开关电源中电感的设计
开关电源中变压器及电感设计1
开关电源中变压器及电感设计1开关电源中变压器及电感设计1一、变压器设计1.根据电源输出需求确定变压器的额定功率和工作频率。
2.计算变压器的变比。
变压器的变比决定了输入电压和输出电压之间的关系。
通常变压器的变比为输入和输出电压之比的倒数,即输出电压/输入电压。
3.根据变比计算次级匝数。
变压器的次级匝数等于输入匝数乘以变比。
4.根据次级匝数计算主绕组匝数。
主绕组匝数等于次级匝数除以变比。
5.计算主绕组和次级绕组的截面积。
主绕组的截面积一般比次级绕组大,以满足输送更大电流。
6.计算铁芯截面积。
铁芯截面积的大小关系到变压器的能量传输效率,一般选择铁芯截面积略大于主绕组的截面积。
7.选择合适的铁芯材料和线材材料。
铁芯材料的导磁性能和线材材料的电阻等参数会影响变压器的损耗和效率。
8.进行变压器的相关参数计算和模拟。
可以使用相关软件进行变压器参数的计算和仿真,以评估变压器的性能。
9.制作变压器的绕组和组装。
根据计算结果进行绕线并组装变压器。
10.进行变压器的测试和调整。
使用仪器测试变压器的性能,并根据测试结果调整变压器的参数,以满足设计要求。
二、电感设计1.根据电源输出需求确定电感的额定电流和工作频率。
2.根据电感的额定电流和工作频率计算电感的感值。
电感的感值和额定电流和工作频率之间有一定的关系,可以根据公式进行计算。
3.根据感值计算电感的绕组数。
电感的绕组数决定了电感的电流走向和电感的大小。
4.选择合适的磁芯和线材材料。
合适的磁芯材料和线材材料会影响电感的损耗和效率。
5.进行电感的相关参数计算和模拟。
可以使用相关软件进行电感参数的计算和仿真,以评估电感的性能。
6.制作电感的绕组和组装。
根据计算结果进行绕线并组装电感。
7.进行电感的测试和调整。
使用仪器测试电感的性能,并根据测试结果调整电感的参数,以满足设计要求。
总结:变压器和电感的设计是开关电源设计中关键的一环,直接影响到电源的性能和稳定性。
在设计过程中,需根据电源输出需求确定额定功率和工作频率,并计算变压器和电感的相关参数。
浅谈开关电源输出电感的设计
――DC/DC 电路中电感的选择原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载翻译:frm(注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。
本文还包括对同步DC/DC及异步DC/DC概念的解释。
)本文PDF文档下载简介在开关电源的设计中电感的设计为工程师带来的许多的挑战。
工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。
本文专注于解释:电感上的DC电流效应。
这也会为选择合适的电感提供必要的信息。
理解电感的功能电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。
虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。
在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。
另一端通过开关频率切换连接到输入电压或GND。
在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。
在状态2过程中,电感连接到GND。
由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。
如果是后一种方式,转换器就称为“同步(synchronus)”方式。
现在再考虑一下在这两个状态下流过电感的电流是如果变化的。
在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。
对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。
相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。
对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。
我们利用电感上电压计算公式:V=L(dI/dt)因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。
开关电源中电感气隙的设计与研究
开关电源中电感气隙的设计与研究摘要:开关电源中的电感器扮演着电压平滑和电流波形整形的重要角色。
为了提高电感器的效率和性能,电感气隙的设计非常重要。
本文将探讨电感气隙的设计与研究,并分析其对开关电源的影响。
1.引言开关电源是一种将输入直流电转换为输出脉冲电流的电子设备。
在开关电源中,电感器起着平滑输出电压和滤波电流的作用。
为了提高电感器的效率和性能,需要进行精确而合理的设计。
2.电感气隙的原理电感气隙是指在电感器的铁芯上设置的一段空隙。
电感器通过改变气隙的大小可以改变其感应能力和电感值。
当电感气隙变大时,电感器的电感值和感应能力会降低,而当电感气隙变小时,电感值和感应能力会增加。
因此,通过设计和调整电感气隙的大小,可以控制电感器的性能和工作特性。
3.电感气隙的设计要点(1)气隙长度:气隙长度是电感气隙设计中的重要参数。
气隙长度的选择应根据具体应用需求以及电感器的工作电流和电源电压来确定。
一般来说,气隙长度应尽量小,以避免磁通漏磁引起的能量损耗和磁滞损耗。
(2)气隙形状:气隙的形状也会对电感器的性能产生影响。
一般常见的气隙形状包括直线型、等效长方形型和圆环型。
不同形状的气隙会对电感器的感应能力和频率响应曲线产生不同的影响。
因此,在设计中应根据具体应用需求和设计要求选择合适的气隙形状。
(3)气隙材料:气隙材料的选择也非常重要。
一般来说,气隙材料应具有较高的导磁性和绝缘性能,以提高电感器的效率和可靠性。
常见的气隙材料包括Ni-Zn磁粉、铁氧体和纪录材料等。
4.电感气隙的研究方法(1)实验研究:通过实验手段来研究电感气隙的影响。
可以通过改变气隙的长度和形状,测量电感器的电感值和感应能力,进而分析气隙对电感器性能的影响。
(2)仿真模拟:通过使用电磁学仿真软件,建立电感器的数学模型,模拟电感气隙在不同工作条件下的磁场分布和电感特性。
