实验四 超声波测距电路的设计--改后
超声波测距电子电路设计详解
超声波测距电子电路设计详解在自主行走机器人系统中,机器人要实现在未知和不确定环境下行走,必须实时采集环境信息,以实现避障和导航,这必须依靠能实现感知环境信息的传感器系统来实现。
视觉、红外、激光、超声波等传感器都在行走机器人中得到广泛应用。
由于超声波测距方法设备简单、价格便宜、体积小、设计简单、易于做到实时控制,并且在测量距离、测量精度等方面能达到工业实用的要求,因此得到了广泛的应用。
本文所介绍的机器人采用三方超声波测距系统,该系统可为机器人识别其运动的前方、左方和右方环境而提供关于运动距离的信息。
超声波测距原理超声波发生器内部由两个压电片和一个共振板组成。
当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两极间未加外电压,当共振板接收到超声波时,就成为超声波接收器。
超声波测距一般有两种方法:①取输出脉冲的平均电压值,该电压与距离成正比,测量电压即可测量距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,根据被测距离s=vt?2来得到测量距离,由于超声波速度v与温度有关,所以如果温度变化比较大,应通过温度补偿的方法加以校正。
本测量系统采用第二种方法,由于测量精度要求不是特别高,所以可以认为温度基本不变。
本系统以PIC16F877单片机为核心,通过软件编程实现其对外围电路的实时控制,并提供给外围电路所需的信号,包括频率振动信号、数据处理信号等,从而简化了外围电路,且移植性好。
系统硬件电路方框图见图1。
图1 系统硬件电路方框图由于本系统只需要清楚机器人前方、左方、右方是否有障碍物,并不需要知道障碍物与机器人的具体距离,因此不需要显示电路,只需要设定一距离阀值,使障碍物与机器人的距离达到某一值时,单片机控制机器人电机停转,这可通过软件编程实现。
超声波发射电路超声波发射电路以PIC16F877为核心,当单片机上电时,单片机从RA0口产生40kHz的超声波信号,但是此时该信号无法通过与非门进入放大电路使超声波发射头发射超声波,只有闭合开关S1时,从RA1口发射出一门控信号,该信号的频率为4kHz,同时启动单片机内部的定时器TMR1,开始计数。
超声波测距系统的设计
超声波测距系统的设计引言:一、硬件设计:1.选择传感器:超声波传感器是测距系统的核心部件,通常采用脉冲法进行测量。
在选择传感器时,应考虑工作频率、测量范围、精度和稳定性等参数,并根据实际需求进行选择。
2.驱动电路设计:超声波传感器需要高频信号进行激励,设计驱动电路时需要根据传感器的工作要求来设计合适的电路,保证信号稳定且能够满足传感器的工作需求。
3.接收电路设计:超声波传感器产生的脉冲回波需要经过接收电路进行信号放大和滤波处理,设计接收电路时需要考虑信号放大的增益、滤波器的截止频率以及抗干扰能力等因素。
4.控制板设计:控制板是超声波测距系统中的核心控制器,负责控制测距过程、数据处理以及通信等功能。
在设计控制板时,应根据系统的要求选择合适的微控制器或单片机,并设计合理的电路布局和电源电路。
二、软件编程:1.驱动程序开发:根据传感器的规格书和数据手册,编写相应的驱动程序,实现对超声波传感器的激励和接收。
2.距离计算算法开发:通过测量超声波的往返时间来计算距离,根据声速和时间的关系进行距离计算,并根据实际情况对计算结果进行修正。
3.数据处理和显示:根据实际需求,对测量得到的距离进行处理,并将结果显示在合适的显示设备上,如LCD屏幕或计算机等。
4.数据通信:如果需要将测量结果传输至其他设备或系统,则需要编写相应的数据通信程序,实现数据的传输和接收。
三、系统测试与优化:1.测试传感器性能:测试测距系统的稳定性、精度和灵敏度等性能指标,根据测试结果对系统参数进行优化和调整。
2.系统校准:超声波测距系统可能受到环境温度、湿度和声速等因素的影响,需要进行校准以提高测量精度。
3.系统集成与实际应用:将超声波测距系统与实际应用场景进行集成,进行实际测试和验证。
总结:超声波测距系统的设计包括硬件设计和软件编程两个方面,其中硬件设计主要包括传感器选择、驱动电路设计和接收电路设计等;软件编程主要包括驱动程序开发、距离计算算法开发、数据处理和显示以及数据通信等。
超声波测距电路设计设计
超声波测距电路设计摘要随着单片机技术的发展,各种控制系统都趋向于自动化。
以单片机为核心的控制系统体积小、功能强、价格低,因而在众多领域得到广泛应用,并显示出广阔前景。
论文介绍了一种运用单片机和CX20106A组成的超声波测距系统。
本设计主要以STC89C51作为控制核心,包括键盘输入模块,超声波发射模块,超声波接收模块(CX20106A),数码管显示模块,报警模块。
主要实现超声波测距并显示功能,依据实际的测量精度要求还可以添加温度补偿电路。
本系统成本低廉,功能实用。
硬件系统具有良好的性能,且由于构成系统的器件应用普遍,便于维护。
因此,本设计具有较强的性价比及实用性。
关键词:STC89C51;CX20106A ;超声波发射模块;超声波接收模块;LED显示电路AbstractAlong with the monolithic integrated circuit technology development, each kind of control system all tends to the automation. By the monolithic integrated circuit for the core control system volume small, the function strong, the price is low, thus obtains the widespread application in the multitudinous domain, and demonstrates the broad prospect.This design is based mainly on STC89C51 chip core ultrasonic range finder, and a ultrasonic processing module CX20106A, CD4069 composed of ultrasonic transmitter, digital