最优化方法第三章(3)

合集下载

【课件】运筹学与最优化方法(华南理工)第3章(07-4)

【课件】运筹学与最优化方法(华南理工)第3章(07-4)

的最优解S(k)和最优值
(k +1) (k ) (k )
q(S(k) )
(k + 1) (k )
) f (X = X + S 若 f (X (3)令 X 取 X * = X (k+1) ,停止,否则转(4) (4)计算 f = f (X (k) ) f (X (k+1) ), q = f (X (k) ) q(S(k) ) 1/ 2k ..若 f < 0.1q 令
第三章
无约束非线性规划
3.4 信赖域法, Matlab解无约束非线性规划
一.信赖域法: 1.思想: 1) 前两节方法的结构原理为用二次模型产生下降方 向,在下降方向上确定可接受的步长,得到新迭代点. 若二次模型不近似原目标函数,则在搜索方向上无 法找到满意的下降迭代点. 能否先指定步长的界,再用二次模型确定方向和步 长? *注:保证在下近似,可使f(x)与 二次模
y(1) = x +α(x xmax )
2 扩展:给定扩展系数 >1,计算.(加速) 扩展:给定扩展系数γ 计算.(加速) 计算.(加速
y(2) = x +γ ( y(1) x)
3.5 直接算法
一, 2,改进单纯形法: (续) ,改进单纯形法: (1)若f(y(1))<f(x min), 则 若 那么y 取代x 否则, 取代x 若f(y(1))> f(y(2)), 那么 (2)取代 max; 否则, y(1)取代 max (2)若max{f(x(i))| x(i) ≠x max } ≥ f(y(1)) ≥ f(x min), y(1)取代 max . 取代x 若 3° 收缩:若f(x max )> f(y(1)) > f(x(i)), x(i) ≠x max ,计算 ° 收缩: 计算

最优化方法第三章非线性优化

最优化方法第三章非线性优化

在点X
f (X )
可微,
f (X ) C1
则称向量f ( X ) ( f ( X ) ,..., f ( X ) )T
x1
xn
C1 C2
f (X) C2
为函数 f ( X ) 在点 X 处的梯度.
图3-6指出了梯度的几何意义:如果函数 f (X ) 在点 X 的梯度f (X ) 是非零向量,那么 f (X ) 就是 f (X ) 的等值面在 X 处的法向量,
Company Logo
定义3.1
设D是问题(3-1) ~ (3-3)的可行区域,
X * ∈D,若存在 X * 的一个邻域N(X *,δ),
当X∈ D∩N( X,* δ)时,就有
f (X *) f (X )
(3-4)
则称 X * 是非线性规划(3-1)~(3-3)的
一个局部最优(极小)解.
特X *别,若在(3-4)中严格不等号“<”成立,则称
x2
凸函数的判定及与Hesse矩阵的联系
定理3.7 (严格凸函数的一阶充要条件)
设D为开凸集,f X 在D上有一阶连续偏导。那么 f X 是D上
的严格凸函数的充要条件是:对D上任意两个相异X点1
有 f X 2 f X1 f X1 T X 2 X1
X,2
,都
建立数学模型:设售出两种设备分别为 x1 , x2 件。
max f 30x1 450x2
s.t.
0.5x1 (2 0.25x2 )x2 800 x1, x2 0
Company Logo
一般而言,线性规划问题总可以表示为如下
形式:
Min
f( X )
S . t . gi (X ) 0, j 1, 2,..., m

最优化方法 第三章(罚函数法)

最优化方法  第三章(罚函数法)

这种惩罚策略,对于在无约束的求解过程中企图违反约
束的迭代点给予很大的目标函数值,迫使无约束问题的 极小点或者无限地向可行域D靠近,或者一直保持在可 行域D内移动,直到收敛到原来约束最优化问题的极小 点。
不改变可行域局部极小值,可以将 约束域之外的局部极小值变大。
p ( x) 0, x D p ( x) 0, x D
k k
k 1
k 1
xk 1是F x, M k 1 的最优解.
k 1 k k 1 k 0 M k 1 M k p ( x ) p ( x ) p ( x ) p ( x )
M k 1 M k
(3) f ( x k 1 ) M k p( x k 1 ) F ( x k 1 , M k ) F ( x k , M k ) f ( x k ) M k p( x k )
gi ( x) gi ( x) max gi ( x), 0 = 罚函数p(x)的构造 2 m l p( x) (max gi ( x), 0) 2 h 2 j ( x)
i 1 j 1
(1) p(x)连续 (2) p( x) 0, x D (3) p( x) 0, x D
二、外点法 外点罚函数法算法步骤 1:给定初始点 x 0 ,初始罚因子M1 0 (可取M1 1 ), 精度 0, k : 1. 2:以 x k 1初始点,求解无约束优化问题
min F ( x, M k ) f ( x) M k p( x)
得到极小点 x* ( M k ),记为 x k , 其中
p( x) (max gi ( x), 0) h 2 j ( x)
2 i 1 j 1 m l

