概率统计公式大全(复习重点)说课讲解

合集下载

概率统计公式大全

概率统计公式大全

(3) 重复排列和非重复排列(有序)
一 些 常 见 对立事件(至少有一个)
排列
顺序问题
(4) 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
随 机 试 验 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
和 随 机 事 验。

试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
散型随机变量理论中所起的作用相类似。
设 X 为随机变量, x 是任意实数,则函数
F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14) 独立性
(15) 全概率公 式
若事件 A ,B 相互独立,则可得到 A 与 B , A 与 B , A 与 B 也都相互独
立。
必然事件 和不可能事件Φ 与任何事件都相互独立。
Φ 与任何事件都互斥。
概率论与数理统计 公式(全)
2011-1-1
第 1 章 随机事件及其概率
(1) 排列组合 公式
Pmn

m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n

概率统计各章节知识点总结.ppt

概率统计各章节知识点总结.ppt
概率统计各章节总结
第一章
概率的计算
1)统计定义: fn ( A) n 稳定值 P( A)
2)概率的性质:1~5
3)等可能概型:P(
A)
m n
4)条件概率:P(B
A)
k m
P( AB) P( A)
独立
5)乘法定理: P( AB) P( A)P(B A) P(A)P(B)
1 P(A B)
A AB1 U AB2
1 n
n k 1
Xk
P
p
X1, X 2 , , X n , 相互独立
E( Xk ) 同分布
1
n
n k 1
Xk
P
n
X1 , X 2 , , X n , 相互独立
X k n 近似
同分布E( X k ) D( X k ) 2 k1 n
~ N (0,1)
Xn ~ B(n, p)
Xn np
X ~ N (, 2 ) Th1 X ~ N (, 2 n),
Th2
X1, X 2 , , X n (n 1)S 2 2 ~ 2(n 1) 独立
X , S 2
1n X n i1 X i
S 2
1 n1
n i 1
(Xi
X )2
X ~ t(n 1)
Sn
第六章
常用统计量及抽样分布
2统计量
6)全概率公式:P( A) P(B1 )P( A B1 ) P(B2 )P( A B2 )
7)贝叶斯公式:P(B1
A)
P(B1 )P( A B1 ) P( A)
A
B1
互斥
B2
第二章
随机变量概率分布
离散型随机变量
连续型随机变量

概率统计公式大全

概率统计公式大全

概率统计公式大全第1章随机事件及其概率P(A) =P(B 1)P(A| B 1) P(B 2)P(A| B 2)P(B n )P(A|B n )。

我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发 生或A 不发生;n次试验是重复进行的,即A 发生的 概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否公式2°则有nA二B ii -4(16 设事件B 1, 1。

B 1, P(Bi)>0,—, B 2,…, B 2 •… 2 •…B n及A 满足Bn两两互不相贝叶斯 nA B i,且 P(A)公式 (用于 求后验P(B i /A)nP(B i )P (A/Bi),i=1 , 2, •…n o、P(B j)P(A/B j)此公式即为贝叶斯公式。

驴i), (“1, 率 o P( B i/ A), 后验概率 o 的概率规律,并作出了由果溯因”的 推断。

2,…,ni =1 2(17)伯努利第二章随机变量及其分布P k二 1 (1) P k_o ,kT2, (2) k.( 1) 离散型随机变量的 分布X对于连续型随机变量 , F(x) = f(x)dxa4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) =P(X沁)称为随机变量X 的分布函数,本质上是一个累积函数。

P(a XEb) =F(b)—F(a)可以得到X 落入区 间(a,b ]的概率。

分布函数F(x)表示随机变量 落入区间(-X, x ]的概率。

分布函数具有如下性质:1° 2°岂 F (x)乞 1, -二::x ::二; F(x)是单调不减的函数,即-X2时, 有34° 5°F(X 1)二 F (X 2);F(-::)二 Jim F(x) = 0 , F(二)二 JimF(x)二 1 ; 即F(x)是右连续的;F(x 0HF(x), P(X = x) = F(x) _ F(x _0)。

北师大版五年级上册数学《总复习:_统计与概率》说课稿

北师大版五年级上册数学《总复习:_统计与概率》说课稿

尊敬的评委、老师们:大家好!我是北师大版五年级上册数学《总复习:统计与概率》的说课人。

今天,我将和大家一起回顾和梳理本册书中的统计与概率知识点,以及我在教学过程中的实践与思考。

一、教材分析北师大版五年级上册数学《总复习:统计与概率》主要包括以下内容:1. 统计:收集、整理、描述数据,学会用图表表示数据,了解不同类型的统计图的特点和作用。

2. 概率:认识概率,学会用概率表示事件发生的可能性,了解随机事件、必然事件和不可能事件的概念,掌握一些基本的概率计算方法。

二、学情分析五年级的学生已经具备了一定的统计和概率基础知识,他们在三年级和四年级的学习中,已经接触过条形统计图、折线统计图和扇形统计图等,对统计图的特点和作用有一定的了解。

