平面PCD=EF,∴EF∥AB,∴EF∥CD.由S△PEF∶S四边形CDEF=1∶3知E,F分别为PD,PC的中点.如图,连接BD交AC于点G,则G为BD的中点,连接EG,则EG∥PB.又EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.(2)∵P A=2,AD=AB=1,∴AC=2,AE=12PD=52,∵P A⊥平面ABCD,∴CD⊥P A,又CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∴CD⊥PD.在Rt△CDE中,CE=CD2+DE2=3 2.在△ACE中,由余弦定理知cos∠AEC=AE2+CE2-AC22AE·CE=55,∴sin∠AEC=255,∴S△ACE=12·AE·CE·sin∠AEC=34.设点F 到平面ACE 的距离为h ,连接AF ,则V F -ACE =13×34×h =14h . ∵DG ⊥AC ,DG ⊥P A ,AC ∩P A =A ,∴DG ⊥平面P AC .∵E 为PD 的中点,∴点E 到平面ACF 的距离为12DG =24.又F 为PC 的中点,∴S △ACF =12S △ACP =22,∴V E -ACF =13×22×24=112.由V F -ACE =V E -ACF ,得14h =112,得h =13, ∴点F 到平面ACE 的距离为13.3.已知在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,四边形ABCD 为矩形,E 为线段AD 上靠近点A 的三等分点,O 为AB 的中点,且P A =PB ,AB =23AD .(1)求证:EC ⊥PE .(2)PB 上是否存在一点F ,使得OF ∥平面PEC ?若存在,试确定点F 的位置;若不存在,请说明理由.[解] (1)证明:连接PO ,EO ,CO .∵平面P AB ⊥平面ABCD ,P A =PB ,O 为AB 的中点,∴PO⊥平面ABCD,∵CE⊂平面ABCD,∴PO⊥CE.设AD=3,∵四边形ABCD为矩形,∴CD=AB=2,BC=3,∴AE=13AD=1,∴ED=2,EC=ED2+DC2=22+22=22,OE=AO2+AE2=12+12=2,OC=OB2+BC2=12+32=10,∴OE2+EC2=OC2,∴OE⊥EC.又PO∩OE=O,∴EC⊥平面POE,又PE⊂平面POE,∴EC⊥PE.(2)PB上存在一点F,使得OF∥平面PEC,且F为PB的三等分点(靠近点B).证明如下:取BC的三等分点M(靠近点C),连接AM,易知AE MC,∴四边形AECM 为平行四边形,∴AM∥EC.取BM的中点N,连接ON,∴ON∥AM,∴ON∥EC.∵N为BM的中点,∴N为BC的三等分点(靠近点B).∵F为PB的三等分点(靠近点B),连接OF,NF,∴NF∥PC,又ON∩NF=N,EC∩PC=C,∴平面ONF∥平面PEC,∴OF∥平面PEC.。
高考数学中立体几何的考点及解题技巧
高考数学中立体几何的考点及解题技巧高考数学中的立体几何是相对来说比较难的一个环节,也是考生必须要掌握的内容之一。
本文将针对高考数学中立体几何的考点和解题技巧做一个详尽的论述。
1. 空间基本概念在解决空间问题时,首先需要掌握的就是空间基本概念。
包括点、线、面的概念及其相关性质。
比如平行四边形的对角线相交于点O,则线段OA、OB互相平分且相等。
2. 立体图形的投影立体图形的投影是指将三维的立体图形在某一平面上产生的影像。
在这里,我们主要讲解直线与平面的投影,并通过题目的解答来加深记忆。
3. 三视图三视图是三维立体图形的三个面正、左、俯视图。
在解决题目时,需要掌握三维图形和其三视图之间的对应关系,想象立体图形在视线方向上的不同表现,来确定视角和投影位置。
特别是在椎体、金字塔、棱锥等图形的题目中,需要考生准确细致地确定各部分的位置。
4. 空间向量空间向量是指空间中有大小和方向的量,在立体几何中经常使用,可以用于排除无关信息,简化问题。
5. 立体几何解题的思路立体几何解题的方法及思路与平面几何有些不同。
在立体几何中,有的题目需要平面几何的方法来解决;某些题目需要分解为几个简单的平面图形,再运用三角函数来解决;有些题目需要利用向量的性质,优化模型。
因此,在解答的过程中,需要先明确各部分关系,做到想象明确,思路清晰。
高考数学中立体几何的考点及解题技巧就是如此,需要同学们根据自已的掌握程度,不断深化学习。
建议同学们多进行课堂上的实际解答,熟练掌握相关理论知识。
除此之外,同学们还需要养成良好自习习惯,在课外时间多加练习,巩固学习成果。
相信在充分掌握理论知识的情况下,同学们一定可以取得优异的高考成绩。
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。
例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。
解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。
