高等代数北大版习题参考答案

合集下载

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。

2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。

高等代数(北大第三版)习题答案完整

高等代数(北大第三版)习题答案完整
P44.4 2) 结果
f ( x) = x 4 − 2 x 2 + 3 = ( x + 2) 4 − 8( x + 2)3 + 22( x + 2) 2 − 24( x + 2) + 11
3)
f ( x) = x 4 + 2ix 3 − (1 + i ) x 2 + 3 x + 7 + i
= ( x + i − i )4 + 2i ( x + i − i )3 − (1 + i )( x + i − i ) 2 − 3( x + i − i ) + 7 + i = ( x + i ) 4 − 2i( x + i)3 + (1 + i)( x + i ) 2 − 5( x + i ) + 7 + 5i
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
证:设 ( f ( x ) h( x ), g ( x ) h( x )) = m( x ) 由
( f ( x ), g ( x)) h( x ) | f ( x) h( x) ∴ ( f ( x ), g ( x)) h( x ) | m( x )
设 d ( x ) = ( f ( x ), g ( x )) = u ( x ) f ( x ) + v ( x ) g ( x ).
由 12 题 ( fg , f + g ) = 1 令 g = g1 g 2 … g n
∴ 每个i, ( fi , g ) = 1 ⇒ ( f1 f1 , g ) = 1, ⇒ ( f1 f 2 f3 , g ) = 1 , ⇒ ( f1 f 2

高等代数北大版第章习题参考答案精修订

高等代数北大版第章习题参考答案精修订

高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。

8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。

2)当0=α时,是;当0≠α时,不是。

3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。

4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。

5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

高等代数(北大版)第8章习题参考答案

高等代数(北大版)第8章习题参考答案

第八章 λ—矩阵1. 化下列矩阵成标准形 1)⎪⎪⎭⎫⎝⎛+-λλλλλλ3522232)⎪⎪⎪⎭⎫ ⎝⎛-+--222211λλλλλλλλλ 3)⎪⎪⎪⎭⎫ ⎝⎛++22)1(000λλλλ 4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000)1(0000002222λλλλλλ 5)⎪⎪⎪⎭⎫⎝⎛---+-+--+-+--+1244323534321232322222λλλλλλλλλλλλλλ6)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----++00221330010102602206341032λλλλλλλλλλλλλλ解 1)对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎭⎫ ⎝⎛+-λλλλλλ352223→ ⎪⎪⎭⎫ ⎝⎛-+λλλλλλ322253→ ⎪⎪⎭⎫⎝⎛+λλλλλλ3-10-053232 → ⎪⎪⎭⎫⎝⎛--λλλλ3100023= B )(λ, B )(λ即为所求。

2)对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎪⎭⎫⎝⎛-+--222211λλλλλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛--222101λλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛+--)1(000001λλλλ→ ⎪⎪⎪⎭⎫ ⎝⎛+λλλ20000001= B )(λ, B )(λ即为所求。

3)因为⎪⎪⎪⎭⎫⎝⎛++22)1(000λλλλ的行列式因子为 D 1 =1, D 2 =)1(+λλ, D 3 = 32)1(+λλ, 所以d 1 = 1, d 2 =12D D = )1(+λλ, d 3 = 23D D = 2)1(+λλ, 从而A =)(λ⎪⎪⎪⎭⎫⎝⎛++22)1(00000λλλλ→ ⎪⎪⎪⎭⎫ ⎝⎛+λλ+λλ2)1(000)1(0001= B )(λ,B )(λ即为所求。

4)因为⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000)1(0000002222λλλλλλ的行列式因子为 D 1 =1, D 2 =)1(-λλ, D 3 = 22)1(-λλ, D 4 = 44)1(-λλ,所以d1= 1,d2=12D D = )1(-λλ,d 3=23D D = )1(-λλ,d 4=34D D = 22)1(-λλ,从而A =)(λ⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000)1(0000002222λλλλλλ→ ⎪⎪⎪⎪⎪⎭ ⎝λλλλ-λλ221)-(00001)-(0000)1(0= B )(λ, B )(λ即为所求。

(完整版)高等代数(北大版)第7章习题参考答案

(完整版)高等代数(北大版)第7章习题参考答案

第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数;是一固定的数;7) 把复数域上看作复数域上的线性空间,把复数域上看作复数域上的线性空间,A ξξ=。