《最优化方法》课程复习考试

《最优化方法》课程复习考试

《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数(),1,2,,if x i n x ∂=∂都存在,则称()f x 在点x 处一阶可导,并称向量12()()()()(,,,)Tnf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 0()()lim()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中de d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向. 定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x xx x h x h x h x x x x h x h x h x h x xx x ⨯∂∂∂⎛⎫ ⎪∂∂∂⎪⎪∂∂∂⎪∂∂∂∇= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例 4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+. 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理 1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=.定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点. 注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点.例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--,其中212(,)T x x x R =∈, 解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例 4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点.§2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v 的平稳点(8,8,2)T 和(8,8,2)T --,对应有(8,8),2T x v ==和(8,8),2T x v =--=.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212(){(,)|(,)()0}T M x z z z z h x =∇=121221{(,)|0}T z z z x z x =+= 1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点(8,8)T x =和(8,8)T x =--都是问题的严格局部极小点.§2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈, 则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使,0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理 2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理 3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理 4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为111211222122(1)0,10,(2)0,0,0,0.x u u u u x x u x u u -+=⎧⎪+-=⎪⎪--+=⎨⎪=⎪⎪≥≥⎩ 若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理 1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理 2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点)例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理 3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.()()()0,()0,0.T T Tf xg x uh x v u g x u ⎧∇-∇-∇=⎪=⎨⎪≥⎩令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为(,,)0,()0,0.x TL x u v u g x u ∇=⎧⎪=⎨⎪≥⎩定理 4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为112212212122(3)220,2(1)0,()0,0,230,0.x ux v x u v u x x x x x x u -+-=⎧⎪---=⎪⎪-+=⎪⎨-+≥⎪⎪+-=⎪≥⎪⎩ 下面分两种情况讨论. (1) 设0u =,则有12122(3)20,2(1)0,230.x v x v x x --=⎧⎪--=⎨⎪+-=⎩ 由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有112212122(3)220,2(1)0,0,230.x ux v x u v x x x x -+-=⎧⎪---=⎪⎨-+=⎪⎪+-=⎩ 由此可得211230x x --+=,解得11x =或13x =-。

最优化设计 课后习题答案

最优化设计 课后习题答案

最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。

工程最优化第三章

工程最优化第三章

最优点同时与目标函数及约束函数的性质有关。存在两种情况:
x2
x2
x(0) =x*
x(0)
x*
S x1
(a) 无约束极值点x(0)S
S x1
(b) 无约束极值点x(0)S
! 目标函数的梯度等于零并不是约束问题的最优性必要条件!
带有不等式约束的优化问题的最优性条件通常是一组不等式与 方程,比较复杂的,很难求解,所以在一般情况下,不是直接 求解这些条件来获得极值点,而是使用各种迭代法求出近似的 极值点。但它在理论上很重要,是各种迭代方法的基础和依据。
(一)可行方向与起作用约束
定义:设点xS,p是一个方向,如果存在实数a1>0, 使对所有
a[0, a1],有x+apS,则称p为点x 的一个可行方向,或容许
方向、允许方向。
p
几何上,若从x处沿方 向p引一射线,若该射 线起始端有一段在可 行域内,则这个方向p
就叫可行方向。
x S
! 是否为可行方向与起始点的位置有关!
例3.5.1 验证下面的非线性规划在最优点x*处不满足约束规范,
最优点不是K-T点:
min
f
(x) (x1 3)2
x
2 2
s.t g1 (x) x 2 (1 x1 )3 0
g 2 (x) x1 0
g3 (x) x2 0
解:显然最优点 min
fx*(=x[)x1*,(xx21*]T=3[)12,
0]T,
x
2 2
f
=
f
(x*)
=
4.
x2
下面验证在 s.t
因为 g1(x*)
gx*1 (=x[)1,0x]T2处不(1满足x1约)3束 规0 范。 =g02 ,(xg2)(x*) <x10,g03(x*)=0,