通过仿真模拟,可以更加直观地分析电感气隙的影响,并进行优化设计。
5.电感气隙的应用案例以开关电源中的输出电感器为例,通过设计合适的气隙,可以提高电感器的效率和性能。
别翻资料了!十种开关电源电感线圈计算参数讲解
别翻资料了!十种开关电源电感线圈计算参数讲解
从事开关电源电路设计的工程师肯定对电感线圈的计算不陌生。
因为在开关电源电路的设计过程当中,时常要设计导线以及线圈的电感、以及线圈匝数的计算,这些计算结果被用来对电路参数进行辅助改动和调整。
本篇文章将介绍几种线圈电感量的计算方法,以供参考。
在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率的单位为H/m。
圆截面电感
图1
圆截面直导线的电感如图1所示。
其中:
L:圆截面直导线的电感[H]
l:导线长度[m]
r:导线半径[m]
μ0:真空导磁率,μ0=4π10-7[H/m]
这是在l>>r的条件下的计算公式。
当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍,μr是磁芯的相对导磁率,μr=μ/μ0,μ为磁芯的导磁率,也称绝对导磁率,μr是一个无单位的常数,它很容易通过实际测量来求得。
同轴电缆线的电感。
20170503-开关电源中的EMI滤波电感设计
开关电源中的EMI 滤波电感设计普高(杭州)科技开发有限公司 张兴柱 博士开关电源中的功率变换器工作于高频开关方式,其输入线上的电流含有高频分量,这些高频分量对接在同一供电处的其它电子设备会产生干扰,严重时可能导致其它电子设备的正常工作,为此国际上专门制订了相关的EMI 标准,来限制各种电子设备对外产生的辐射与传导噪声。
其中最常用的传导EMI 标准有CISPR22、VDE 和FCC ,通过测试电子设备的传导EMI 来判断其是否满足相应的EMI 标准。
图1是测试开关电源传导EMI 的线路图,其中供电电源既可以是直流,也可以是交流,图中为交流。
LISN 为测试EMI 的阻抗匹配网络,uH L L 5021==,uF C C 1.021==,Ω==5021R R ,这个网络对于输入的低频分量,其1L 、2L 可看作短路,1C 、2C 可看作开路,所以不影响输入到输出的功率传递;对于蓝色框内开关电源所产生的高频分量,其1L 、2L 可看作开路,1C 、2C 可看作短路,因此开关电源输入线(线1和线2)上的高频电流分量将完全流过1R 、2R ,再将1R 、2R 上的电流信号用频谱分析仪进行测试,就可获得每一根输入线上的电流信号频谱,这些电流信号频率也被叫作传导EMI 噪声频谱,1R 、2R 就是测试传导EMI 的等效负载。
利用传导EMI 的的测试线路,可以将不加EMI 滤波器时的开关电源,所产生的噪声用图2(a)的电路等效,如果再将不加EMI 滤波器的开关电源在高频段用一个噪声电压源和三个噪声阻抗表示的话,则图2(a)的电路可以进一步用图2(b)来等效。
由图2(b)可知,产生传导EMIii (a) (b) 图2: 不加EMI 滤波器的开关电源之EMI 等效电路的根源有三个,一个是EMI 源N v ,一个是EMI 途径1Z 、2Z 和c Z ,再一个就是EMI 的负载1R 和2R 。
等效电路中的EMI 负载是固定的50欧电阻,而变化的是EMI 源及EMI 途径。
如何在开关电源设计中选择最合适的高功率电感的磁芯
No i m nal
产生 高频磁场 , 成磁芯 损耗并导致 造
磁 芯 变热 。这种 情 况在 铁 硅铝 (o l Ko
c 2 m
Cm
P r a it mi e me bl y( ) i
Ae l e Ve
Ⅲ 砷03 1 如 缸
,
Mp 中会 减少 ,因此 电感更 有效 率, ) 温度更低。 铁 硅 铝 ( e l )的 磁 芯 损 耗 K e Mp
O l n e n i
在 线座 谈 ( l e S mia ) 中 电 网 于2 0 年 推 出 的创 新 服 务 ,通 过 “ Oni e n r 是 n 00 视
中网E 虫a W_ c |G c9 、 . N . m e t
频演 示+专 家解说 +在线 问答”三位 一体 相结合的形式 ,充分发挥网络平 台的便
■ Ma n t s g ei 美国磁性材料公司 c
究 竟 是磁 粉 芯 好 ,还 是 铁 粉 芯 必 须在 下降 曲线的安全 区进行 设计。 好?相信是 许多工程师 在进 行开关 电 铁硅 铝 ( o l ) K o Mp 被设 计在受 控制 的
体 不同 , 随着温度改变 , 变化不会很大。
而 当储 能是 一样 的 时候 ,L2值 I
一
2 ℃到 1 0 5 ℃不同环境下材质的差异。 0
样 ,铁硅 铝 (o l ) 积缩 小 了 K o Mp 体
由于铁硅铝 的材质及 结构和 间隙铁氧 很 多,对 于设计 者来说 ,这 有效缩 小
世 界 电子 元 器 件 2 0 1 c.cc cor 01 .0 ge e n. n
如何 在 开关 电源 设 计 中选 择 最合 适 的高功率 电感 的磁 芯
开关电源滤波电感器的设计
开关电源滤波电感器设计
六、半桥变换器输出滤波电感器设计实例: 1、已知条件:
2、设计步骤:
开关电源滤波电感器设计
开关电源滤波电感器设计
开关电源滤波电感器设计
开关电源滤波电感器设计
二、 Buck电感 Buck 变换器输出电感一般工作在连续模式:
一般选取k=0.05~0.1,ΔI=20%IO纹波电流
开关电源滤波电感器设计
开关电源滤波电感器设计
Байду номын сангаас
开关电源滤波电感器设计
五、输出虑波电感器的主要设计步骤: 1、滤波电感材料的选取 2、根据已知条件规定的允许纹波电流值或K值计算电感量 3、计算滤波电感的储能 4、根据电感器的储能计算所需磁芯的尺寸,利用AP面积法 5、计算电流密度j(J) 6 、计算线圈导体的裸线面积极AXP和线径dXP 7 、计算线圈的匝数N 8、计算磁芯所加气隙长度lg 9 、核算磁通密度Bm 10、计算电感线圈的铜损PCU和铁损PFe 11、计算电感线圈的温升
开关电源滤波电感器设计
一、电感分类
用于开关电源(图8-1)的电感有: ① 单线圈电感-输出滤波电感(Buck)、升压电感(Boost)、 反激电感(Buck-Boost)和输入滤波电感。 ② 多线圈电感-耦合输出滤波电感、反激变压器。 ③ EMI 共模滤波电感。
开关电源滤波电感器设计