2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。
解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。
3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。
解:由墙角模型的特点可知,正三棱锥的对棱互垂直。
连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。
由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。
因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。
类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。
通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。
例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。
解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。
2020高考数学----立体几何中的建系设点问题
第63炼立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴z1、z轴的选取往往是比较容易的,依据的是线面垂直,即z轴要与坐标平面xOy垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z轴与底面的交点2、x,y轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:x(1)尽可能的让底面上更多的点位于x,y轴上(2)找角:x,y轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足x,y,z轴成右手系,所以在标x,y轴时要注意。
zD'O yE C'F4、同一个几何体可以有不同的建系方法,其坐标也会对应A'B'J不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
GO C y5、解答题中,在建立空间直角坐标系之前,要先证明所用x A H BI 坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论:(1)线面垂直:①如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直②两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):H 1, ,0 ⎪ , I ,1,0 ⎪ ),则 AB 中点 M ⎛ x 1 + x 2 , y 1 + y 2 , z 1 + z 2⎫⎪ ,① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若 AB 2 + AC 2 = BC 2 ,则 AB ⊥ AC(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为 3 类1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为 1)中的 A, C , D ' 点,坐标特点如下:x 轴:(x,0,0 ) y 轴: (0, y ,0 )z 轴:(0,0,z )规律:在哪个轴上,那个位置就有坐标,其余均为 0(2)底面上的点:坐标均为 (x, y ,0 ) ,即竖坐标 z = 0 ,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出 H , I 点的坐标,位置关系清晰明了⎛ 1 ⎫ ⎛ 1 ⎫ ⎝ 2 ⎭ ⎝ 2 ⎭2、空间中在底面投影为特殊位置的点:O CI如果 A '(x , y , z ) 在底面的投影为 A (x , y ,0 ) ,那么1122AH Bx = x , y = y (即点与投影点的横纵坐标相同)1 212由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高考立体几何模型