最优化方法-最速下降法

最优化方法-最速下降法
s.t. 0
计算步骤
设f (X )是可微函数,精度要求为
X f ( ) K 1

X 0 为初始点。
(1)计算梯度
f
(
X
)
k
,初始k=0;
(2)
Pk

f
(
X
)
k
(3)求解 k
min f ( X k Pk)
s.t. 0
设 k 是一维搜索的最优解;
(4)求下一个点
评价
由例题中可以发现两次迭代的搜索方向满足:
P P P P T 0, T 0,...,
01
12
即相邻两个搜索方向 PK 与 PK1 正交,这是最速下降
法的搜索方向的基本形质。因此,最速下降法的迭代
路线呈锯齿形,尤其是在极小点附近,锯齿现象尤为
严重,从而影响了迭代速度。
评价
锯齿现象
最优化技术
第三章 7节 最速下降法
主要内容
1原 理
2 计算步骤
3 例题分析 4评 价
原理
定义:用来求解无约束多元函数 min f(x)
极小化问题的一种迭代算法。
拓展:
最速下降法又称梯度法,是 1847 年由著名数学家
Cauchy 给出的,它是解析法中最古老的一种,其他解析 方法或是它的变形,或是受它的启发而得到的,因此它是 最优化方法的基础。
X
)
0

(1,1)T
3-最优步长
2
X P ( ) f 5
0
0 2
1
0
应用一维搜索技术,解得函数最小值点 0 =0.2
举例分析
4-下一搜索点
X1

最优化方法第三章-孙文瑜

最优化方法第三章-孙文瑜
第3章线性搜索与信赖域方法本章内容31线性搜索320618法和fibonacci法33逐次插值逼近法34精确线性搜索方法的收敛性35不精确线性搜索方法36信赖域方法的思想和算法框架37信赖域方法的收敛性38解信赖域子问题31线性搜索线性搜索是多变量函数最优化方法的基础在多变量函数最优化中迭代格式为其关键是构造搜索方向d出发沿搜索方向d达到极小即使得或者选取0使得这样的线性搜索称为精确线性搜索所得到的线性搜索算法分成两个阶段第一阶段确定包含理想的步长因子或问题最优解的搜索区间第二阶段采用某种分割技术或插值方法缩小这个区进退法确定初始搜索区间的一种简单方法叫进退法本思想是从一点出发按一定步长试图确定出函数值呈现高低高的三点具体地说就是给出初始点出发加大步长再向前搜为出发点沿反方向同样搜索直到目标函数上升就停止
Fnk k ak (1 )(bk a k ) Fnk 1
Fn k 1 k a k (bk a k ), k 1,2,, n 1 Fn k 1 Fn k k ak (bk a k ), k 1,2,, n 1 Fn k 1
25
2018/12/11
3.2.2 Fibonacci法
另一种与0 .618 法相类似的分割方法叫Fibonacci 法. 它与0 .618 法的主要区别之一在于: 搜索区间长度的 缩短率不是采用0 .618 而是采用Fibonacci 数. Fibonacci 数列满足 F0 F1 1
Fk 1 Fk Fk 1 , k 1,2 Fibonacci 法中的计算公式为
N

1

2
1 2
Y
* (t * )
a t1 , t1 t 2 ,
1

第三章无约束问题的最优化方法

第三章无约束问题的最优化方法

赋以0.618。
2 ,
;并计算其对应
的函数值。 3)根据区间消去法原理缩短搜索区间。为了能用原来的 坐标点计算公式,需进行区间名称的代换,并在保留区间 中计算一个新的试验点及其函数值。
如果
令 b , , f f 记N0=0; 2 2 1 2 1 如果 ,则新区间= ,
2
2