电路中,电感有两个工作模式(图8-2): ① 电感电流断续模式-瞬时安匝(在所有线圈中)在每个 开关周期内有一部分时间停留在零状态。 ② 电感电流连续模式-在一个周期内,电感电流尽管可以 过零(如倍流电路中滤波电感),电感的安匝(磁势) 没有停留在零的时间。
uc3842电流型开关电源中电压反馈电路的设计
uc3842电流型开关电源中电压反馈电路的设计在传统的电压型控制中,只有一个环路,动态性能差。
当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。
因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。
为了解决这个问题,可以采用电流型控制模式。
电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。
电流型控制方法的特点如下:1、系统具有快速的输入、输出动态响应和高度的稳定性;2、很高的输出电压精度;3、具有内在对功率开关电流的控制能力;4、良好的并联运行能力。
di直接跟随输入电压和输出电压的变化而变化。
电压反由于反馈电感电流的变化率dt馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。
本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。
一、uc3842简介图1为UC3842PWM控制器的内部结构框图。
其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。
振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R 与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。
反馈电压由2脚接误差放大器反相端。
1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。
3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V 时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。
UC3842PWM控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。
正因如此,可有效地防止电路在阈值电压附近工作时的振荡。
图1UC3842的内部结构框图如下:UC3842具有以下特点:1、管脚数量少,外围电路简单,价格低廉;2、电压调整率很好;3、负载调整率明显改善;4、频响特性好,稳定幅度大;5、具有过流限制、过压保护和欠压锁定功能。
一文读懂开关电源中的共模电感
一文读懂开关电源中的共模电感1、电感器作为磁性元件的重要组成部分,被广泛应用于电力电子线路中。
尤其在电源电路中更是不可或缺的部分。
如工业控制设备中的电磁继电器,电力系统之电功计量表(电度表)。
开关电源设备输入和输出端的滤波器,电视接收与发射端之调谐器等等均离不开电感器。
电感器在电子线路中主要的作用有:储能、滤波、扼流、谐振等。
在电源电路中,由于电路处理的均是大电流或高电压的能量传递,故电感器多为“功率型”电感。
正是因为功率电感不同于小信号处理电感,在设计时因开关电源的拓扑方式不一样,设计方式也就各有要求,造成设计的困难。
当前电源电路中的电感器主要用于滤波、储能、能量传递以及功率因数校正等。
电感器设计涵盖了电磁理论,磁性材料以及安规等诸多方面的知识,设计者需对工作情况和相关参数要求(如:电流、电压、频率、温升、材料特性等)有清楚了解以作出最合理的设计。
2、电感器的分类:电感器以其应用环境、产品结构、形状、用途等可分为不同种类,通常电感器设计是以用途及应用环境作为出发点而开始的。
在开关电源中以其用途不同,电感器可分为:共模滤波电感器(Common Mode Choke)常模滤波电感器(Normal Mode Choke)功率因数校正电感(Power Factor Correction - PFC Choke)交链耦合电感器(Coupler Choke)储能平波电感(Smooth Choke)磁放大器线圈(MAG AMP Coil)共模滤波电感器因要求两线圈具有相同的电感值,相同的阻抗等,故该类电感均采用对称性设计,其形状多为TOROID、UU、ET等形状。
3、共模电感的工作原理:共模滤波电感器又称共模扼流线圈(以下简称共模电感或CM.M.Choke)或Line Filter。
在开关电源中,由于整流二极管和滤波电容以及电感中的电流或电压急剧变化,产生电磁。
开关电源中的差模电感
开关电源中的差模电感
差模电感是开关电源中的重要组成部分,它在电源系统中起着至关重要的作用。
差模电感通常用于开关电源的输入端,用来过滤输入电压并提供稳定的直流电压输出。
它能够帮助减少电源中的噪声和干扰,提高电源的效率和稳定性。
在开关电源中,差模电感通过其自身的电感特性,能够有效地过滤掉输入电压中的高频噪声和干扰信号。
这样可以确保电源输出的直流电压稳定,减少对负载的干扰。
此外,差模电感还能够帮助提高电源的效率,减少能量损耗,从而延长电源设备的使用寿命。
差模电感的选择和设计对于开关电源的性能至关重要。
合适的差模电感能够有效地提高电源的稳定性和效率,而不合适的差模电感则可能导致电源系统的不稳定和功耗增加。
因此,在设计开关电源时,需要仔细考虑差模电感的参数和特性,确保其能够满足电源系统的需求。
总之,差模电感在开关电源中扮演着至关重要的角色,它能够帮助提高电源系统的稳定性和效率,减少噪声和干扰,从而确保电
源输出的稳定直流电压。
因此,在开关电源的设计和应用中,差模电感的选择和设计都需要引起足够的重视。
大功率开关电源的电感参数设计
图 3 B ot os变换 器 等 效 电路 1 . 工作原 理 .2 2 图 1B c uk变换 器 等 效 电路 1 . 作 原 理 .2工 1
O
0
Байду номын сангаас
O
0
Is