display devices such as composition, including the SCM system, ultrasonic transmitter and ultrasonic receiver circuit, MCU Resetcircuit, LED display circuit.Ultrasonic Distance and direction to achieve the main functionality.Based on the actual measurement accuracy can also add temperature compensation circuit.The system cost, functional and practical.Hardware system has good performance, and constitute a system of device applications as universal, easy maintenance.Therefore, this design has a strong cost-effective and practical.Keywords:stc89c51 ;CX20106A ; ultrasonic emission of ultrasonic receiver ; LED display circuit;目录摘要 (I)Abstract .................................................................................................. I I 目录........................................................................................................ I II 1绪论 (1)1.1 课题意义 (1)1.2 单片机发展历史 (1)2超声波测距仪系统的硬件和软件的功能分析 (3)2.1 超声波测距的设计原理论证 (3)2.1.1 超声波测距仪的设计思路 (3)2.1.2超声波测距原理 (3)2.1.3超声波测距仪原理框图 (4)2.2 电超声波测距仪系统的软件方案论证 (5)3超声波测距仪系统的硬件设计 (6)3.1 STC89C51简介 (6)3.2 数码管显示的设计 (12)3.2.1 八位7段数码管工作原理 (12)3.3 超声波发射电路模块设计 (13)3.4 超声波接收电路模块设计 (14)3.4.1超声波接收电路设计原理 (14)3.4.2 CX20106A (15)4超声波测距系统的软件设计 (17)4.1程序的总体设计 (17)4.1.1 主程序设计 (17)4.2 40KHZ 脉冲的产生与超声波发射 (18)4.3 显示子程序和蜂鸣报警子程序设计 (20)5超声波测距仪调试与测试 (21)5.1调试 (21)5.1.1硬件调试 (21)5.1.2软件调试 (23)结论 (25)结束语 (26)致谢 (27)参考文献 (28)附录I——程序源码 (29)附录II——电路原理图 (48)1绪论1.1 课题意义随着科学技术的快速发展,超声波在测距仪中的应用越来越广。
超声波测距设计毕业设计
超声波测距设计毕业设计一、引言距离测量在许多领域都具有重要的应用,如工业自动化、机器人导航、汽车防撞等。
超声波测距作为一种非接触式的测量方法,具有测量精度高、响应速度快、成本低等优点,因此在实际工程中得到了广泛的应用。
本次毕业设计旨在设计一种基于超声波的测距系统,实现对目标物体距离的准确测量。
二、超声波测距原理超声波是一种频率高于 20kHz 的机械波,其在空气中的传播速度约为 340m/s。
超声波测距的原理是通过发射超声波脉冲,并测量其从发射到接收的时间间隔,然后根据声速和时间间隔计算出目标物体与传感器之间的距离。
假设发射超声波脉冲的时刻为 t1,接收到回波的时刻为 t2,声速为c,距离为 d,则距离 d 可以通过以下公式计算:d = c ×(t2 t1) / 2三、系统硬件设计(一)超声波发射模块超声波发射模块主要由超声波换能器和驱动电路组成。
超声波换能器将电信号转换为超声波信号发射出去,驱动电路则提供足够的功率和电压来驱动换能器工作。
(二)超声波接收模块超声波接收模块主要由超声波换能器、前置放大器、带通滤波器和比较器组成。
换能器将接收到的超声波信号转换为电信号,前置放大器对信号进行放大,带通滤波器去除噪声和干扰,比较器将信号整形为方波信号。
(三)控制与处理模块控制与处理模块采用单片机作为核心,负责控制超声波的发射和接收,测量时间间隔,并计算距离。
同时,单片机还可以将测量结果通过显示模块进行显示,或者通过通信模块与上位机进行通信。
(四)显示模块显示模块用于显示测量结果,可以采用液晶显示屏(LCD)或数码管。
(五)电源模块电源模块为整个系统提供稳定的电源,包括 5V 和 33V 等不同的电压等级。
四、系统软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机的初始化、定时器的初始化、端口的初始化等。
然后进入主循环,不断地发射超声波脉冲,并等待接收回波。
当接收到回波后,计算距离,并进行显示或通信。
超声波测距仪实训报告
超声波测距仪实训报告一、实训目的本次超声波测距仪实训的主要目的是让我们深入了解超声波测距的原理和应用,通过实际操作和调试,掌握超声波测距仪的设计、制作和调试方法,提高我们的实践动手能力和解决问题的能力,同时培养我们的团队合作精神和创新思维。
二、实训原理超声波测距的原理是利用超声波在空气中的传播速度和往返时间来计算距离。
超声波发生器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时时间 t 就可以计算出发射点距障碍物的距离 s,即 s = 340t/2。
三、实训设备与材料1、超声波传感器模块(包括发射探头和接收探头)2、单片机开发板3、显示屏4、杜邦线若干5、面包板6、电源适配器四、实训步骤1、硬件电路设计将超声波传感器模块与单片机开发板进行连接,使用杜邦线将发射探头连接到单片机的某个输出引脚,接收探头连接到单片机的某个输入引脚。