同时,他们在四年级学习了可能性,对随机事件、必然事件和不可能事件有了初步的认识。

因此,在学习本册书的内容时,学生可以借助已有的知识经验,更好地理解和掌握统计与概率的知识。

三、教学目标1. 知识与技能:学生能够熟练地收集、整理、描述数据,学会用不同的统计图表示数据,了解统计图的特点和作用。

学生能够理解概率的概念,学会用概率表示事件发生的可能性,掌握一些基本的概率计算方法。

2. 过程与方法:学生通过独立思考、合作交流,学会从实际问题中提出统计和概率问题,提高分析问题和解决问题的能力。

3. 情感态度与价值观:学生体验统计和概率在生活中的应用,感受数学与生活的密切联系,培养对数学的兴趣和好奇心。

四、教学重难点1. 教学重点:学生能够掌握不同类型的统计图的特点和作用,学会用统计图表示数据。

学生能够理解概率的概念,学会用概率表示事件发生的可能性,掌握一些基本的概率计算方法。

2. 教学难点:学生能够从实际问题中提出统计和概率问题,并运用所学知识解决实际问题。

五、教学策略1. 情境导入:通过生活实例,引发学生对统计和概率的兴趣,激发学生的学习动机。

2. 自主探究:引导学生独立思考,培养学生自主学习的能力。

概率统计公式大全汇总

概率统计公式大全汇总

概率统计公式大全汇总概率统计是一门研究随机现象的理论和方法的学科,它包含了许多重要的公式和定理。

在这篇文章中,我将给出一些概率统计的重要公式的概览,以便复习和总结。

1.概率的基本公式概率是指事件发生的可能性,可以通过以下公式计算:P(A)=n(A)/n(S)其中,P(A)是事件A发生的概率,n(A)是事件A的样本空间中有利结果的个数,n(S)是样本空间中所有可能结果的个数。

2.加法准则当事件A和事件B不相容时,其和事件的概率可以通过以下公式计算:P(A∪B)=P(A)+P(B)如果事件A和事件B是相容的,则有:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法准则当事件A和事件B是相互独立的时,其交事件的概率可以通过以下公式计算:P(A∩B)=P(A)*P(B)如果事件A和事件B不是相互独立的,则有:P(A∩B)=P(A)*P(B,A)4.条件概率条件概率是指在已知一些事件发生的条件下,另一个事件发生的概率。

条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)5.全概率公式全概率公式用于计算在多个事件的情况下一些事件的概率。

根据全概率公式,可以将一些事件划分为几个互不相容的子事件,然后分别计算每个子事件的概率,并将其加权求和。

全概率公式如下:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)其中,B1、B2、..、Bn表示将样本空间划分的互不相容的子事件。

6.贝叶斯公式贝叶斯公式描述了在已知B发生的条件下,事件A发生的概率。

根据贝叶斯公式,可以通过条件概率、全概率和边际概率来计算后验概率。

贝叶斯公式如下:P(A,B)=P(B,A)*P(A)/P(B)7.期望值期望值是随机变量的平均值,表示随机变量在每个可能取值上的发生概率乘以对应的取值,并将其加权求和。

期望值可以通过以下公式计算:E(X)=Σ(x*P(X=x))其中,x表示随机变量的取值,P(X=x)表示随机变量取值x的概率。

概率论公式汇总及口诀记忆法

概率论公式汇总及口诀记忆法

协方差 cov( X , Y ) E( X E ( X ))(Y E (Y ))
E( XY ) E( X ) E(Y )

相关系数
1 D( X Y ) D( X ) D(Y ) 2
XY
cov( X , Y ) D( X ) D(Y )
梅花香自苦寒来,岁月共理想,人生气高飞! 第 6 页 共 6 页
i 1 i i
n
4.随机变量及其分布 分布函数计算
P ( a X b) P ( X b) P ( X a ) F (b) F (a)
5.离散型随机变量 (1) 0 – 1 分布
P( X k ) p k (1 p)1k , k 0,1
(2) 二项分布 B(n, p) 若P ( A ) = p

( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 1 2 2 1 2 2 (1 2 ) 22 1
x , y
9. 二维随机变量的 条件分布
f ( x, y) f X ( x) fY X ( y x) fY ( y ) f X Y ( x y )
(2) 指数分布
E ( )
x e , x 0 f ( x) 其他 0,
x0 0, F ( x) x 1 e , x 0
(3) 正态分布
N ( , 2 )
( x )2 2 2
1 f ( x) e 2
x
F ( x, y)
x


y
f (u, v)dvdu
边缘分布函数与边缘密度函数
FX ( x)