图 2电 感 电流 曲线 图 在 T 的 导通 阶段 , 0时刻 到 t 时刻 , 过 电感 线 圈 L的 电 流 r 即 l 流 i i 在 电感 线 圈 L未饱 和 前 , s. =. , 电流 i呈 线性 增 加 。电 流 i除 了给负 , 载 R提 供 电 流 I 外 , 给 电容 c充 电 , i I+ , 为 充 电 电流 , o 还 即 L Oii = 负 载 R两 端 的 电压 为 V 。 o 在 T 截 止 阶段 ,- r h t时刻 , 由于 线 圈 L中存 在 磁 场 ,r 止 时 , .截 r 为保 持 其 电流 i不 变 , 圈 L两 端 的 电压极 性 将 翻 转 。 电流 i呈线 线 性 下 降 , i I 时 ,i仍 可 为 电 容 c提 供 充 电 电 流 , i I 时 , 当 LO > . 在 L O 电 < 容处 于 放 电状 态 , 时 I= 5 i为 放 电 电流 。 工 作 中 , 、 o 这 o i" , i 在 I v 始终 o 维持 不 变 。 如 图 2 示 , 在 周 期 T 内 , 下 降 连续 变 化 , i始终 不 为 所 i s 上升 但 。
211稳 态分 析 ..
( ) 满 足流 经 电感 线 圈 L的 电 流 i连 续性 的要 求 , 析 电感 1从 分
管理 和 组织 管 理 的重 要依 据 , 同时 也成 为 了企 业进 行 优 化技 术 和 增 式 中 , 习项 △a 每 炉 喷吹 结束 后 及 时学 习 实 际数 据 , 预测 加 效 益 的重 要理 论 支 撑 , 学 在 并 实现 了企 业 生 产管 理 的有 效提 高。 下一 炉 y F x 。 -(值 ) 操作 指 令记 录和设 备 状 态记 录 : 对 炼 钢 企业 操 作 过程 中出 现 在 人 工智 能 方法 : 的问 题进 行 责任 确 定 和具 体 故 障分 析 时 , 要 通 过 对 系统 操作 过 就需 此 种 方法 主要 是 科 学 家 根 据人 类 的思 维 模 式 对 机 器 进 行 模 拟 程 中记 录 的 完 整数 据 进 行 细 致 的分 析 并 以此 作 为 对机 器 和 系统 故 决 策 , 是 在 吸取 了众 多 的 人类 生 产 经验 的过 程 中提 高 了模 型 的弹 障 的分 析 依 据 , 而 找 出故 障发 生 的原 因 , 它 进 由相 关 的技 术人 员 进 行 性 , 一 定 意义 上 弥补 了传统 的生产 模 型不 足 。 在 故 障 分析 找 出解 决 的 方法 , 免在 以后 的操 作过 程 中出现 相 类 似 的 避 4 管 理功 能 . 5 问题 , 着时 间 的推 移 , 产 的故 障也 会相 应 的 减少 。 随 生 企 业 的 炼 钢生 产 管 理 的 过 程 主要 就 是 信 息 收集 和物 流 相 结 合 5结 束语 的生 产 过 程 , 了达 到 理 想 的 生产 过 程 管 理 , 必 须 重 视 信 息 和物 为 就 通过 对使 用 该项 技 术 的 企业 进 行 跟踪 调 查 , 们 发现 了此项 技 我 流 的收 集 和管 理 , 用 转 炉动 态 炼 钢 的过 程 中要使 用 强 大 的 信息 术 与 其他 技 术相 比具 有很 多 的优 点 : 学 的设 计 、 装 合 理 、 能 齐 在使 科 安 功 采集系统 , 做好信息处理工作 , 以达到实现过程级控制。 这一功能主 全 等 , 作 的过 程 中实 现 了企 业 对 过 程 级 控制 的完 成 , 在工 促进 了产 要 侧 重 两个 方 面 : 量 的 增加 , 证 了产 品的 质量 。这 项技 术 不 仅 可 以在 本行 业 使 用也 保 炼钢企业必须具备了高速的网络系统 , 对于数据 的采集能够实 可 以被 用 于其他 行 业 。 我们 在 发现 其 优点 的 同时 也 看到 了其在 生 产 现 完 整 的收 集 ,可 以通 过 网络 传 输 到 企业 内部 生 产 管 理 的局 域 网 过程中的问题 , 比如在操作 系统中对某些设备的控制方面还有待修 上 , 行 系 统 的收 集 整 理 。炼 钢 厂 4 炉 系 统包 括 三 个 子 系统 : 进 #转 转 正和提高。我们需要在实际的生产过程中善于发现问题 , 以实现企 炉本 体 子 系统 , 炉煤 气 回收子 系 统 , 余 热利 用 子 系统 。 过对 业 利 益 最大 化 为 目标 , 断 的完 善 该系 统 。 转 转炉 通 不 网络传输收集的数据进行整合和分析可以成为企业 内部进行优化
开关电源中输出滤波电感的设计计算
开关电源中输出滤波电感的设计计算(图一)(图二)(图三)开关电源次级线圈上的输出电压Uo是脉冲状态(图一),要使脉冲方波变成可供电路使用的直流电,还需要对它进行平滑处理,常用的平滑电路由整流二极管、滤波电容、滤波电感构成。
(图二)㈠. 平滑处理原理(图二)中电感L在电路中既有储能作用,且对交流成分呈高阻抗,能阻止交流成分通过。
电容C1—C4对交流信号呈低阻抗,允许交流成分通过,而对直流呈高阻抗,而阻止直流通过。
感抗:XL=2πfL电感对高频成分呈高阻抗,感抗越大,对高频信号的电抗电压越大,阻止高频成分通过的能力越强。
容抗:XC=1/2πfC电容对直流呈高阻抗,能阻止直流通过,对交流成分呈低阻抗,容抗越小,交流成分就越容易通过。
(图二)中LC的乘积越大对高频成分的平滑作用越好。
为求得最佳电感量,可按下节进行设计计算。
㈡. 开关稳压电源输出的纹波噪声平滑滤波后开关电源输出波形(图三),不难看出,经过(图二)电路平滑后的直流输出中包含了一定的纹波噪声。
它分两部分:纹波:与初级输入工频频率和开关频率同步的波形即为纹波。
噪声:在纹波上的针状毛刺就是噪声。
两类波合在一起称为:纹波噪声。
㈢输出平滑处理电路中电感L的设计计算电感L的计算有如下一些公式:流过电感L的纹波电流△Il为输出电流Io的2%~5%,即:△Il=(0.02~0.05)Io ①△Il=Ton max(Umin-Vf-Vo)/L ②L= DTonmax(Umin-Vf-Vo)/ △Il ③Uo min= T(Vo max+Vf+Vl)/D ④D=Tonmax /T ⑤㈣计算实例输出电压Vo=5V 10%±输出电流Io=开关频率F=200KHz占空比D=0.42次级线圈上的最小电压:开关周期:T=1/F=1/200×103=5μs最大导通时间:Ton max=TD=5×0.42=2.1μS输出最大直流电压: Vo max=5×10%=5.5 V次级线圈上的最小电压:Umin=5×(5.5+0.2+0.4)/2.1=14.5V在一般情况下,滤波电感中通过的电流△Il的值是Io的2%~5%本例取5%根据式②L△Il= Ton max(Umin -Vf-Vomax)/ △Il=2.1(14.5-0.4-5.5)/1=18.06μH取整L=18μH通过的电流为20A。