图2-5 黄金分割法
• 黄金分割法要求插入两点: a1 a (1 )(b a), f1 f (a1 )
a2 a (b a), f 2 f (a2 )
黄金分割法的搜索过程:
1)给出初始搜索区间及收敛精度 2)按坐标点计算公式计算 1
,将
在搜索区间内[a,b] 任取两点a1、b1,令f1=f(a1), f2=f(b1) • (1)如f1<f2, 则缩小的新区间为[a,b1]; • (2)如f1>f2, 则缩小的新区间为[a1,b]; • (3)如f1=f2, 则缩小的新区间为[a1,b1]
f(b1) f(a1) f(a1) f(b1) f(a1) f(b1)
a
a1

b
a
a1
b1 b
a
a1
b1
b
§3.2 一维搜索方法
黄金分割法: • 黄金分割法适用于[a,b]区间上的任何单谷函数求极小值问题。对 函数除要求“单谷”外不作其他要求,甚至可以不连续。因此,这种 方法的适应面相当广。 • 黄金分割法也是建立在区间消去法原理基础上的试探方法。 • 在搜索区间内[a,b]适当插入两点,将区间分成三段;利用区间消 去法,使搜索区间缩小,通过迭代计算,使搜索区间无限缩小,从而 得到极小点的数值近似解。 •

最优化计算方法

最优化计算方法

0.91
0.91
8 (x 3)2 ( y 1)2 6 (x 5)2 ( y 1)2 ] / 84
▪ 问题为在区域0=<x=<6, 0=<y=<6上求z=f(x,y)的 最小值。
绘制目标函数图形
clear all syms x y r1 = sqrt((x-1)^2+(y-5)^2)^0.91; r2 = sqrt((x-3)^2+(y-5)^2)^0.91; r3 = sqrt((x-5)^2+(y-5)^2)^0.91; r4 = sqrt((x-1)^2+(y-3)^2)^0.91; r5 = sqrt((x-3)^2+(y-3)^2)^0.91; r6 = sqrt((x-5)^2+(y-3)^2)^0.91; r7 = sqrt((x-1)^2+(y-1)^2)^0.91; r8 = sqrt((x-3)^2+(y-1)^2)^0.91; r9 = sqrt((x-5)^2+(y-1)^2)^0.91; z = 3.2+1.7*(6*r1+8*r2+8*r3+21*r4+6*r5+3*r6+18*r7+8*r8+6*r9)/84; ezmesh(z)
x1new=a+(b-a)*rand(1); x2new=c+(d-c)*rand(1); znew=subs(-z,[x1,x2],[x1new,x2new]); if znew<zmin
x1min=x1new; x2min=x2new; zmin=znew; fprintf('%4.0f %1.6f %1.6f %1.6f\n', n, x1min, x2min, zmin); end end

《最优化方法》课程教学大纲

《最优化方法》课程教学大纲

最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。

4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。

9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。

二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。

基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。

最优化方法 第三章(可行方向法)

最优化方法  第三章(可行方向法)
gi ( x k )T d * * 0 ,
又 f ( x k )T d * * 0,
d * 是可行下降方向。
改进方法具有全局收敛性。
一、Zoutendijk法
Frank Wolfe 方法 min f ( x )
给定线性规划问题
Ax b s .t . x0
f ( x k )T d k 0 gi ( x k )T d k 0 , i I ( x k )
1 di 1, i 1, 2,
,n
������ = 0 , 则 ������ ������ 处不存在可行下降方向 , ������ ������ 已是 ������−������ 点. 有例子表明上述方法不一定收敛到 ������−������ 点,即总有������ < 0 .
如果可行点为内点, 可取������ = −������������(������ )计算。
一、Zoutendijk法 非线性约束模型的可行方向确定方法
min s.t.
z f ( x )T d z 0 gi ( x) d z 0, i I
T
一、Zoutendijk法 线性约束模型的可行方向
min f ( x ) Ax b s .t . Cx e
紧约束
A1 b1 定理 设 x D ,在点 x 处有 A1 x b1 , A2 x b2 , 其中A , b , A2 b2 则非零向量 d 是 x 处的可行方向的充分必要条件是
定理 设 f ( x )可微, x k D, 如果y k 是上述线性规划的最优解,则有
(1) 当f ( x k )T ( y k x k ) 0时 , 则x k 是(1)的K -T点;