高考常考立体几何模型模型一:阳马一、选择题1.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A. √6πB. 8√6π3C. 8√6πD. 24π【答案】A【解析】解:如图所示,该几何体为四棱锥P−ABCD,底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的体积:4π3×(√62)3=√6π.2.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为()A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.3.《九章算术》中,将底面是长方形且有一条侧棱与底面垂直的四棱锥称为阳马.在阳马P−ABCD中,PC为阳马中最长的棱,AB=1,AD=2,PC=3,若在阳马P−ABCD的外接球内部随机取一点M,则M位于阳马内的概率为()A. 127πB. 427πC. 827πD. 49π【答案】C【解析】根据题意,PC的长等于其外接球的直径,∵PC=√PA2+AB2+AD2,∴3=√PA2+1+4,∴PA=2,又PA垂直平面ABCD,∴V P−ABCD=13×1×2×2=43,,,4.刘徽《九章算术⋅商功》中将底面为长方形,两个三角面与底面垂直的四棱锥称为“阳马”,.某“阳马”的三视图如图所示,则其外接球的体积为()正视图侧视图俯视图A. √3πB. 3πC. √3π2D. 4π【答案】C【解析】解:由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个底面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球;由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为1,∴长方体的一个顶点处的三条棱长分别为1,1,1,∴长方体的对角线为√3,∴外接球的半径为√32,∴外接球的体积为V=4π3⋅(√32)3=√32π.5.《九章算术》中,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”.已知某“阳马”的三视图如图所示,其体积为12,则该“阳马”的侧视图中的x=()A. 1B. 2C. 3D. 4【答案】C【解析】解:根据几何体的三视图可知,该几何体是底面长为4,宽为x的矩形,高为3的四棱锥,∵几何体的体积V=13×4×3x=12,解得x=3,6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A. √6πB. 8√6π3C. 8√6πD. 24π【答案】A【解析】解:如图所示,该几何体为四棱锥P−ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的体积:4π3×(√62)3=√6π.7.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖孺.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.二、填空题8.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱ABC−A1B1C1,其中AC⊥BC,若AA1=AB=2,当“阳马”即四棱锥B−A1ACC1体积最大时,“堑堵”即三棱柱ABC−A1B1C1外接球的体积为________.【答案】8√23π【解析】解:设AC=b,BC=a,则a2+b2=AB2=4,所以四棱锥B−A1ACC1=13×BC×AC×AA1=23ab≤2 3×a2+b22=43,当且仅当a=b=√2时取等,此时三棱柱ABC−A1B1C1外接球的球心为A1B的中点,所以外接球的半径R=A1B2=√AA12+AB22=√4+42=√2,所以三棱柱ABC−A1B1C1外接球的体积为43×πR3=43π×2√2=8√23π.故答案为:8√23π.9.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,PA⊥平面ABCD,PA=4,AB=√3,AD=1,则该“阳马”外接球的表面积为________.【答案】【解析】解:如图:因为平面ABCD,PA⊂平面PAD,PA⊂平面PAB,所以平面PAD⊥平面ABCD,交于AD,平面PAB⊥平面ABCD,交于AB,而ABCD是矩形,因此DC⊥平面PAD,BC⊥平面PAB.而PD⊂平面PAD,PB⊂平面PAB,因此DC⊥PD,BC⊥PB.连接AC,因为平面ABCD,AC⊂平面ABCD,所以,因此该“阳马”外接球是以PC为直径的球.又因为PA=4,AB=√3,AD=1,所以PC=√PA2+AB2+AD2=2√5,即外接球的半径为√5,因此该“阳马”外接球的表面积为.故答案为.10.《九章算术》中把底面为直角三角形,且侧棱垂直于底面的三棱柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.现有如图所示的“堑堵”ABC−A1B1C1,其中AC⊥BC,若AA1=1,“堑堵”即三棱柱ABC−A1B1C1π,则“阳马”即四棱锥B−A1ACC1体积的最大值为的外接球的体积为√23_________.【答案】16【解析】解:,设AC=x,则BC=√1−x2,时,取等号.,当且仅当x=√22故四棱锥B−A1ACC1体积的最大值为1.611.