开关电源中pfc电感设计注意事项
开关电源中pfc电感设计注意事项下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!开关电源中PFC电感设计注意事项在开关电源设计中,功率因数校正(PFC)电感是至关重要的元件之一,它有助于提高系统的能效和性能。
开关电源中计算电感过电流的大小的方法
开关电源中计算电感过电流的大小的方法标题:开关电源中计算电感过电流大小的方法开关电源是一种常见的电源供应装置,它通过快速切换开关来将直流电压转换为所需的电源输出。
在开关电源中,电感是关键元件之一,它负责储存和释放能量。
然而,由于电感的特性,当切断电流时会产生过电流现象。
为了保护开关电源和其他电路元件,我们需要计算电感过电流的大小。
下面将介绍一种常用的计算方法。
首先,我们需要了解电感过电流的原理。
当开关电源切断电流时,电感中储存的能量会引起电感电压的瞬时增加。
这个瞬时增加的电压会导致过电流的产生。
过电流的大小与电感和其它电路元件的参数有关,因此我们需要计算电感过电流的具体数值。
计算电感过电流的方法是使用电感电压方程。
电感电压方程表示为:V=L*di/dt其中,V是电感的电压,L是电感的感值,di/dt是电流变化率。
根据这个方程,我们可以计算出电感的电压,从而得出过电流的数值。
为了计算电感过电流的最大值,需要找到电感电压方程中的最大值。
这个最大值取决于电流变化率di/dt的大小。
在开关电源中,电流变化率通常是由开关管的导通和关断时间决定的。
通过调整开关管的导通和关断时间,我们可以控制电感电压的最大值,从而控制过电流的大小。
除了计算电感过电流的大小,我们还需要注意以下几点来优化开关电源的设计:1.选择合适的电感器:不同的应用场景需要不同的电感感值。
选择合适的电感器可以有效地减小过电流的大小。
2.合理设计开关管的导通和关断时间:通过合理设计开关管的导通和关断时间,可以控制电感电压的最大值,从而减小过电流的大小。
3.添加合适的保护电路:为了保护开关电源和其他电路元件,可以添加合适的保护电路,如过电流保护电路和过压保护电路。
总而言之,计算电感过电流的大小是优化开关电源设计的重要一步。
通过合理选择电感器、设计开关管导通和关断时间以及添加保护电路,可以有效地控制过电流的大小,保护开关电源和其他电路元件的安全运行。
20170426-开关电源中的电感面积积设计公式(二)
开关电源中的电感面积积设计公式(二)普高(杭州)科技开发有限公司 张兴柱 博士前面介绍的两种滤波电感面积积设计公式,是与变换器结构无关的一般性设计公式。
当结合具体的变换器结构后,其电感的面积积设计公式还可以写成更加一般的表达式,如下式: 46max )(10cm JKf B P K A W sm o L c a ××=×τ (1) 其中:L K τ是电感面积积公式中的拓扑系数。
这个公式虽然与开关电源中的变压器面积积设计公式非常类似,但L K τ、 m B 的取值、K 的取值且是不同的。
下面给出Buck 变换器中的电感面积积设计公式的推导过程。
Buck 变换器的输出滤波电感面积积设计公式:LoLv L i L电感电压和电流波形图1: Buck 变换器和其输出滤波电感的电压电流波形图1是Buck 变换器和其输出滤波电感的电压电流波形。
假定Buck 变换器的输入电压范围为max min ~g g V V ,输出电压为o V ,最大负载电流为max oL I ,开关频率为s f 。
设计时取电感电流的纹波oL L L I I I λλ==∆,其中λ为电感电流的纹波系数。
由于在Buck 变换器中的电感电流纹波为:LT D V I s o L )1(−=∆ (2) 其中:η×=g o V V D ,η为对应输入/负载下Buck 变换器的效率。
所以由(2)式,可以设计出Buck 变换器的滤波电感量:soL o L s o f I D V I T D V L λ)1()1(−=∆−= (3) 又因为:oL L oL Lpeak I I I I )21(2λ+=∆+= (4) 所以根据:m c L Lpeak B A N LI =,可得: sm L o m L Lpeak c f B N F D V B N LI A )()1(λ−== (5) 其中:λλλ21)(+=F ,m B 为电感电流峰值所对应的磁密,其选取须保证sat m B B <。
电感设计的原则
开关电源中电感设计有许多限制条件,各自都对是否成功量产有摘要:开关电源中电感设计有许多限制条件,各自都对是否成功量产有直接影响,本文是磁性元件设计教程的重要的一章,主要介绍是什么在限制着电感,高频变压器等磁性元件的设计。
原则一:电感不饱和(感值下降不超出合理范围)由磁滞回线图可以看出,H 加大时,B 值也同时增加,但H 加大到一定程度后,B 值的增加就变得越来越缓慢,直至B 值不再变化(u 值越来越小,直至为零) ,这时磁性材料便饱和了。
通常电路中使用的电感都不希望电感饱和(特殊应用除外,参看饱和电感及其在开关电源中的应用一文),其工作曲线应在饱和曲线以内,Hdc 称为直流磁场强度或直流工作点。
图 1 磁芯在直流工作点下的磁滞回线对于储能滤波电感,由于需要承受一定的直流电流(低频电流相对与高频开关电流也可视为直流),也就是存在直流工作点Hdc 不为零。
磁芯需加气隙才能承受较大的直流磁通,如下图,所以该类电感通常选用铁粉芯做磁芯(有分散气隙)。
图6.3 铁粉芯的磁导率与直流磁场强度关系图由于磁芯加了分布气隙,其饱和过程就不是一个突变而是一个渐变的过程,所以电感的不饱和问题就转化为电感感值在直流量下的合理下降问题。
对于PFC 、BOOST 、BUCK 以及DC-DC 电感,电感的取值通常由设计要求最大纹波电流(Ripple Current )来决定(通常设计指标是最大纹波电流百分比R ripple-percent)。
其中,对于BUCK 和DC-DC 电感,其直流工作点(IAVG )相对恒定,如图图 6.4 BUCK&DC-DC 电感的电流波形图RΔI max/I avg ΔI max是纹波电流峰峰值ripple-percent=这是在最大直流工作点时,所需的电感最小感值电感初始感值与最大直流工作点下感值的关系L min=L initial×u dc%其中u dc%与H dc(H dc=NI AVG/l)直接相关,只要计算出H dc,u dc%可从磁芯厂商提供的图表或计算公式得到。