Python最优化算法实战学习笔记

Python最优化算法实战学习笔记

Python最优化算法实战第一章最优化算法概述1.1最优化算法简介最优化算法,即最优计算方法,也是运筹学。

涵盖线性规划、非线性规划、整数规划、组合规划、图论、网络流、决策分析、排队论、可靠性数学理论、仓储库存论、物流论、博弈论、搜索论和模拟等分支。

当前最优化算法的应用领域如下。

(1)市场销售:多应用在广告预算和媒体的选择、竞争性定价、新产品开发、销售计划的编制等方面。

如美国杜邦公司在20世纪50年代起就非常重视对广告、产品定价和新产品引入的算法研究。

(2)生产计划:从总体确定生产、储存和劳动力的配合等计划以适应变动的需求计划,主要采用线性规划和仿真方法等。

此外,还可用于日程表的编排,以及合理下料、配料、物料管理等方面。

(3)库存管理:存货模型将库存理论与物料管理信息系统相结合,主要应用于多种物料库存量的管理,确定某些设备的能力或容量,如工厂库存量、仓库容量,新增发电装机容量、计算机的主存储器容量、合理的水库容量等。

(4)运输问题:涉及空运、水运、陆路运输,以及铁路运输、管道运输和厂内运输等,包括班次调度计划及人员服务时间安排等问题。

(5)财政和会计:涉及预算、贷款、成本分析、定价、投资、证券管理、现金管理等,采用的方法包括统计分析、数学规划、决策分析,以及盈亏点分析和价值分析等。

(6)人事管理:主要涉及以下6个方面。

①人员的获得和需求估计。

②人才的开发,即进行教育和培训。

③人员的分配,主要是各种指派问题。

④各类人员的合理利用问题。

⑤人才的评价,主要是测定个人对组织及社会的贡献。

⑥人员的薪资和津贴的确定。

(7)设备维修、更新可靠度及项目选择和评价:如电力系统的可靠度分析、核能电厂的可靠度B风险评估等。

(8)工程的最佳化设计:在土木,水利、信息电子、电机、光学、机械、环境和化工等领域皆有作业研究的应用。

(9)计算机信息系统:可将作业研究的最优化算法应用于计算机的主存储器配置,如等候理论在不同排队规则下对磁盘、磁鼓和光盘工作性能的影响。

最优化方法 第三章(二次逼近法)

最优化方法  第三章(二次逼近法)

min s.t.
ci x ci x
1 T Q(d ) d Bk d f ( x k )T d 2
k T

d ci x k 0, i I m 1,..., p
k T

d ci x k 0, i E 1,..., m .
基本思想:将问题转化为求解一系列的二次规划子问 题。从已知点和近似乘子向量进行迭代,由二次规划 问题计算出的结果对迭代过程进行更新。
s.t.
三、二次逼近法 等式约束问题 由等式约束K-T条件,有
f x hE x 0,
T

hE x 0.
T x L x , f x A x F x, 0. hE x hE x



d,
T
k W x k , λ k A x k T d f x k A xk h x 0 E
一般约束问题
min s.t.
f (x), ci x 0, i I m 1,..., p ci x 0, i E 1,..., m .
x 1 不是原二次规划问题的可行解,令
,显然为函数值下降方向。但在 x1
1
d 1 x 1 x1
沿 d 趋向
T a 某些不等式约束 i x bi , i t 1, t 2,..., p ,设
x
1
的过程中,不满足原二次规划问题的
在移动的过程中,最先遇到某个不等式约束,对应 的下标为 l ,相应的交点记为 x ,x 点处对应的有

最优化理论和方法-第三章 线性规划拓展及应用

最优化理论和方法-第三章 线性规划拓展及应用

数学规划基础
2 1
e1
b
-4 1
c
3
e1
LHY-SMSS-BUAA
树解计算方式的线性代数解释
给定生成树 a点流平衡: d点流平衡: c点流平衡:
(共有 m-1 条弧)
-2 a 5d
2 1
-4
c
3
b
1
e1
b点流平衡:
第 3 章 线性规划:应用及扩展
数学规划基础
LHY-SMSS-BUAA
树解计算方式的代数理解 (续)
第 3 章 线性规划:应用及扩展
数学规划基础
LHY-SMSS-BUAA
原始网络单纯形法-既约费用系数的更新
新的树解去掉入弧,得两棵子树!
0a
T1
10 d
2 4
?
?
-13 4
c
?
23
3
b -11 与入弧同向桥接T1和T0
rab rab rde 1 2 1
T0 rdc rdc rde 0 2 2
(i, j) 使得
,称之为入弧.
Step 4. 确定出弧:入弧和出弧必形成一个圈. 如果圈中的所 有弧和入弧同向,则最优费用是 -∞,终止算法. 否 则,在与入弧反向的树弧中选一个流值最小的作为出弧.
Step 5. 转轴: 在当前树解中用入弧代替出弧,更新树解,得 新的树解. 转 Step2.
第 3 章 线性规划:应用及扩展
这里选取节点1作为根节点
5
7 个节点 8 条弧!
2
7-1=6 个基变量(树弧),
6
8-6=2 个非基变量(非树弧) 3
7
第 3 章 线性规划:应用及扩展
4
数学规划基础