8) 在P nn ⨯中,A X=BXC 其中B,C∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。

不是。

2)当0=α时,是;当0≠α时,不是。

不是。

3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk ,A ≠)(αkk A()α。

4)是.因取),,(),,,(321321y y y x x x ==βα,有A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-==k A )(α, 故A 是P 3上的线性变换。

上的线性变换。

5) 是因任取][)(],[)(x P x g x P x f ∈∈,并令并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

高等代数(北大版)第10章习题参考答案

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的一个线性函数,已知f(ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3求f (X1ε1+X2ε2+X3ε3).解因为f是V上线性函数,所以有f(ε1)+ f (ε3)=1f (ε2)-2 f (ε3)=-1f(ε1)+f (ε2)=-3解此方程组可得f(ε1)=4,f (ε2)=-7,f (ε3)=-3 于是f (X1ε1+X2ε2+X3ε3).=X1f(ε1)+X2 f (ε2)+X3 f (ε3)=4 X1-7 X2-3 X32、设V与ε1,ε2,ε3同上题,试找出一个线性函数f ,使f(ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1解设f为所求V上的线性函数,则由题设有f(ε1)+ f (ε3)=0f (ε2)-2 f (ε3)=0f(ε1)+f (ε2)=1解此方程组可得f(ε1)=-1,f (ε2)=2,f (ε3)=1于是∀a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为a= X1ε1+X2ε2+X3ε3时,就有f (a)=f (X1ε1+X2ε2+X3ε3)= X 1 f(ε1)+X 2 f (ε2)+X 3 f (ε3)=-X 1+2 X 2+ X 3 3、 设ε1,ε2,ε3是线性空间V 的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3试证:α1,α2,α3是V 的一组基,并求它的对偶基。

证: 设〔α1,α2,α3〕=〔ε1,ε2,ε3〕A由已知,得A =110011111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦因为A ≠0,所以α1,α2,α3是V 的一组基。

设g1,g2,g3是α1,α2,α3得对偶基,则 〔g1,g2,g3〕=〔f1,f2,f3〕〔A ˊ〕1-=〔f1,f2,f3〕011112111-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦因此g1=f2-f3g2=f1-f2+f3 g3=-f1+2f2-f34.设V 是一个线性空间,f1,f2,…fs 是V *中非零向量,试证:∃α∈V ,使 fi(α)≠0 (i=1,2…,s)证:对s 采用数学归纳法。

高等代数[北大版]第1章习题参考答案解析

高等代数[北大版]第1章习题参考答案解析

WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。

1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。

解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。

1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。

1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。

)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。

0701205_高等代数 北大版 课后习题答案

0701205_高等代数 北大版 课后习题答案

39
26 2 x;
99
2)同理可得 q( x) x2 x 1, r ( x) 5x 7 。
2. m, p, q 适合什么条件时,有
1) x2 mx 1 | x3 px q ,
2) x2 mx 1 | x 4 px2 q 。
解 1)由假设,所得余式为 0,即 ( p 1 m2 ) x (q m) 0 ,
g( x) q2( x)r1(x) r2 ( x)
解得 r2 ( x) g( x) q2( x)r1(x) g( x) q2( x)[ f ( x) q1( x) g( x)] , [ q2( x)] f ( x) [1 q1(x)q2 ( x)] g( x)
u( x)
于是
q2( x)
x1

v( x) 1 q1(x)q2 ( x) 1 1 ( x 1) x 2
9.证明: ( f (x)h( x), g(x)h( x)) ( f (x), g (x)) h( x) , (h( x) 的首系数为1) 。
证 因为存在多项式 u( x), v( x) 使 ( f (x), g (x)) u(x) f ( x) v( x)g( x) ,
式,求 t, u 的值。

f (x)
因为
q1(x)g( x)
r1( x)
( x3
tx2
u)
( x2
2x u)

g( x) q2 ( x)r1( x) r2 (x)
(x (t 2))( x2 2x u) (u 2t 4)x u(3 t ) ,
且由题设知最大公因式是二次多项式,所以余得 ( f (x), g( x)) x 1,且 u(x)
11
22 2

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。

解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。

2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。

解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。

时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。

综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。

2(X — X。

)~ + …+ C n(X — X。

)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。

高等代数北大编 第1章习题参考答案

高等代数北大编 第1章习题参考答案

第一章 多项式 一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+ 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数北大编 第1章习题参考答案

高等代数北大编 第1章习题参考答案

第一章 多项式一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

&解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成—2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案第一章多项式一、习题及参考解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当??+==10q p m 或=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数北大版习题参考答案