将显示屏连接到单片机的相应引脚,以便显示测量到的距离值。
2、软件编程选择合适的编程语言和开发环境,如 C 语言和 Keil 软件。
编写初始化程序,包括单片机引脚的配置、定时器的设置等。
编写超声波发射和接收的控制程序,实现超声波的发射和接收,并计算往返时间。
根据距离计算公式,将计算得到的距离值转换为合适的格式,并通过显示屏进行显示。
3、系统调试硬件调试:检查电路连接是否正确,电源是否正常,传感器是否工作正常等。
软件调试:通过单步调试、设置断点等方式,检查程序的执行流程和计算结果是否正确。
综合调试:将硬件和软件结合起来进行调试,不断修改和优化程序,直到系统能够稳定准确地测量距离。
五、实训过程中遇到的问题及解决方法1、测量误差较大问题描述:测量得到的距离值与实际距离存在较大偏差。
原因分析:可能是由于超声波在空气中的传播受到温度、湿度等环境因素的影响,也可能是由于硬件电路的干扰或者软件算法的不完善。
超声波测距系统的电路设计
超声波测距系统的电路设计摘要:本论文介绍了一种使用超声波进行测距的电路设计,该设计使用脉冲回波法来测量物体与传感器之间的距离。
所设计的电路包括发射电路、接收电路、时钟电路和信号处理电路。
经过实验验证,该设计能够高精度测量物体距离。
关键词:超声波,测距,脉冲回波法,电路引言随着现代技术的不断更新迭代,对于测量精度的要求也越来越高。
传统的测距方法都有其局限性,例如光电式测距存在环境干扰的问题,激光测距则需要比较昂贵的设备,在这种情况下,超声波测距成为了一种可靠、廉价、精度高的测距方法。
超声波测距是一种基于超声波波速和传输时间来测量物体距离的方法。
以脉冲回波法为例,超声波发射器会将高频信号转换成超声波信号并发送,当超声波信号遇到物体时被反射回来,接收器将接收到的回波信号转换成电信号并通过电路处理,最终可以得到物体与传感器之间的距离。
设计方案超声波测距的基本原理已经很清晰了,接下来我们需要设计一个电路来实现这个方法。
我们的电路主要包括发射电路、接收电路、时钟电路和信号处理电路。
发射电路主要用于产生高频信号并将其转换为超声波信号。
一个典型的发射电路需要一个发射晶体、一个稳压源和一个扩频器。
发射晶体的压电性质使其能够将电信号转换为机械振动,并产生超声波信号。
稳压源负责提供一个需要的驱动电压,扩频器则能够扩大振荡幅度,提高发射能量。
接收电路主要用于将接收到的超声波信号转换为电信号以供进一步处理。
接收电路需要一个接收晶体和一个放大器。
接收晶体同样是压电晶体,并将接收到的超声波信号转换为机械振动,放大器负责将微小振动转化为可处理的电信号。
此外,接收电路还需要一个限幅电路,以保证输出的波形符合要求。
时钟电路使用一个晶体振荡器来产生射频信号,并将其转化为数字时钟信号。
时钟信号同步整个电路的运行。
信号处理电路主要用于分离出回波信号,测量回波信号的延迟时间,计算出物体与传感器的距离。
实验结果我们使用上述电路设计制作了一个超声波测距系统,进行了一系列实验。
超声波测距电路的设计
超声波测距电路设计摘要随着人们生活水平的不断提高,单片机智能化控制无疑是人们追求的目标之一,人们对单片机控制的要求越来越高。
为现代人工作、科研、生活提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。
本设计基于单片机控制技术和Proteus仿真技术的超声波测距电路设计,运用AT89C52单片机作为控制器,主要有超声波发射电路、超声波接收电路、温度检测电路、LCD显示电路和报警电路。
本设计详细分析超声波测距原理,给出超声波测距硬件设计和软件设计,并运用Proteus平台进行仿真测试达到预期效果,完成超声波测距电路的设计,这对超声波测距电路的应用具有参考借鉴作用。
关键字:超声波,测距,单片机,Proteus目录摘要 (I)目录 (II)1 绪论 (1)1.1单片机应用 (1)1.2超声波测距应用 (1)1.3本文主要研究内容 (2)2 超声波测距原理 (2)2.1 超声波基本理论 (2)2.1.1 超声波的传播速度 (2)2.1.2超声波的物理性质 (3)2.1.3 超声波对声场产生的作用 (5)2.1.4超声波传感器 (5)2.2 超声波测距方案 (6)3 硬件电路设计 (7)3.1系统总体设计方案 (7)3.2超声波发射电路设计 (8)3.3超声波接收电路设计 (8)3.4 单片机系统电路设计 (9)3.4.1复位电路 (9)3.4.2 时钟电路 (10)3.4.3 蜂鸣器电路 (10)3.4.4 温度测量电路 (11)3.4.5 液晶显示电路 (12)4 软件程序设计 (12)5 仿真系统设计 (14)结论 (15)致谢 (16)参考文献 (17)1 绪论1.1单片机应用单片机是一个单芯片形态、面向控制对象的嵌入式应用计算机系统。
它的出现及发展使计算机技术从通用型数值计算领域进入到智能化的控制领域。
从此,计算机技术在两个重要领域——通用计算机领域和嵌入式计算机领域都得到了极其重要的发展,并正在深深地改变着我们的社会。
基于超声波模块的测距电路设计
基于超声波模块的测距电路设计基于超声波模块的测距电路设计超声波测距是近年来广泛应用的一种测量方式,其工作原理是利用超音波在空气中传播的速度来测量物体的距离。
本文针对基于超声波模块的测距电路设计进行探讨。
1. 原理及组成超声波测距的核心是超声波模块,其由发射器和接收器两部分构成。
发射器发送超声波脉冲,接收器接收回波,并计算出所测物体与超声波模块的距离。
2. 设计流程a. 确定所需探测距离和精度首先需要明确要测量的物体距离及其所需的精度,根据实际需求选择合适的超声波传感器。
b. 选择超声波模块根据探测距离和精度要求,选择频率和探测距离合适的超声波模块。
c. 选取适当的微控制器选择适当的微控制器来控制超声波模块的发射和接收,进行数据处理和显示。
d. 电路设计电路设计包括超声波模块驱动电路和数据处理电路两部分。
超声波模块驱动电路主要是为超声波模块提供所需的电压和电流,并确保超声波信号的稳定性。
数据处理电路则是为接收到的回波进行信号处理,计算物体与超声波模块的距离并进行显示。
3. 电路设计要点a. 超声波测距的工作频率通常在40kHz左右,因此驱动电路需要提供稳定的频率信号。
b. 超声波模块的工作电压为5V,在编写驱动程序时需要注意保护电路,避免电压过高造成损坏。
c. 选择合适的采样率和数据处理算法,确保测量的精度和稳定性。