我国古代数学名著《九章算术⋅商功》中阐述:“斜解立方,得两壍堵.斜解壍堵,其为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:①四个侧面都是直角三角形;②最长的侧棱长为2√6;③四个侧面中有三个侧面是全等的直角三角形;④外接球的表面积为24π.其中正确的为______________【答案】①②④【解析】解:由题目中的三视图可还原几何体如下:下底面为4宽2的矩形,ED⊥平面ABCD,ED=2,∴①四个侧面都是直角三角形,正确;②最长的侧棱长为EB=2√6,正确;③四个侧面不存在全等的直角三角形,故错误;④外接球的球心为EB中点,半径r=√6,表面积为24π,正确.故正确的描述有①②④,模型二:鳖臑一、选择题12. 在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑A −BCD 中,AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,M 为AD 的中点,则二面角M −BC −D 的正弦值为A. √22B. √33C. √63D. 1【答案】C【解析】 解:由题意可以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BDC 的垂线为z 轴(与AB 平行),建立空间直角坐标系如图所示,设AB =BC =CD =1,则A(0,1,1),B(0,1,0),C(0,0,0),D(1,0,0),M(12,12,12), 则BM ⃗⃗⃗⃗⃗⃗ =(12,−12,12),CD ⃗⃗⃗⃗⃗ =(1,0,0), 设异面直线BM 与CD 夹角为θ,则cosθ=|BM⃗⃗⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ ||BM⃗⃗⃗⃗⃗⃗⃗ |⋅|CD ⃗⃗⃗⃗⃗ |=12√34=√33.∴二面角M −BC −D 的正弦值为√1−cos2θ=(√33)=√63.13. 在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑A—BCD 中,AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,M 为AD 的中点,则异面直线BM 与CD 所成角的正弦值为A. 0B. √33C. √63D. 1【答案】D【解析】 解:设AB =BD =CD =1,因为BD ⊥CD ,AB ⊥平面BCD ,所以CD ⊥AB ,AB ∩BD =B ,所以CD ⊥面ABD ,CD ⊥AM ,则异面直线BM 与CD 所成角为90° 异面直线BM 与CD 所成角的正弦值为1,14.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.15.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC 与BD所成角的余弦值为().A. 12B. -12C. √32D. -√32【答案】A【解析】解:如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,则EF//BD,EG//AC,FO⊥OG,∴∠FEG为异面直线AC与BD所成角.设AB=2a,则EG=EF=√2a,FG=√a2+a2=√2a,∴∠FEG=60°,∴异面直线AC与BD所成角的余弦值为12,16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,已知鳖臑P−ABC的三视图如图所示(单位:cm),则该几何体的外接球的表面积为(单位:cm2)()A. 41πB. 16πC. 25πD. 64π【答案】A【解析】解:由题意将三视图还原几何体,看作是长方体(长4,宽3,高4)截得的三棱锥, 所以球O 的直径,2R =√42+32+42=√41, ∴球O 的半径为√412,∴球O 的表面积为4π⋅(√412)2=41π.17. 刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P −ABCD 中,PA ⊥平面ABCD ,BC =2PA =4,AB =3,E 为PD 中点.则异面直线AE 与BD 所成角的余弦值为( )A. 35B. 25C. 6√525D. 8√525【答案】D【解析】 解:如图,取PB 中点为F ,连接AF ,EF ,∵E 为PD 中点,∴FE//BD ,∴∠AEF(或补角)为异面直线AE 与BD 所成的角.由已知,得AE =12PD =√5,AF =12PB =√132,EF =12BD =52,cos ∠AEF =AE 2+EF 2−AF 22AE⋅EF=8√525. 即AE 与BD 所成角的余弦值为8√525.18. 