高等代数北大版习题参考答案

高等代数北大版习题参考答案CKBOOD was revised in the early morning of December 17, 2020.第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。

8) 在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。

2)当0=α时,是;当0≠α时,不是。

3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。

4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β,A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。

5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

高等代数北大版习题参考答案

高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。

高等代数(北大第三版)习题答案完整

高等代数(北大第三版)习题答案完整

解出(ⅰ)当 u = 0时t + 3t − 3t + 4 = 0(t + 4)(t − t + 1)
3 2 2
1 ± 3¡ ± 3 ¡ t = −4或t = =e 2 ∴
(ⅱ)
π
当u ≠ 0时, 只有t 2 + t + 3 = 0,
t 1 =− t +1 3
t 3 + 3t 2 − (u + 3)t + (4 − u ) ⇒ u =
f ( x ) = x 5 , x0 = 1 :即 ∴ f ( x) = ( x − 1)5 + 5( x − 1) 4 + 10( x − 1)3 + 10( x − 1) 2 + 5( x − 1) + 1
当然也可以 f ( x) = x = [( x − 1) + 1]
5 5
= ( x − 1)5 + 5( x − 1) 4 + ⋅⋅⋅ + 1
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
t= − 1 ± − 11 2
P45、8 d ( x ) | f ( x ), d ( x ) | g ( x ) 表明 d ( x ) 是公因式 又已知: d ( x)是f ( x)与g ( x)的组合 所以 表明任何公因式整除 d ( x )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。

解 1)由定义,得012)1(32112),(=⨯+-+⨯+⨯=βα,所以2,πβα>=<。

2)因为1813521231),(=⨯+⨯+⨯+⨯=βα,1833222211),(=⨯+⨯+⨯+⨯=βα,3633221133),(=⨯+⨯+⨯+⨯=βα,22361818,cos =>=<βα,所以4,πβα>=<。

3)同理可得3),(=βα, 17),(=αα, 3),(=ββ, 773,cos >=<βα,所以773cos ,1->=<βα。

3. βαβα-=),(d 通常为βα,的距离,证明;),(),(),(γββαβαd d d +≤。

证 由距离的定义及三角不等式可得),(),(γββαd d +=。

4在R 4中求一单位向量与()()()3,1,1,2,1,1,1,1,1,1,1,1---正交。

解 设()4321,,,x x x x =α与三个已知向量分别正交,得方程组⎪⎩⎪⎨⎧=+++=+--=+-+03200432143214321x x x x x x x x x x x x , 因为方程组的系数矩阵A 的秩为3,所以可令x 3,0,414213-===⇒=x x x ,即()3,1,0,4-=α。

再将其单位化,则()3,1,0,42611-==αηa , 即为所求。

5.设n ααα ,,21是欧氏空间V 的一组基,证明:1)如果V ∈γ使()(),,,2,10,n i i ==αγ,那么0=γ。

2)如果V ∈21,γγ使对任一V ∈α有()()αγαγ,,21=,那么21γγ=。

证 1)因为n ααα ,,21为欧氏空间V 的一组基,且对V ∈γ,有()()n i ,,2,10, =αγ ,所以可设n n k k k αααγ ++=2211,且有即证0=γ。

2)由题设,对任一V ∈α总有()()αγαγ,211=,特别对基i α也有()()i i αγαγ,211=,或者()()n i i ,,2,10,21 ==-αγγ,再由1)可得021=-γγ,即证21γγ=。

6设3,2,1εεε是三维欧氏空间中一组标准正交基,证明:也是一组标准正交基。

证 因为[]0)2()2(491=-+-+=,同理可得()()0,,3231==αααα,另一方面1)144(91=++=, 同理可得()()1,,3322==αααα,即证321,,ααα也是三维欧氏空间中的一组标准正交基。

7.设54321,,,,εεεεε也是五维欧氏V 空间中的一组标准正交基, ()3221,,αααL V =,其中511εεα+= , 4212εεεα+-= , 32132εεεα++=,求1V 的一组标准正交基。

解 首先证明321,,ααα线性无关.事实上,由⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=001010100110211),,,,(),,(54321321εεεεεααα,其中 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=001010100110211A 的秩为3,所以321,,ααα线性无关。

将正交化,可得5111εεαβ+==,=-=),(),(112222βββααβ54212121εεεε-+-,单位化,有)(22511εεη+=, )22(101054212εεεεη-+-=, )(2153213εεεεη-++=,则321,,ηηη为1V 的标准正交基。