最优化第3章一维搜索方法

最优化第3章一维搜索方法
一维搜索方法一般分两步进行: ■ 首先确定一个包含函数极小点的初始区间,即确定 函数的搜索区间,该区间必须是单峰区间; ■ 然后采用缩小区间或插值逼近的方法得到最优步长, 最终求出该搜索区间内的一维极小点。
§3.1 搜索区间的确定
根据函数的变化情况,可将区间分为单峰区间和多峰区间。 所谓单峰区间,就是在该区间内的函数变化只有一个峰值, 即函数的极小值。
§3.4 插值方法
一、牛顿法
f(x)
利用一点的函数值、 一阶导数以及二阶 导数构造二次多项 式。用构造的二次 多项式的极小点作 为原函数极小点的 近似。
φ0(x)
φ1(x) f(x)
x*
x2
x1
x0 x
§3.4 插值方法
一、牛顿法
设f(x)为一个连续可微的函数,则在点x0附近 进行泰勒展开并保留到二次项:
§3.1 搜索区间的确定
f(x)
f(x)
f(a0) f(a0+h)
f(a0+3h)
f(a0-h) f(a0)
f(a0+h)
0 a0 a
a0+h
a0+3h x b
0 a0-h
a0
a
进退试算法的运算步骤如下:
a0+h x b
(1)给定初始点α0和初始步长h (2)将α0及α0+h 代入目标函数 f(x) 进行计算并比较大小
φ0(x)
φ1(x) f(x)
f ′ (x)
x*
x2 x1
x0
φ ′ 1(x) f ′ (x)
x* x2
x1
x0
牛顿法程序框图
开始
x 给定初始点 ,误差 0
,
令k=0

第三章非线性规划无约束问题的最优化方法

第三章非线性规划无约束问题的最优化方法

x0
0p 0
1.919877 还需要经过10次迭代才
能满足精度要求
0.003070
第三节 牛顿法
3. 牛顿法的缺点: 牛顿法要求初始解离最优解不远,若初始点选得离最优解太
远时,牛顿法并不能保证其收敛,甚至也不是下降方向。因此, 常将牛顿法与最速下降法结合起来使用。前期使用最速下降法, 当迭代到一定程度后,改用牛顿法,可得到较好的效果。 4. 修正牛顿法 基本思想: 保留了从牛顿法中选取牛顿方向作为搜索方向,摒弃其步长恒 为1的做法,而用一维搜索确定最优步长来构造算法。
2
2
0
2e2 2 3
00 21 0
03
f x3 9
第二节 最速下降法
再从x(3)点 出发,沿x3轴方向e3进行一维搜索:
0 x 3 e3 0
3
00 00 13
f x 3 e3
32
f' 0 x4 x3
3
3
0
3e3 0 0
f x4 0
第二节 最速下降法
因为 x 1
x 4 ,0故.0以1 x(4)点作为新的x(1) ,进行新一轮迭代。
0
1 33 22
f x0
p0
52 5
42
f' x0
p0 5 5 0
22
01
第三节 牛顿法
x1 x0
1 p0 3
2
3
f x1
14
12 2
0
30
12 1 2
2
f x1
所以选取 x* x 1
1 3 作为极小点。 2
第三节 牛顿法
6. 修正牛顿法的缺点: 修正牛顿法虽然比牛顿法有所改进,但也有不足之处:

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg)(arg min maxx f x f n nR x Rx -=∈∈ √2 {}{}.:)(m in :)(m ax nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯ 3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x Nε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。