降压型开关电源的储能电感计算
计算项目参数说明计算参数
1、输入直流电压输入直流电压范围V1(V) Vimax374.71
Vimin120.19
2、输出输出电压V O(V)40
输出二极管电压降Vd(V)0.7
输出电流I O(A)0.15
输出纹波电流di(A)0.005
3、确定D和f0占空比Dmin0.108617331
占空比Dmax0.338630502
基准振荡频率f min(KH Z)60
4,确定电感电感量Lmin(uH)445346.6667
临界电感量Lo(uH)4996.133333
注解:计算参数栏目和参数选择栏目下,绿色背景框的是需要填入的参数,蓝色背景框是自动计算的结对偶方程
电感方程V=Ldi/dt感应电压
电容方程I=CdV/dt充电电流
占空比D=Ton/T 或 T=1/f; Ton=T-Toff CCM模式
Dmin=(Vo+Vd)/Vimax DCM模式
Dmax=(Vo+Vd)/Vimin BCM
参数选择 uH计算公式及条件说明
265=Vinmax*整流系数 1.414
85=Vinmin*整流系数 1.414
按要求设定
按要求设定
根据要求设计
根据要求设计
0.4Dmin=(Vo+Vd)/Vimax
0.7Dmax=(Vo+Vd)/Vimin
根据芯片频率
445.3466667L=(Vimax-Vo)*D/(f*di)
数,蓝色背景框是自动计算的结果
感量与电流变化率的乘积
电容两端电压变化率与电容容量的乘积
连续电流模式
断续电流模式
临界连续模式。
开关电源的电感选择和布局布线
开关电源的电感选择和布局布线注意:所有下标的内容均用括斜弧代替,请读者留意!开关电源(SMPS, Switched-Mode Power Supply)是一种非常高效的电源变换器,其理论值更是接近100%,种类繁多。
按拓扑结构分,有Boost、Buck、Boost-Buck、Charge-pump等;按开关控制方式分,有PWM、PFM;按开关管类别分,有BJT、FET、IGBT等。
本次讨论以数据卡电源管理常用的PWM控制Buck、Boost型为主。
开关电源的主要部件包括:输入源、开关管、储能电感、控制电路、二极管、负载和输出电容。
目前绝大部分半导体厂商会将开关管、控制电路、二极管集成到一颗CMOS/Bipolar工艺的电源管理IC中,极大简化了外部电路。
其中储能电感作为开关电源的一个关键器件,对电源性能的好坏有重要作用,同时也是产品设计工程师重点关注和调试的对象。
随着像手机、PMP、数据卡为代表的消费类电子设备的尺寸正朝着轻、薄、小巧、时尚的趋势发展,而这正与产品性能越强所要的更大容量、更大尺寸的电感和电容矛盾。
因此,如何在保证产品性能的前提下,减小开关电源电感的尺寸(所占据的PCB面积和高度)是本文要讨论的一个重要命题,设计者将不得不在电路性能和电感参数间进行折中(Tradeoff)。
任何事物都具有两面性,开关电源也不例外。
坏的PCB布局布线设计不但会降低开关电源的性能,更会强化EMC、EMI、地弹(grounding)等。
在对开关电源进行布局布线时应注意的问题和遵循的原则也是本文要讨论的另一重要命题。
一开关电源占空比D、电感值L、效率η公式推导Buck型和Boost型开关电源具有不同的拓扑结构,本文将使用如图1-1、1-2所示的电路参考模型[1]:参考电路模型默认电感的DCR(Direct Constant Resistance)为零。
Buck/Boost型开关电源,伴随开关管的开和关,储能电感的电流波形如图1-3所示:从图中可以看到,电感的电流波形等价于在直流I(DC)上叠加一个I(P-P)值为ΔI的交流。
开关电源输入:共模电感,X电容,Y电容,差模电感理论计算
开关电源输入:共模电感,X电容,Y电容,差模电感理论计算引言在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。
在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。
高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。
在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。
同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。
从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。
减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。
除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。
EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。
本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。
1、EMI滤波器设计原理在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的dv/dt和di/dt,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。
所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。
设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。
基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。
如何为开关电源选择合适的电感(完整版)
如何为开关电源选择合适的电感中心议题:电感的特点降压型开关电源的电感选择升压型开关电源的电感选择解决方案:计算降压型开关电源的电感值计算升压型开关电源的电感值电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。