4. 结论基于超声波模块的测距电路设计需要根据实际需求确定探测距离和精度,并选择合适的超声波模块和微控制器来实现。
电路设计过程中需要注意超声波模块的驱动电路和数据处理电路,确保测量的稳定性和精度。
超声波测距电子电路设计详解
超声波测距电子电路设计详解在自主行走机器人系统中,机器人要实现在未知和不确定环境下行走,必须实时采集环境信息,以实现避障和导航,这必须依靠能实现感知环境信息的传感器系统来实现。
视觉、红外、激光、超声波等传感器都在行走机器人中得到广泛应用。
由于超声波测距方法设备简单、价格便宜、体积小、设计简单、易于做到实时控制,并且在测量距离、测量精度等方面能达到工业实用的要求,因此得到了广泛的应用。
本文所介绍的机器人采用三方超声波测距系统,该系统可为机器人识别其运动的前方、左方和右方环境而提供关于运动距离的信息。
超声波测距原理超声波发生器内部由两个压电片和一个共振板组成。
当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两极间未加外电压,当共振板接收到超声波时,就成为超声波接收器。
超声波测距一般有两种方法:①取输出脉冲的平均电压值,该电压与距离成正比,测量电压即可测量距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,根据被测距离s=vt?2来得到测量距离,由于超声波速度v与温度有关,所以如果温度变化比较大,应通过温度补偿的方法加以校正。
本测量系统采用第二种方法,由于测量精度要求不是特别高,所以可以认为温度基本不变。
本系统以PIC16F877单片机为核心,通过软件编程实现其对外围电路的实时控制,并提供给外围电路所需的信号,包括频率振动信号、数据处理信号等,从而简化了外围电路,且移植性好。
系统硬件电路方框图见图1。
图1 系统硬件电路方框图由于本系统只需要清楚机器人前方、左方、右方是否有障碍物,并不需要知道障碍物与机器人的具体距离,因此不需要显示电路,只需要设定一距离阀值,使障碍物与机器人的距离达到某一值时,单片机控制机器人电机停转,这可通过软件编程实现。
超声波发射电路超声波发射电路以PIC16F877为核心,当单片机上电时,单片机从RA0口产生40kHz的超声波信号,但是此时该信号无法通过与非门进入放大电路使超声波发射头发射超声波,只有闭合开关S1时,从RA1口发射出一门控信号,该信号的频率为4kHz,同时启动单片机内部的定时器TMR1,开始计数。
超声波测距系统设计
超声波测距系统设计一、设计原理超声波测距原理基于声波的传播速度和时间的关系。
声波在空气中传播的速度约为343m/s。
当声波发射到目标物体上后,部分声波会被目标物体反射回来。
通过测量声波从发射到接收的时间差,再乘以声速即可计算出目标物体与传感器的距离。
二、硬件设计1.超声波发射器:超声波发射器是实现超声波测距的关键部件,它负责产生超声波脉冲并将其发射出去。
常用的超声波发射器是压电传感器,它具有快速响应、高灵敏度等特点。
2.超声波接收器:超声波接收器用于接收从目标物体反射回来的超声波,并将其转化为电信号。
同样,压电传感器也可以用作超声波接收器。
3.控制电路:控制电路负责控制超声波发射器和接收器的工作。
例如,它可以通过控制超声波发射器的工作时间来产生超声波脉冲。
同时,控制电路还需要接收超声波接收器输出的电信号,并通过计时器来测量声波从发射到接收的时间差。
4.显示屏:显示屏用于显示测距结果,通过显示屏可以直观地观察到目标物体与传感器的距离。
三、软件设计1.信号处理:在接收到超声波接收器输出的电信号后,需要对信号进行处理。
通常情况下,控制电路会将接收到的信号由模拟信号转换为数字信号。
然后,可以使用特定的算法对数字信号进行处理,例如滤波、峰值检测等,以获取稳定的距离数据。
2.距离计算:根据声波从发射到接收的时间差和声速,可以计算出目标物体与传感器的距离。
计算公式为:距离=速度×时间差。
3.结果显示:最后,将计算得到的距离结果显示在屏幕上,用户可以直接观察到距离结果。
四、总结超声波测距系统是一种简单、实用的测距技术。
通过合理的硬件设计和严密的软件设计,可以实现可靠、准确的测距功能。
同时,超声波测距系统还具有成本低、测量范围广等优点,被广泛应用于自动控制、车辆定位和智能机器人等领域。
超声波测距电路的设计与制作
目录引言 (1)1 超声波测距系统的原理及其算法设 (1)1.1 超声波及其物理性质 (1)1.2 超声波传感器 (1)1.3 超声波测距系统的算法设计 (2)2 系统硬件电路设计 (2)2.1 超声波发射电路 (3)2.2 超声波检测接收电路 (3)2.3 单片机系统及显示电路 (4)3 系统程序设计 (5)3.1 主程序设计 (6)3.2超声波发生子程序和超声波接收中断程序 (8)4 电路调试及问题解决 (12)4.1写入程序后,在P1.0端口无法检测到40KHz脉冲信号 (12)4.2混合编程调试不成功 (12)4.3LED数码管B段不亮 (12)5 系统实际测距数据分析 (13)结束语 (13)参考文献 (14)英文翻译 (14)超声波测距电路的设计与制作摘要:超声波具有易于定向发射、反射性好、传播速度远小于光速而便于测距等特点,本文充分利用超声波这些特点,设计并制作了基于单片机AT89C51的超声波测距电路,该电路可在10—208CM有效范围内测定距离并显示,经反复测试测量误差不大于2CM;电路的程序设计采用C和汇编语言混合编程,运行可靠。
超声波测距电路可以应用于智能避障、汽车交通等系统中,具有一定的实用价值。
关键词:单片机;超声波;发射;接收;测距引言人们从蝙蝠、海豚等动物活动中受启发,研究了超声波的物理特性。
超声波具有能量高、方向性好、穿透能力强等特性,且超声波的传播速度较光速要小的多,其传播时间就比较容易检测。
超声波测距的基本思想是:通过测量从超声波发射到接收到反射回波的时间间隔来计算距离。
本文利用超声波特性、数模电路、单片机设计了一种超声波测距电路,可以实现对目标距离的非接触式测量。
目前,超声波测距已广泛应用于各个领域中,如军事雷达、机械制造、电子冶金、汽车交通等,具有良好的应用前景。
1超声波测距系统的原理及其算法设计1.1超声波及其物理性质高于20kHz的机械波称为超声波。
超声波是一种弹性机械波,可以在气体、液体和固体中传播。