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P -ABC为鳖臑,PA ⊥平面ABC ,PA=3,AB=4,AC=5,三棱锥P -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A. 17π B. 25π C. 34π D. 50π 【答案】C【解析】解:由题意,PC为球O的直径,∵PC=√PA2+AC2=√9+25=√34,∴球O的半径R=PC2=√342,∴球O的表面积S=4πR2=4π×(√342)2=34π.19.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC−A1B1C1中,已知AB=3,BC=4,AC=5,若阳马C1−ABB1A1的外接球的表面积等于50π,则鳖臑C1−ABC的所有棱中,最长的棱的棱长为A. 5B. √41C. 5√2D. 8【答案】C【解析】解:由题意知,直三棱柱ABC−A1B1C1中,AA1=AC=5,AB=3,BC=4,四棱锥C1−ABB1A1的外接球即为直三棱柱的外接球,以AB、BC、BB1为共顶点,画出长方体,如图所示,则长方体的最长的棱的棱长为AC1,即外接球的直径,∴外接球的表面积是.∴R=5√2 2∴鳖臑C1−ABC的所有棱中,最长的棱的棱长为AC1=2R=5√2.20.中国古代第一部数学名著《九章算术》中,将一般多面体分为阳马、鳖臑、堑堵三种基本立体图形,其中将四个面都为直角三角形的三棱锥称之为鳖,若三棱锥Q−ABC为鳖臑,QA⊥平面ABC,AB⊥BC,QA=BC=3,AC=5,则三棱锥Q−ABC 外接球的表面积为()A. 16πB. 20πC. 30πD. 34π【答案】D【解析】解:如图,补全为长方体,则2R=√32+42+32=√34,∴R=√342,故外接球得表面积为4πR2=34π,由题意画出图形,补全为长方体,求出长方体的对角线长,可得三棱锥Q−ABC外接球的半径,则答案可求.本题考查多面体外接球的表面积的求法,考查数形结合的解题思想方法,是基础题.二、填空题(本大题共4小题,共20.0分)21.在我国古代的数学专著《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),已知鳖臑P−ABC中,PA⊥平面ABC,AB⊥BC,若PA=AB=2√2,BC=2,E,F分别是PB,PC的中点,则三棱锥P−AEF的外接球的表面积为________.【答案】9π【解析】解:PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又因为AB⊥BC,PA∩AB=A,PA,AB⊂面PAB,所以BC⊥面PAB,∵AE⊂面PAB,∴BC⊥AE,∵PA=AB,E为PB的中点,所以AE⊥PB,PB∩BC=B,PB,BC⊂面PBC,所以AE⊥面PBC,∵EF⊂面PBC,所以AE⊥EF,AE⊥PE,又EF//BC,所以EF⊥PE,则EF,PE,AE两两垂直,EF=12BC=1,PE=AE=2,所以三棱锥P−AEF的外接球半径为√1+4+42=32,故球的表面积为4×(94)π=9π,22.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”这里所谓的“鳖臑(biēnào)”,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥.已知三棱锥A−BCD是一个“鳖臑”,AB⊥平面BCD,AC⊥CD,且AB=BC=CD=2,则三棱锥A−BCD的外接球的表面积为________.【答案】12π【解析】解:∵三棱锥A−BCD是一个“鳖臑”,AB⊥平面BCD,AC⊥CD,且AB=BC=CD=2,∴三棱锥A−BCD的外接球的半径:R=AD2=√AB2+BC2+CD22=√4+4+42=√3∴三棱锥A−BCD的外接球的表面积为:S=4πR2=12π.故答案为12π.23.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P−ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为_______ 。
立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学
立体几何解答题常考模型归纳总结 高考立体几何解答题常考模型主要包括柱体、锥体、球体、旋转体、多面体等。
这些模型常涉及体积、表面积的计算,截面问题,以及与其他几何体的组合或相交问题。
此外,空间位置关系,如平行、垂直的判断与证明,也是常考内容。
空间角的计算,包括异面直线所成的角、直线与平面所成的角、二面角等,同样是高考立体几何的重要考点。
最后,空间距离的计算,如点到平面的距离、两平行平面间的距离等,也是解答题中常见的考查点。
掌握这些模型的基本性质和解题方法,对于提高高考立体几何的解题能力至关重要。