电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。
电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。
换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。
电感为磁性元件,自然有磁饱和的问题。
有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。
大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。
但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。
杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。
如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。
当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:1. 当电感L中有电流I流过时,电感储存的能量为:E=0.5×L×I2 (1)2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2)由此可看出,纹波电流的大小跟电感值有关。
3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。
电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。
只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源中电感的设计在开关电源的设计中电感的设计为工程师带来的许多的挑战。
工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。
本文专注于解释:电感上的DC 电流效应。
这也会为选择合适的电感提供必要的信息。
理解电感的功能电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。
虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。
在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC 输出电压。
另一端通过开关频率切换连接到输入电压或GND。
在状态1 过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。
在状态2 过程中,电感连接到GND。
由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。
如果是后一种方式,转换器就称为“同步(synchronus)”方式。
现在再考虑一下在这两个状态下流过电感的电流是如果变化的。
在状态1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。
对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。
相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。
对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。
我们利用电感上电压计算公式:V=L(dI/dt)因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。
通过电感的电流如图2 所示:通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。
上图也称为纹波电流。
根据上述的公式,我们可以计算出峰值电流:其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。
警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。
如果,器件的下降不可忽略,就要用下列公式作精确计算:同步转换电路:异步转换电路:其中,Rs 为感应电阻阻抗加电感绕线电阻的阻。
Vf 是肖特基二极管的正向压降。
R 是Rs加MOSFET 导通电阻,R=Rs+Rm。
电感磁芯的饱和度通过已经计算的电感峰值电流,我们可以发现电感上产生了什么。
很容易会知道,随着通过电感的电流增加,它的电感量会减小。
这是由于磁芯材料的物理特性决定的。
电感量会减少多少就很重要了:如果电感量减小很多,转换器就不会正常工作了。
当通过电感的电流大到电感实效的程度,此时的电流称为“饱和电流”。
这也是电感的基本参数。
实际上,转换电路中的开关功率电感总会有一个“软”饱和度。
要了解这个概念可以观察实际测量的电感Vs DC 电流的曲线:当电流增加到一定程度后,电感量就不会急剧下降了,这就称为“软”饱和特性。
如果电流再增加,电感就会损坏了。
注意:电感量下降在很多类的电感中都会存在。
例如:toroids,gapped E-cores等。
但是,rod core电感就不会有这种变化。
有了这个软饱和的特性,我们就可以知道在所有的转换器中为什么都会规定在DC 输出电流下的最小电感量;而且由于纹波电流的变化也不会严重影响电感量。
在所有的应用中都希望纹波电流尽量的小,因为它会影响输出电压的纹波。
这也就是为什么大家总是很关心DC 输出电流下的电感量,而会在Spec 中忽略纹波电流下的电感量。
为开关电源选择合适的电感电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。
电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。
电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。
换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。
电感为磁性元件,自然有磁饱和的问题。
有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。