超声波测距实验报告
超声波测距实验报告超声波测距实验报告引言:超声波测距是一种常见的测量技术,广泛应用于工业、医学和科学研究领域。
通过发射超声波并测量其返回时间,我们可以计算出被测物体与传感器之间的距离。
本实验旨在探究超声波测距的原理和应用,并通过实际操作验证其可靠性和准确性。
实验步骤:1. 实验器材准备:超声波传感器、数字示波器、计算机等。
2. 连接电路:将超声波传感器与数字示波器和计算机相连。
3. 设置参数:根据实验要求,设置传感器的工作频率和测量范围。
4. 发射超声波:通过控制电路,使传感器发射超声波信号。
5. 接收信号:传感器接收到返回的超声波信号,并将其转换为电信号。
6. 数据处理:将接收到的信号传输到计算机,并使用相应的软件进行数据处理和分析。
7. 计算距离:根据超声波的传播速度和返回时间,计算被测物体与传感器之间的距离。
实验结果:经过多次实验,我们得到了一系列距离数据,并进行了统计和分析。
结果表明,超声波测距的准确性较高,误差在合理范围内。
同时,我们还观察到在不同环境条件下,超声波的传播和测量结果可能会受到一定的影响。
例如,声波在空气中的传播速度与温度和湿度有关,因此在不同的环境下,需要进行相应的修正。
实验讨论:超声波测距技术在许多领域中都有广泛应用。
在工业领域,它可以用于测量物体的距离、检测障碍物并进行避障等。
在医学领域,超声波测距被应用于超声诊断、医学成像等。
此外,超声波测距还可以用于地震勘探、水下探测等科学研究领域。
然而,超声波测距也存在一些局限性。
首先,超声波在传播过程中会受到物体的吸收、散射和衍射等影响,从而导致信号衰减和失真。
其次,超声波的传播速度与介质的性质和温度有关,因此在不同的介质中,需要进行相应的修正和校准。
此外,超声波测距还受到传感器的分辨率和灵敏度等因素的限制,影响了其测量的精确度。
结论:通过本次实验,我们深入了解了超声波测距的原理和应用。
实验结果表明,超声波测距是一种准确可靠的测量技术,具有广泛的应用前景。
《超声波测距仪电路设计》
《超声波测距仪电路设计》超声波测距仪电路设计超声波测距仪是一种常见的测距装置,它利用超声波的传播特性来测量目标物体与测距仪之间的距离。
其基本原理是利用超声波的发射和接收来计算目标物体与设备之间的距离。
超声波测距仪的电路设计包括发射电路和接收电路两部分。
1.发射电路设计超声波测距仪的发射电路主要包括发射器、脉冲发生电路和驱动电路。
发射器是将电能转换为声能的装置,一般采用压电陶瓷材料。
脉冲发生电路是用来产生发送的超声波脉冲信号的电路,常用的是555定时器芯片,通过设置合适的频率和占空比,可以实现超声波脉冲的产生。
驱动电路主要是将脉冲信号放大,并提供足够的电流和电压来驱动发射器。
2.接收电路设计超声波测距仪的接收电路主要包括接收器、放大电路和信号处理电路。
接收器是将接收到的声波信号转换为电信号的装置,常用的是压电陶瓷材料。
放大电路主要是将接收到的微弱信号放大到合适的电平,以便后续的信号处理。
信号处理电路包括滤波器和放大器,滤波器用于滤除杂散信号,放大器用于放大清晰的接收信号。
3.其他设计考虑除了发射电路和接收电路,还需要考虑一些其他设计因素。
第一,为了减小测量误差,需要加入合适的校准电路来对测量系统进行校准。
第二,为了方便使用,可以加入显示电路,将测量结果以数字或者模拟形式显示出来。
第三,为了提高抗干扰能力,可以加入滤波器和抗干扰电路来滤除干扰信号。
总之,超声波测距仪电路设计需要考虑发射电路、接收电路以及其他设计因素,合理配置各个部分的电路参数,并利用合适的元器件和电路拓扑结构,以提高测距仪的精度和稳定性。
在实际设计中,还需要考虑功耗、成本和尺寸等因素,以满足具体应用的要求。
超声波测距电路设计
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2图1 超声波传感器结构这就是所谓的时间差测距法。
<三、超声波测距系统的电路设计图2 超声波测距电路原理图本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。
电路原理图如图2所示。
其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。
1、40kHz 脉冲的产生与超声波发射测距系统中的超声波传感器采用UCM40的压电陶瓷传感器,它的工作电压是40kHz的脉冲信号,这由单片机执行下面程序来产生。
puzel: mov 14h, #12h;超声波发射持续200mshere: cpl p1.0 ;输出40kHz方波nop ;nop ;nop ;djnz 14h,here;ret前方测距电路的输入端接单片机P1.0端口,单片机执行上面的程序后,在P1.0 端口输出一个40kHz的脉冲信号,经过三极管T放大,驱动超声波发射头UCM40T,发出40kHz的脉冲超声波,且持续发射200ms。
右侧和左侧测距电路的输入端分别接P1.1和P1.2端口,工作原理与前方测距电路相同。
2、超声波的接收与处理接收头采用与发射头配对的UCM40R,将超声波调制脉冲变为交变电压信号,经运算放大器IC1A和IC1B两极放大后加至IC2。
IC2是带有锁定环的音频译码集成块LM567,内部的压控振荡器的中心频率f0=1/1.1R8C3,电容C4决定其锁定带宽。
调节R8在发射的载频上,则LM567输入信号大于25mV,输出端8脚由高电平跃变为低电平,作为中断请求信号,送至单片机处理。
超声波测距系统电路制作与调试
超声波测距系统电路制作与调试
1
任务描述
2
实训设备与器件
3
电路制作与调试
4
问题思考
1任务描述
工作任务: 基于超声波发射板和接收板制作超声波 测距系统电路。
任务要求: 按照工作任务设计并制作与调试电路,要 求各部分波形进行测试。
实训设备与器件
实训设备与器件: 超声波发射板 超声波接收板 单片机控制单元 直流稳压电源 数字万用表 示波器
ห้องสมุดไป่ตู้发射电路
驱动电路
超声波发射头
选频放大
超声波接收头
执行单元
显示
控制部分
电源部分
接收电路
电源部分
3 电路制作与调试
(2)将直流稳压电源输出+9V电源接到发射电 路板和接收电路板上。 (3)用示波器观察记录发射板信号波形 (4)用示波器观察记录接收板信号波形
4
问题思考
图中的“CONTORL”信号有何作用?