√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合是凸集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中
0(一般取 1 或用直线搜索技术来确定),
以获得新的参考点(新的迭代点)。然后再开始探测搜索, 模式移动,……。交替进行的“探测搜索”和“模式移动” 将使得迭代点逐渐地向极小点靠近。
T 参考点 r r1 , r2 , , rn 。
2. 算法 算法3.11a(探测搜索) T 已知:目标函数 f (x ) ,步长向量 s s1 , s2 , , sn ,
T yk H k y k T 1 T T H k 1 H k T (1 T ) sk sk H k yk sk sk yk H k sk yk sk yk
(3.87)
只要把DFP算法中涉及DFP校正公式的部分改为 BFGS校正公式便得到BFGS算法。BFGS算法具有与DFP 算法完全相同的性质,但是因为它的 H k 不易变为奇异,
.
可以保证该式成立。
第二,为易于计算,要求 H k 到 H k 1 之间具有简单 的迭代形式。 (3.70) Ek 称为校正矩阵,(3.70)称为校正公式。 最简单的迭代关系为 H k 1 H k Ek
H k 确实近似 Gk1 第三,为使 ,要求每一个 H k 必须 满足逆Newton条件。 H和 设迭代已进行到第 k 1 步, k xk 1均已求出,现在 推导 H k 1 所必须满足的条件。 将 f ( x ) 在点 xk 1 处作Taylor级数展开,

r x0 , b0 x0 , c 1, w 0.5(或0.1) .
. ②置 s cs0
③在点 搜索得 b . f (b ) f (r ) ,则转⑤;否则,转⑧. ④若 ⑤做模式移动 r b b0 ,并置 b0 b , f 0 f b . 2 ⑥在点 r 处,以 s 为步长向量按算法3.11a做探测 搜索得b .
,则有
g k g k 1 Gk 1 ( xk xk 1 xk 1 xk Gk 1 ( g k 1 g k )
对于正定二次函数(3.36),近似式(3.72)将变为 等式,即
1 xk 1 xk Gk 1 ( g k 1 g k )
sk xk 1 xk
yk g k 1 g k
H k 1 yk sk
那么逆Newton条件可简记为
(3.77)
对于满足(3.70)的 H k 1 ,逆Newton条件可写为
Ek yk sk H k yk
2. 算法 P172 算法3.9(拟Newton算法)
证 由定理3.8可知 H nQp j p j , j 0,1, , n 1 ,即 H nQ p0 p1 pn 1 p0 p1 pn 1
H nQ I
故 H n Q 1 。
4. BFGS算法 比DFP算法更好的是BFGS算法。这个算法是由 Broyden,Fletcher,Goldfarb和Shanno等人给出的,其校正 公式为
1 T T f ( x ) f ( xk 1 ) f ( xk 1 ) ( x xk 1 ) ( x xk 1 ) Gk 1 ( x xk 1 ) 2
于是