题型一:非常规空间几何体为载体【典例1-1】(2024·河南濮阳·模拟预测)如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==(1)求证:1AA ^平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.【典例1-2】(2024·云南昆明·三模)如图,在三棱台111ABC A B C -中,上、下底面是边长分别为2和4的正三角形,1AA ^平面ABC ,设平面11AB C I 平面=ABC l ,点,E F 分别在直线l 和直线1BB 上,且满足EF l ^,1EF BB ^.(1)证明:^EF 平面11BCC B ;(2)若直线EF 和平面ABC 【变式1-1】(2024·天津和平·二模)如图,三棱台111ABC A B C -中,ABC V 为等边三角形,1124AB A B ==,1AA ^平面ABC ,点M ,N ,D 分别为AB ,AC ,BC 的中点,11A B AC ^.(1)证明:1CC ∥平面1A MN ;(2)求直线1A D 与平面1A MN 所成角的正弦值;(3)求点D 到平面1A MN 的距离.【变式1-2】(2024·河南周口·模拟预测)如图,平行六面体1111ABCD A B C D -中,底面ABCD 与平面11ABC D 都是边长为2的菱形,11120BCD BC D °Ð=Ð=,侧面11BCC B(1)求平行六面体1111ABCD A B C D -的体积;(2)求平面11BCC B 与平面11CDD C 的夹角的余弦值.题型二:立体几何存在与探索性问题【典例2-1】如图1,ABC V 是边长为3的等边三角形,点,D E 分别在线段,AC AB 上,且1,2AE AD ==,沿DE 将ADE V 翻折到PDE △的位置,使得PB 2.(1)求证:平面PDE ^平面BCDE ;(2)在线段PB 上是否存在点M ,使得//EM 平面PCD ,若存在,求出PM MB的值;若不存在,请说明理由.【典例2-2】(2024·广东·一模)如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD AC Ð===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求 12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【变式2-1】在ABC V 中,90ABC Ð=°,6AB BC ==,D 为边AB 上一点,2AD =,E 为AC 上一点,//DE BC ,将ADE V 沿DE 翻折,使A 到A ¢处,90DA B ¢Ð=°.(1)证明:A B ¢^平面A DE ¢;(2)若射线DE 上存在点M ,使l =uuuu r uuu r DM DE ,且MC 与平面A EC ¢所成角的正弦值为15,求λ.【变式2-2】(2024·甘肃张掖·模拟预测)如图,在四棱锥P ABCD -中,底面四边形ABCD为菱形,且60,DAB PAD Ð=o V 是边长为2的等边三角形,且平面PAD ^平面,ABCD O 为AD 中点.(1)求证:OB ^平面PAD ;(2)在线段PC 上是否存在点M ,使二面角M BO C --的大小为60o ,若存在,求PM PC的值,若不存在,请说明理由.题型三:立体几何折叠问题【典例3-1】(2024·湖北武汉·模拟预测)如图1,在矩形ABCD 中,2AB =,BC =ABD △沿矩形的对角线BD 进行翻折,得到如图2所示的三棱锥A BCD -,且AB CD ^.(1)求翻折后线段AC 的长;(2)点M 满足2AM MD =uuuu r uuuu r ,求CM 与平面ABD 所成角的正弦值.【典例3-2】(2024·山东·模拟预测)如图,在菱形ABCD 中,60BAD Ð=°,E 是AD 的中点,将ABE V沿直线BE 翻折使点A 到达点1A 的位置,F 为线段1AC 的中点.(1)求证:DF ∥平面1A BE ;(2)若平面1A BE ^平面BCDE ,求直线1A E 与平面1A BC 所成角的大小.【变式3-1】(2024·河南驻马店·二模)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ^平面ACDE ,过点E 作//EF AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ^平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD ,求AB 的值.【变式3-2】在等腰梯形ABCD 中,//AB CD ,2AB =,2AD BC ==,60DAB Ð=°,M 为AB 中点,将AMD V ,BMC △沿MD ,MC 翻折,使A ,B 重合于点E ,得到三棱锥M CDE -.(1)求ME 与平面CDE 所成角的大小;(2)求二面角M DE C --的余弦值.题型四:立体几何作图问题【典例4-1】(2024·河南信阳·模拟预测)长方体1111ABCD A B C D -中,123,2AB AA AD CE ED ===uuu r uuu r .