大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。
但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。
杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。
如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。
当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:1. 当电感L 中有电流I 流过时,电感储存的能量为:E=0.5×L×I2 (1)2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2)由此可看出,纹波电流的大小跟电感值有关。
3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。
电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。
只要电感电压变化,电流变化率di/dt 也将变化;正向电压使电流线性上升,反向电压使电流线性下降。
计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。
从图1 可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。
这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。
图1:开关电源中电感电流。
纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。
降压型开关电源的电感选择为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大纹波电流、占空比。
下面以图2 为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最大纹波电流300mA。
图2:降压型开关电源的电路图。
最大输入电压值为13.2V,对应的占空比为:D=Vo/Vi=5/13.2=0.379 (3)其中,Vo为输出电压、Vi为输出电压。
当开关管导通时,电感器上的电压为:V=Vi-Vo=8.2V (4)当开关管关断时,电感器上的电压为:V=-Vo-Vd=-5.3V (5)dt=D/F (6)把公式2/3/6 代入公式2 得出:升压型开关电源的电感选择对于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。
以图3 为例进行计算,假设开关频率为300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最大纹波电流为450mA,对应的占空比为:D=1-Vi/Vo=1-5.5/12=0.542 (7)图3:升压型开关电源的电路图。
当开关管导通时,电感器上的电压为: V=Vi=5.5V(8) 当开关管关断时,电感器上的电压为: V=Vo+Vd-Vi=6.8V (9) 把公式6/7/8代入公式2 得出:请注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。
当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输出电容必须有足够大的储能容量来提供这一期间负载所需的电流。
但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。
一般而言,电感值变大,输出纹波会变小,但电源的动态响应也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果。
开关频率的提高可以让电感值变小,从而让电感的物理尺寸变小,节省电路板空间,因此目前的开关电源有往高频发展的趋势,以适应电子产品的体积越来越小的要求有了上面对电感的认识,下面就作开关电源的分析与应用:楞次定律相关内容:在直流供电的时候,由于线圈的自感作用,线圈将产生一个自感电动势,此电动势将阻碍线圈电流的增加,所以在通电的一瞬间,电路电流可以认为是0,此时电路全部压降全落在线圈上,然后电流缓慢增加,线圈端电压缓慢下降直到为零,暂态过程结束在转换器的开关运行中,必须保证电感不处在饱和状态,以确保高效率的能量存储和传递。
饱和电感在电路中等同于一个直通DC 通路,故不能存储能量,也就会使开关模式转换器的整个设计初衷功亏一篑。
在转换器的开关频率已经确定时,与之协同工作的电感必须足够大,并且不能饱和。
开关电源中的电感确定:开关频率低,由于开和关的时间都比较长,因此为了输出不间断的需要,需要把电感值加大点,这样可以让电感可以存储更多的磁场能量。
同时,由于每次开关比较长,能量的补充更新没有如频率高时的那样及时,从而电流也就会相对的小点。
这个原理也可以用公式来说明:L=(dt/di)*uLD=Vo/Vi,降压型占空比 D= 1- Vi/Vo,升压型占空比dt=D/F ,F=开关频率di=电流纹波所以得 L=D*uL /(F*di),当F 开关频率低时,就需要L 大一点;同意当L 设大时,其他不变情况下,则纹波电流di 就会相对减小在高的开关频率下,加大电感会使电感的阻抗变大,增加功率损耗,使效率降低。
同时,在频率不变条件下,一般而言,电感值变大,输出纹波会变小,但电源的动态响应(负载功耗偶尔大偶尔小,在大小变化之间相应慢)也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果问题:电感啸叫:基本理念是听觉范围内的谐波才会被听到.但是一般开关电源开关频率只要不在20K 范围内,其谐波含量均不会引起较大噪声.但是这个理论是基于开关电源开关频率比较稳定的情况下. 所以说,如果开关电源占空比不稳定,其产生的谐波就有可能在20K 之内并且幅度较大,这样就能引起听觉效应.解决方法有两个:一、从根本解决,占空比的不稳定一般是控制环路的小信号被噪声干扰.DC/DC的占空比需要调节到很稳定;二、如果是电感响,也有可能是磁芯的磁滞伸缩引起的.可对电感浸胶.。