3 电路制作与调试
(1)按图示进行电路连接
+9V GND
发射头
f =40kHz
振荡 电路
驱动 电路
超声波发射电路
直流稳压电源
T 隔离挡板
示波器 探头
outpu t 波形
变换
+9V GND
选频 放大
接收头
R 超声波接收电路
超声波测距系统的总体设计方案
键盘控制
输
中央
振荡电路
出
控制
报
处理
警
单元
波形变换
THE END
超声波测距电路制作
超声波测距电路制作超声波测距电路制作超声波测距仪制作本超声波测距仪通过测量超声波发射到反射回来的时间差来测量与被测物体的距离。
可以测量0.35-10m的距离。
一、电路原理1 超声波发射电路由两块555集成电路组成。
IC1(555)组成超声波脉冲信号发生器,工作周期计算公式如下,实际电路中由于元器件等误差,会有一些差别。
条件: RA =9.1MΩ、RB=150KΩ、C=0.01μFTL = 0.69 x RB x C= 0.69 x 150 x 103 x 0.01 x 10-6 = 1 msecTH = 0.69 x (RA RB) x C= 0.69 x 9250 x 103 x 0.01 x 10-6 = 64 msecIC2组成超声波载波信号发生器。
由IC1输出的脉冲信号控制,输出1ms频率40kHz,占空比50%的脉冲,停止64ms。
计算公式如下:条件: RA =1.5KΩ、RB=15KΩ、C=1000pFTL = 0.69 x RB x C= 0.69 x 15 x 103 x 1000 x 10-12 = 10μsecTH = 0.69 x (RA RB) x C= 0.69 x 16.5 x 103 x 1000 x 10-12 = 11μsecf = 1/(TL TH)= 1/((10.35 11.39) x 10-6) = 46.0 KHzIC3(CD4069)组成超声波发射头驱动电路。
2 超声波接收电路超声波接收头和IC4组成超声波信号的检测和放大。
反射回来的超声波信号经IC4的2级放大1000倍(60dB),第1级放大100倍(40dB),第2级放大10倍(20dB)。
由于一般的运算放大器需要正、负对称电源,而该装置电源用的是单电源(9V)供电,为保证其可靠工作,这里用R10和R11进行分压,这时在IC4的同相端有4.5V的中点电压,这样可以保证放大的交流信号的质量,不至于产生信号失真。
超声波测距电路+++详细
超声波测距电路的实现方法电光学院105040562 毛臻摘要:随着单片机、DSP、FPGA、CPLD技术的不断成熟,各种智能测量系统不断涌现,测距电路可以用在工业生产、医疗技术、日常生活中各个方面,典型的应用如汽车倒车告警、机器人的自动避障行走、工业上的液位、井深、管道长度等场合,本文在介绍超声波测距原理的基础上总结并讨论现有的几种电路设计方法,并提出增大测量距离及改善系统性能的实现方法。
关键词:超声波;测距;FPGA实现1超声波是一种在弹性介质中的机械振荡,它是由与介质相接触的振荡源所引起的, 其频率在20KHz以上。
超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。
超声波在介质中传播时在不同介面上具有反射的特性,由于它有指向性强、方向性好、传播能量大、传播距离较远等特点,常用于测量物体的距离、厚度、液位等。
超声波的传播速度与介质的密度和弹性特性有关,它在空气中的传播速度为340m/s。
发射一定频率的超声波,借助空气媒质传播,到达测量目标或障碍物后反射回来,其所经历的时间长短与超声波传播的路程的远近有关,测试传输时间可以得出距长。
利用超声波特性、单片机控制、电子计数相结合可以实现非接触式测距。
由于超声波检测迅速、方便、计算简单,且不受光线、电磁波、粉尘等的干扰,其测量精度较高。
常用于桥梁、涵洞、隧道的距离检测中。
2使用超声波和使用激光测距的比较:基于以上介绍的超声波的特点不难区分它们的各自的适用场合,激光测距主要用于远程,如测月球到地球距离,或远距离无障碍测距,而且成本要比用超声波大,因为光速为3×10^8M/S,而一般市场上的单片机最高频率在十几至几十兆,(本人接触的ARM最大30M)如果测量的距离在十米左右,那么假设单片机别的都不做只是计数,出射光将在大约0.033us后返回,要求单片机CLK为1/0.033MHz,也就是说30M时钟频率的单片机刚发出出射激光的命令,光就已经在它的下个CLK脉冲来到了,更别提计数了,即使使用频率很高的单片机或其他器件如FPGA等在精度上将不能满足需要(通常在收发间隔中得到的计数脉冲越多精度越高)。
超声波测距仪硬件电路设计
第三章超声波测距仪硬件电路的设计3.1超声波测距仪硬件电路硬件电路可分为单片机系统及显示电路、超声波发射电路和超声波检测接收电路三局部。
3.1.1单片机系统及显示电路本系统采用AT89S52来实现对超声波传感器的控制。
单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。
超声波测距的硬件示意图如图3所示:单片机采用89552或其兼容系列。
采用12MHz高精度的晶振,已获得较稳定的时钟频率,减少测量误差。
单片机用口1.0端口输出超声波换能器所需的40KHz的方波信号,利用外中断0 口检测超声波接收电路输出的返回信号。
3.1.2显示的输出显示的种类很多,从液晶显示、发光二极管显示到CRT显示器等,都可以与微机连接。
其中单片机应用系统最常用的显示是发光二极管数码显示器〔简称 LED显示器〕。
液晶显示器简LCD。
LED显示器价廉,配置灵活,与单片接口方便,LCD可显示图形,但接口较复杂本钱也较高。
该电路使用7段LED构成字型“8〃,另外还有一个发光二极管显示符号及小数点。