(1)过E 、B 作一个截面,使得该截面平分长方体的表面积和体积.写出作图过程及其理由.(2)记(1)中截面为a ,若a 与(1)中过D 点的长方体的三个表面成二面角分别为,,q j w ,求222cos cos cos q j w ++的值.【典例4-2】(2024·高三·河北承德·期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,,O E F 分别是,,BD PA BC 的中点.(1)证明://OE 平面PBC ;(2)若平面a 经过点,,F D E ,且与棱PB 交于点H .请作图画出H 在棱PB 上的位置,并求出PH HB的值.【变式4-1】(2024·辽宁大连·一模)如图多面体ABCDEF 中,面FAB ^面ABCD ,FAB V 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ^;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出AP AD的值(不需要说明理由,保留作图痕迹).【变式4-2】如图,已知底面为平行四边形的四棱锥P ABCD -中,平面MNGH 与直线PB 和直线AC 平行,点E 为PD 的中点,点F 在CD 上,且:1:2DF FC =.(1)求证:四边形MNGH 是平行四边形;(2)求作过EF 作四棱锥P ABCD -的截面,使PB 与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.【变式4-3】(2024·北京·三模)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB p Ð=.AC BD O =I ,且^PO 平面ABCD ,PO =,点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅱ)求直线AB 与平面EFG 的成角的正弦值;(Ⅲ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题【典例5-1】(2024·山东淄博·二模)已知直角梯形ABCD ,90ADC Ð=°,//AB CD ,2AB CD AD ===M 为对角线AC 与BD 的交点.现以AC 为折痕把ADC V 折起,使点D 到达点P 的位置,点Q 为PB 的中点,如图所示:(1)证明:AC ^平面PBM ;(2)求三棱锥P ACQ -体积的最大值;(3)当三棱锥P ACQ -的体积最大时,求直线AB 与平面PBC 所成角的正弦值.【典例5-2】(2024·贵州黔东南·二模)如图,在四棱台1111ABCD A B C D -中,O 为AC 的中点,1111122AA A C C C AC ====.(1)证明:1//OC 平面11AA D D ;(2)若平面ABCD ^平面11ACC A ,AB BC ^,当四棱锥11B AA C C -的体积最大时,求1CC 与平面11AA B B 夹角的正弦值.【变式5-1】(2024·重庆·三模)如图所示的几何体是一个半圆柱和一个三棱锥的组合体.11,BB CC 是半圆柱的母线,1,O O 分别是底面直径BC 和11B C 的中点,11114,2,BC B C BB CC A ====是半圆O 上一动点,1A 是半圆1O 上的动点,1AA 是圆柱的母线,延长1A A 至P 点使得A 为1A P 的中点,连接PB ,PC 构成三棱锥P ABC -.(1)证明:1AC BA ^;(2)当三棱锥P ABC -的体积最大时,求平面1ABA 与平面1BA C 的夹角.【变式5-2】已知平面四边形ABCD ,2AB AD ==,60BAD Ð=°,30BCD Ð=°,现将ABD D 沿BD 边折起,使得平面ABD ^平面BCD ,此时AD CD ^,点P 为线段AD 的中点.(1)求证:BP ^平面ACD ;(2)若M 为CD 的中点①求MP 与平面BPC 所成角的正弦值;②求二面角P BM D --的平面角的余弦值.题型六:两角相等(构造全等)的立体几何问题【典例6-1】(2024·河南·模拟预测)如图,在三棱锥A BCD -中,ABC V 是等边三角形,90BAD BCD Ð=Ð=°,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ^平面BDP ;(2)若BD =,且二面角A BD C --为120°,求直线AD 与平面BCD 所成角的正弦值.【典例6-2】(2024·广西桂林·二模)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE Ð=Ð,且二面角F AE B --的大小为90°.(1) 求证:AE BG ^;(2) 求二面角B AF E --的余弦值.【变式6-1】(2024·安徽合肥·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形,45DAE BAE °Ð=Ð=,60DAB Ð=°.