8. 求齐次线性方程组的解空间(作为5R 的子空间)的一组标准正交基。

解 由可得基础解系为)1,5,0,0,1(1--=α,)1,4,0,1,0(2--=α,)1,4,1,0,0(3=α,它就是所求解空间的一组基。

将其正交化,可得)1,5,0,0,1(11--==αβ,)2,1,0,9,7(91),(),(1111222---=-=ββββααβ,)2,1,15,6,7(151),(),(),(),(222231111333=--=ββββαββββααβ,再将321,,βββ单位化,可得)1,5,0,0,1(3311--=η,)2,1,0,9,7(15312---=η,)2,1,15,6,7(35313=η,则321,,ηηη就是所求解空间的一组标准正交基。

9.在R[X]4中定义内积为(f,g)=⎰-dx x g x f )()(11 求R[X]4的一组标准正交基(由基1.32,,χχχ出发作正交化)。

解 取R[X]4的一组基为,,,,1342321x x x ====αααα将其正交化,可得111==αβ,x =-=1111222),(),(ββββααβ,其中(⎰=•=-01),1112dx x βα,又因为⎰===-32),(),(2112213dx x βββα, ⎰=•=-211),(1111dx ββ, ⎰=•=-0),(21123xdx x βα,所以31),(),(),(),(2222231111333-=--=x ββββαββββααβ,同理可得x x 53),(),(),(),(),(),(333334222241111444-=---=ββββαββββαββββααβ,再将4321,,,ββββ单位化,即得221111==ββη, x261222==ββη,)13(41023-=x η,)35(41434x x -=η,则4321,,,ηηηη即为所求的一组标准正交基。

10.设V 是一n 维欧氏空间,0≠α是V 中一固定向量,1)证明:V },0),(|{1V x a x x ∈==是V 的一个子空间;2)证明:V 1的维数等于n-1。

证 1)由于0,01V ∈因而V 1非空.下面证明V 1对两种运算封闭.事实上,任取,,121V x x ∈则有 (0),(),21==ααx x ,于是又有(0)()(),2121=+++=+αααx x x x ,所以121x x V +∈。

另一方面,也有 (0),(),11==ααx k kx , 即11kx V ∈。

故V 1是V 的一个子空间。

2)因为0≠α是线性无关的,可将其扩充为V 的一组正交基2,,n αηη,且(0),=αηi (),3,2n i =,1(2,3,)i V i n η∈=。

下面只要证明:对任意的ββ,1V ∈可以由n ηηη ,,32线性表出,则1V 的维数就是1-n 。

事实上,对任意的1V ∈β,都有V ∈β,于是有线性关系n n k k k ηηαβ+++= 221,且),(),(),(),(221αηαηαααβn n k k k +++= ,但有假设知 ),,2,1(0),(),(n i i ===αηαβ,所以0),(1=ααk ,又因为0≠α,故01=k ,从而有n n k k ηηβ++= 22,再由β的任意性,即证。

11.1)证明:欧氏空间中不同基的度量矩阵是合同的。

2)利用上述结果证明:任一欧氏空间都存在标准正交基。

证:1)设n ααα,,,21 与n βββ,,,21 是欧氏空间V 的两组不同基,它们对应的度量矩阵分别是)(ij a A =和)(ij b B =,另外,设n ααα,,,21 到n βββ,,,21 的过渡矩阵为)(ij c C =,即⎪⎩⎪⎨⎧+++=+++=n nn n n nn n c c c c c c αααβαααβ 221112121111 , =∑=++nk n nj j k ki c c c 111),(ααα=∑∑==n k ns s k sj ki c c 11),(αα=∑∑==n k ns ks si ki c c 11α,另一方面,令)(),(''ij ij e DC AC C d A C D ====,则D 的元素为∑==nk ks ki is c d 1α,故AC C '的元素∑∑∑=======n s nn ij sj ks ki n s sj is ij n j i b c c c d e 111),2,1,()( α,即证B AC C ='。

再由,,,,;,,,2121n n βββααα 皆为V 的基,所以C 非退化,从而B 与A 合同。

2)在欧氏空间V 中,任取一组基n ααα,,,21 ,它的度量矩阵为),(ij a A =其中(,)ij i j ααα=,且度量矩阵A 是正定的,又因为正定矩阵与单位矩阵合同,即AC C E '=。

于是只要C n n ),,,(),,,(2121αααβββ =,则由上面1)可知基n βββ,,,21 的度量矩阵为E ,这就是说,n βββ,,,21 就是所求的标准正交基。

相关文档
最新文档