这种显示器分共阳极和共阴极两种。
这里采用共阳极LED 显示块的发 光二极管阳极共接,如下列图3-1所示,当某个发光二极管的阴极为低电平时, 该发光二极管亮。
它的管脚配置如下列图3-2所示。
实际上要显示各种数字和字符,只需在各段二极管的阴极上加不同的电平, 就可以得到不同的代码。
这些用来控制LED 显示的不同电平代码称为字段码〔也 称段选码〕。
如下表为七段1日口的段选码。
表3-1七段1日口的段选码 显示字符共阳极段选码 dp gfedcba显示字符 共阳极段选码dp gfedcba0 C0H A 88H 1 F9H B 83H 2 A4H C C6H 3 B0H D A1H 4 99H E 86H 5 92H F 8EH 682HP8CHVCC图3-1图3-2come d c dp com7 F8H y 91H8 80H 8. 00H9 90H “灭〃FFH本系统显示电路采用简单实用的4位共阳LED数码管,位码用PNP三极管8550驱动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三超声波测距电路设计一.实习的性质:综合二.实验目的:通过本实验了解和掌握超声波传感器测量的原理和方法,加深理解超声波传感器的处理电路设计,掌握温度补偿的办法及提高测量精度的方法。
三、实验的时间分配:总学时12学时1、电路设计4学时2、电路焊接4学时3、电路调试4学时四、实验地点:东一教811和816实验室五、实验要求:1、理解超声波测距原理及方法。
2、根据给出的题目,参照附录中给定的题目所需的参考资料,自行设计超声波测距的发射与接收电路,并理解和掌握整体电路的设计思路和电路的工作原理。
3、根据设计的电路图独立完成电路的焊接及调试工作,掌握焊接方法及调试步骤。
扩展练习:采用单片机实现超声波测距的原理、方法及接口电路的设计。
六、实验原理声波是一种能在气体、液体和固体中传播的机械波。
根据振动频率的不同,可分为次声波、声波、超声波和微波等。
1)次声波:振动频率低于l6Hz的机械波。
2)声波:振动频率在16—20KHz之间的机械波,在这个频率范围内能为人耳所闻。
3)超声波:高于20KHz的机械波。
超声波与一般声波比较,它的振动频率高,而且波长短,因而具有束射特性,方向性强,可以定向传播,其能量远远大于振幅相同的一般声波,并且具有很高的穿透能力。
例如,在钢材中甚至可穿透10米以上。
超声波在均匀介质中按直线方向传播,但到达界面或者遇到另一种介质时,也像光波一样产生反射和折射,并且服从几何光学的反射、折射定律。
超声波在反射、折射过程中,其能量及波型都将发生变化。
超声波在界面上的反射能量与透射能量的变化。
取决于两种介质声阻抗特性。
和其他声波一样,两介质的声阻抗特性差愈大,则反射波的强度愈大。
例如,钢与空气的声阻抗特性相差10万倍,故超声波几乎不通过空气与钢的介面,全部反射。
超声波在介质中传播时,随着传播距离的增加,能量逐渐衰减,能量的衰减决定于波的扩散、散射 (或漫射)及吸收。
扩散衰减,是超声波随着传播距离的增加,在单位面积内声能的减弱;散射衰减,是由于介质不均匀性产生的能量损失;超声波被介质吸收后,将声能直接转换为热能,这是由于介质的导热性、粘滞性及弹性造成的。
以超声波为检测手段,包括有发射超声波和接收超声波,并将接收的超声波转换成电量输出的装置称为超声波传感器。
习惯上称为超声波换能器或超声波探头。
常用的超声波传感器有两种,即压电式超声波传感器 (或称压电式超声波探头)和磁致式超声波传感器。
本实验采用的是压电式超声波传感器, 主要由超声波发射器(或称发射探头)和超声波接收器(或称接收探头)两部分组成,它们都是利用压电材料(如石英、压电陶瓷等)的压电效应进行工作的。
利用逆压电效应将高频电振动转换成高频机械振动,产生超声波,以此作为超声波的发射器。
而利用正压电效应将接收的超声振动波转换成电信号,以此作为超声波的接收器。
6.1压电式超声波传感器的原理目前,超声波传感器大致可以分为两类:一类是用电气方式产生的超声波,一类是用机械方式产生的超声波。
电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。
它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。
在工程中,目前较为常用的是压电式超声波传感器。
压电式超声波传感器实际上是利用压电晶体的谐振来工作的。
压电式超声波发生器的内部有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时即为超声波接收器。
6.2超声波传感器的测距原理:超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离S,即:S=340t/2图1 超声波传感器结构示意图为了提高精度,需要考虑不同温度下超声波在空气中传播速度随温度变化的关系: v=331.4+0.61T式中,T为实际温度(℃),v的单位为m/s。
七.注意事项:1.使用电烙铁注意安全。
烙铁会产生高热,万一不小心碰触将会导致严重烫伤,使用时千万要小心。
2.焊接每个结点不要超过一秒钟:焊接时间过久,会导致焊锡过热反白,电子零件也会因为过热而损坏,因此要特别注意焊接时间。
正常不过热的接点,焊锡会呈现金属光泽。
3.接点形状:以立体圆弧形状为佳,过大、过小、尖塔状、孔隙没有填满都是不良的接点形状。