(1)证明:平面ADE ^平面ABE ;(2)当直线DE 与平面ABE 所成的角为30°时,求平面DCE 与平面ABE 所成锐二面角的余弦值.【变式6-2】(2024·辽宁沈阳·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形45DAE BAE Ð=Ð=°,60DAB Ð=°(1)证明:平面ADE ^平面ABE ;(2)当平面DCE 与平面ABE DE 与平面ABE 所成角正弦值.题型七:利用传统方法找几何关系建系【典例7-1】(2024·江苏南京·二模)如图,//AD BC ,AD AB ^,点E 、F 在平面ABCD 的同侧,//CF AE ,1AD =,2AB BC ==,平面ACFE ^平面ABCD ,EA EC ==(1)求证://BF 平面ADE ;(2)若直线EC 与平面FBD ,求线段CF 的长.【典例7-2】斜三棱柱ABC -A 1B 1C 1上,侧面AA 1C 1C ⊥平面ABC ,侧面AA 1C 1C 是菱形,∠A 1AC =60°,A 1C =AC AB =2,为BB 1的中点.(1)求二面角C -A 1D -C 1的余弦值;(2)记△ABC 的外接圆上有一动点P ,若二面角P -AA 1-C 与二面角C -A 1D -C 1相等,求AP 的长.【变式7-1】如图,已知四棱锥P ABCE -中,PA ^平面ABCE ,平面PAB ^平面PBC ,且1AB =,2BC =,BE =,点A 在平面PCE 内的射影恰为PCE V 的重心G .(1)证明:BC AB ^;(2)求直线CG 与平面PBC 所成角的正弦值.【变式7-2】如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ^平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.题型八:空间中的点不好求【典例8-1】(2024·山东日照·三模)在五面体ABCDEF 中,CD ADE ^平面,EF ADE ^平面.(1)求证:AB CD ∥;(2)若222AB AD EF ===,3CD =,90ADE Ð=°,点D 到平面ABFE A BC F --的余弦值.【典例8-2】(2024·全国·校联考模拟预测)已知三棱锥ABCD ,D 在面ABC 上的投影为O ,O 恰好为△ABC 的外心.4AC AB ==,2BC =.(1)证明:BC ⊥AD ;(2)E 为AD 上靠近A 的四等分点,若三棱锥A-BCD 的体积为1,求二面角E CO B --的余弦值.【变式8-1】(2024·河南·校联考模拟预测)如图,在四棱锥P ABCD -中,AB BC ==AD CD AC ===E ,F 分别为AC ,CD 的中点,点G 在PF 上,且G 为三角形PCD 的重心.(1)证明://GE 平面PBC ;(2)若PA PC =,PA CD ^,四棱锥P ABCD -的体积为GE 与平面PCD 所成角的正弦值.【变式8-2】(2024·湖北武汉·华中师大一附中校考模拟预测)如图,平行六面体1111ABCD A B C D -中,点P 在对角线1BD 上,AC BD O =I ,平面ACP ∥平面11AC D .(1)求证:O ,P ,1B 三点共线;(2)若四边形ABCD 是边长为2的菱形,11π3BAD BAA DAA =ÐÐ==Ð,13AA =,求二面角P AB C --大小的余弦值.【变式8-3】(2024·全国·模拟预测)已知菱形ABCD 中,1AB BD ==,四边形BDEF 为正方形,满足2π3ABF Ð=,连接AE ,AF ,CE ,CF .(1)证明:CF AE ^;(2)求直线AE 与平面BDEF 所成角的正弦值.题型九:数学文化与新定义问题【典例9-1】(2024·高三·山东青岛·期中)某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E 、F 、G 分别是边长为4的正方形的三边AB CD AD 、、的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB CG 、就得到了一个“刍甍” (如图2)。
2020年高考数学 专题四 立体几何题型分析 理
2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α l β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α l β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D A 1C E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q PB A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。