x xk
f ( x ) gk 1 Gk 1 ( x xk 1 ),
1. 基本思想 考虑Newton迭代公式
1 xk 1 xk Gk g k , k 0,1,
这里搜索方向为
(3.68)
1 pk Gk g k ,步长因子为1。
我们从以下两点考虑对Newton迭代公式的改进: 一、为避免求逆矩阵,设想用某种近似矩阵 H k H xk 替换 Gk1,上式则变为
如果取
u k s k , vk H k y k ,那么有
T T sk sk H k yk yk H k (3.80) H k 1 H k T T . sk yk yk H k y k
1 1 k T , k T , sk yk yk H k y k
因子 。 (3.69)是代表面很广的一类迭代公式。例如,当 H k I H k Gk1 时,它是阻尼 时,它是最速下降法公式。当 Newton法公式。
二、为了取得更大的灵活性,考虑更一般的公式
这样的 H k 存在吗?假如存在,那么为使 H k确实近似 Gk1并易于计算,我们要对 H k 人为地附加某些条件。 第一,为保证搜索方向 pk H k g k 总是下降方向, G 1 要求每一个 H k 都是对称正定矩阵。 k 对称,故要求 H k 对称; T T T pk g k 0 g k H k g k 0 g k H k g k 0 ,H k 正定
其中 u k , v k 是待定向量, k , k 是待定常数。校正矩阵 T T Ek k uk uk k vk vk
根据拟Newton条件(3.78),有
T T k uk uk yk k vk vk yk sk H k g k
T T sk sk H k yk yk H k T T H k 1 H k T T ( yk H k yk ) wk wk (3.88) sk yk yk H k y k sk H k yk wk T T 其中 yk sk yk H k yk 。 这个公式由Broyden(1967年)给出。公式中有一个参 数 ,它可以取任何实数,每取一个实数,就对应一种拟 Newton算法,因此称为算法族。 Broyden证明了,当选取 0 和选取 H 0 为对称 正定矩阵,则矩阵序列 H k 中的每一个都将是正定的, 这将保证算法是下降算法。
这时搜索方向为 pk H k g k ,步长因子仍为1。
xk 1 xk H k g k , k 0,1,
xk 1 xk tk H k g k , k 0,1, (3.69) 这时搜索方向仍为 pk H k g k ,但步长因子取为最优步长
(3.78)
3. DFP算法
DFP法是首先由Davidon(1959年)提出,后由 Fletcher和Powell(1963年)改进的算法。它是无约束优 化方法中最有效的方法之一。DFP法虽说比共轭梯度法有 效,但它对直线搜索有很高的精度要求。 (1)公式的推导 考虑如下校正公式 T T H k 1 H k k u k u k k vk vk
3.5 拟Newton法
Newton法的优缺点都很突出。优点:高收敛速度 (二阶收敛);缺点:对初始点、目标函数要求高,计算 量、存储量大(需要计算、存储Hesse矩阵及其逆)。拟 Newton法是模拟Newton法给出的一个保优去劣的算法。 拟Newton法是效果很好的一大类方法。它当中的 DFP算法和BFGS算法是直到目前为止在不用Hesse矩阵 的方法中的最好方法。 本节内容是最优化方法的重点之一。
(2)算法 拟Newton算法3.9的第5步代入(3.80)便得到DFP法。 考虑到计算中有舍入误差,特别是直线搜索的不精确, 都可能破坏 H k 的正定性以及搜索方向的共轭性,从而导 致算法失效。对此,也采取迭代 n 1 次后重置初始点的 策略。 算法3.10(DFP法) P174
例3.4 P174 (3)DFP算法的性质 定理3.7 在DFP算法中,若初始矩阵 H 0 对称正定, 则{ H k }中每一个都对称正定。 定理3.8 设将DFP算法施用于具有对称正定矩阵 Q 的二次函数(3.36),如果 ⅰ)初始矩阵 H 0 对称正定; ⅱ)迭代点互异,产生的搜索方向向量依次为 p0 , p1 ,, pk (k n 1) ,则有 T pi Qp j 0, i, j 0,1, , k (i j) H k 1Qp j p j , j 0,1, , k. 推论3.9 若定理3.8的条件都满足,并且经过 n 次迭代才求到极小点,则 H n Q 1 。
(3.73)
1 其中 Gk1 Q 1 。 因此,如果迫使 H k 1 满足类似于(3.73)的等式
(3.74) 1 Gk1。关系式(3.74)称为 那么 H k 1 就有可能很好地近似于 逆Newton条件或逆Newton方程。 记
, .
xk 1 xk H k 1 ( gk 1 gk ),
所以BFGS算法要比DFP算法具有更好的数值稳定性。 BFGS算法是直到目前为止所公认的最好的拟Newton算法。 采用不精确直线搜索技术的BFGS算法的全局收敛性 已得到证明。 5. Broyden算法族 前面讨论了三个拟Newton算法。它们是作为Newton 法的推广而导出的。它们具有较好的性质。这种拟 Newton算法有一族,其中最有实用价值的几个算法都包 含在所谓的Broyden算法族中,其校正公式为
;置 b r , fb f r . ①计算 f r f (r )
b r ;否则,探测搜索称为失败,此时未得到模式。
算法3.11b(步长加速法) 已知:目标函数 f (x ),步长收缩系数的终止限 ①选定初始点 x 0 ,初始步长量 s0 ,置
时,探测搜索称为成功,此时必有 b r ,即得到模式
②依次沿第 i 1,2,, n 个坐标轴方向作直线搜索: 计算 f1 f (b si ei ), f 2 f (b si ei ) 则有以下三种情况: ,则置 b b s e , f f ; ⅰ)若 f 1 f b i i b 1 ⅱ)若 f 2 fb f1,则置 b b si ei , f f 2 ; b ⅲ)若 f1 f b , f 2 f b ,则 b 与 f b 不变。 依次对 i 1,2,, n 计算后,最终的 b 是从 r 出发以 s 为步长向量探测搜索的终点。当 f (b ) f (r )
相关文档
最新文档