4.检测电子零件:试问您在焊接之前,是否确定每一个电子零件都是好的?是否都用万用表作过测量?任何一个电子零件故障,都会导致整个电路无法正常工作,所以这个程序是绝对必要的,您检测了么?八.成绩考核:1.电路设计:30分/4学时2.焊接电路:30分/4学时3.电路调试:30分/4学时4.实验报告:10分九、参考资料:附录一:超声波测距系统的发射与接收电路的设计在工程实践中,超声波由于指向性强、能量消耗缓慢且在介质中传播的距离较远,因而经常用于距离的测量。
它主要应用于倒车雷达、测距仪、物位测量仪、移动机器人的研制、建筑施工工地以及一些工业现场等,例如:距离、液位、井深、管道长度、流速等场合。
利用超声波检测往往比较迅速、方便,且计算简单、易于做到实时控制,在测量精度方面也能达到工业实用的要求,因此得到了广泛的应用。
1、超声波测距原理及系统组成超声波测距是借助于超声脉冲回波渡越时间法来实现的。
设超声波脉冲由传感器发出到接收所经历的时间为t,超声波在空气中的传播速度为v,则从传感器到目标物体的距离D可用下式求出:D = v t /2 ,图2是相应的系统框图:图2 超声波测距系统组成框图基本原理:经发射器发射出长约6mm,频率为40KHZ的超声波信号。
此信号被物体反射回来由接收头接收,接收头实质上是一种压电效应的换能器。
它接收到信号后产生mV级的微弱电压信号。
2、电路原理2.1 超声波发射电路由两块555集成电路组成。
IC1(555)组成超声波脉冲信号发生器,工作周期计算公式如下,实际电路中由于元器件等误差,会有一些差别。
条件: RA =9.1MΩ、RB=150KΩ、C=0.01μFTL = 0.69 x RB x C= 0.69 x 150 x 103 x 0.01 x 10-6 = 1 msecTH = 0.69 x (RA + RB) x C= 0.69 x 9250 x 103 x 0.01 x 10-6 = 64 msecIC2组成超声波载波信号发生器。
由IC1输出的脉冲信号控制,输出1ms频率40kHz,占空比50%的脉冲,停止64ms。
计算公式如下:条件: RA =1.5KΩ、RB=15KΩ、C=1000pFTL = 0.69 x RB x C= 0.69 x 15 x 103 x 1000 x 10-12= 10μsecTH = 0.69 x (RA + RB) x C= 0.69 x 16.5 x 103 x 1000 x 10-12= 11μsecf = 1/(TL + TH)= 1/((10.35 + 11.39) x 10-6) = 46.0 KHz由IC3(CD4069)组成超声波发射头驱动电路。
2.2 超声波接收电路超声波接收头和IC4组成超声波信号的检测和放大。
反射回来的超声波信号经IC4的2级放大1000倍(60dB),第1级放大100倍(40dB),第2级放大10倍(20dB)。
由于一般的运算放大器需要正、负对称电源,而该装置电源用的是单电源(9V)供电,为保证其可靠工作,这里用R10和R11进行分压,这时在IC4的同相端有4.5V的中点电压,这样可以保证放大的交流信号的质量,不至于产生信号失真。
C9、D1、D2、C10组成的倍压检波电路取出反射回来的检测脉冲信号送至IC5进行处理。
IC5组成信号比较电路,对接收信号进行调整输出,供后续电路测量使用,下面分析其工作原理。
由Ra、Rb、IC5组成信号比较器。
其中Vrf = (Rb x Vcc)/(Ra + Rb) = (47KΩ x 9V)/(1MΩ + 47KΩ) = 0.4V所以当IN3点(IC5的反相端)过来的脉冲信号电压高于0.4V时,OUT4点电压将由高电平"1"到低电平"0"。
图示参数的最小测量距离在40cm左右。
附录二:基于ATmega8的超声波倒车雷达实现方案1 引言由于超声波指向性强,能量消耗缓慢,在介质中的传播距离较远,因而超声波经常用于距离测量,如测距仪和物位测量仪等都可以用超声波来实现。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人、汽车工业等领域中有广泛的应用。
本文根据笔者所在的武汉理工大学汽车电子电器研究所研发的一种由单片机开发的超声波倒车雷达报警器方案,详细介绍了其硬件软件实现过程。
2 设计目标报警器利用超声波回声测距的原理,测量车后一定距离内的物体,并以AVRmega8系列单片机作为中心控制单元。
这种超声波雷达可以及时显示车后障碍物的距离和方位,显示范围为0. 5m~9.9m,当距离大于2m时显示车后障碍物的方位;当距离小于2m时,除了显示其方位外,还可按照三段距离分别给出三种报警信号,以警示司机三种不同程度的紧急状态,使司机据此作出相应的操作,防止事故的发生。
3 超声波测距原理3.1 超声波发生器超声波发生器分为两类:一类是用机械方式产生超声波,包括加尔统笛、气流笛等一类是用电气方式产生超声波,包括压电型、磁致伸缩型和电动型等;它们所产生的超声波的频率、功能和声波特性各不相同,因而用途也各不相同。
目前较为常用的是压电型超声波发生器。
3.2 压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。
超声波发生器内部有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未加电压,当共振板接受到超声波时,将压迫压电晶片做振动,将机械能转换为电信号,这是它就成为超声波接收器了。
3.3 超声波测距原理超声波测距是通过不断检测发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。
由于超声波也是一种声波,其速度C与温度有关,在温度确定后,只要测得超声波往返时间,即可求得距离。
4 Atmega8的功能特点ATMEL公司在2002年第一季度推出的一款新型AVR单片机。