概率与统计学中的关键公式整理

概率与统计学中的关键公式整理

概率与统计学中的关键公式整理在概率与统计学中,有许多重要的公式被广泛应用于数据分析、推断和决策过程中。

这些公式能够帮助我们对数据进行有效的统计分析,并从中获取有用的信息。

本文将对概率与统计学中的关键公式进行整理和介绍,帮助读者更好地理解和运用这些公式。

一、概率公式1. 条件概率公式条件概率是指在给定某个条件下,事件发生的概率。

条件概率可以使用以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

2. 边际概率公式边际概率是指在多个事件中某一个事件发生的概率。

边际概率可以使用以下公式计算:P(A) = ∑ P(A∩Bi)其中,P(A)表示事件A发生的概率;P(A∩Bi)表示事件A和事件Bi同时发生的概率;∑表示对所有可能的事件Bi求和。

3. 联合概率公式联合概率是指多个事件同时发生的概率。

联合概率可以使用以下公式计算:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)其中,P(A∩B)表示事件A和事件B同时发生的概率;P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B)表示事件B发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率。

二、统计学公式1. 期望值公式期望值是指随机变量的平均值,可以用来衡量数据的中心趋势。

期望值可以使用以下公式计算:E(X) = ∑ (xi * P(xi))其中,E(X)表示随机变量X的期望值;xi表示随机变量X可能取的值;P(xi)表示随机变量X取值为xi的概率;∑表示对所有可能的取值xi求和。

2. 方差公式方差是衡量数据的离散程度,可以用来评估数据的分散程度。

方差可以使用以下公式计算:Var(X) = E((X-μ)^2)其中,Var(X)表示随机变量X的方差;E表示期望值;X表示随机变量X的取值;μ表示随机变量X的期望值。

高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。

本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。

一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。

对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。

2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。

对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。

2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。

对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。

概率与统计公式

概率与统计公式

概率与统计公式概率与统计是数学的重要分支之一,它们在许多领域中都有着广泛的应用。

本文将介绍一些常用的概率和统计公式,以帮助读者更好地理解和应用这些知识。

一、概率公式概率是描述某一事件发生可能性的数值。

下面是一些常用的概率公式:1. 事件的概率事件的概率可以通过以下公式来计算:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A中有利结果的个数,n(S)表示样本空间中可能结果的总数。

2. 互斥事件的概率互斥事件指的是两个事件之间不可能同时发生的情况。

互斥事件的概率可以通过以下公式来计算:P(A 或 B) = P(A) + P(B)其中,P(A)和P(B)分别表示事件A和事件B发生的概率。

3. 独立事件的概率独立事件指的是两个事件之间相互独立,一个事件的发生不会影响另一个事件的发生。

独立事件的概率可以通过以下公式来计算:P(A 和 B) = P(A) × P(B)其中,P(A)和P(B)分别表示事件A和事件B发生的概率。

二、统计公式统计是一种通过数据收集、整理和分析来描述和推断总体特征的方法。

下面是一些常用的统计公式:1. 均值公式均值是一组数据的平均数,可以通过以下公式来计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂到xn表示数据点的值,n表示数据点的个数。

2. 方差公式方差是一组数据的离散程度的量度,可以通过以下公式来计算:variance = [(x₁ - mean)² + (x₂ - mean)² + ... + (xn - mean)²] / n其中,x₁、x₂到xn表示数据点的值,mean表示均值,n表示数据点的个数。

3. 标准差公式标准差是一组数据离散程度的更常用的量度,可以通过方差的平方根来计算:standard_deviation = √variance其中,variance表示方差。

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,为不可能事件。

不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

概率统计公式大全

概率统计公式大全

概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。

在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。

1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。

(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。

3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。

(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。

4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。

(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。

概率论与数理统计说课讲解

概率论与数理统计说课讲解

如果试验是测试某灯泡的寿命:
则样本点是一非负数,由于不能确知寿命的上界,
所以可以认为任一非负实数都是一个可能结果,故
样本空间
S = {t :t ≥0}
例1写出下列随机试本验空的间 . 样
概率论
E 1:抛一 ,观 枚 察 H 硬 和 正 币 T 反 出 面 面 现 .
S1 : H,T
E7 : 将一枚硬币抛掷三次,观察正面 H 出现的次数.
如在掷骰子试验中,观察掷出的点数 .
则样本空间 S={(H,H), (H,T), (T,H), (T,T)} 第1次 第2次
(H,H): H (H,T): H
(T,H):
T
(T,T): T
H
T
在每次试验中必有
H
一个样本点出现且仅
有一个样本点出现 .
T
概率论
若试验是将一枚硬币抛掷两次,观察正面出现 的次数:则样本空间
S0,1,2
由以上两个例子可见,样本空间的元素是由试验的 目的所确定的.
概率论在物理、化学、生物、生态、天文、 地质、医学等学科中,在控制论、信息论、电子 技术、预报、运筹等工程技术中的应用都非常广 泛。
概率论
第一章 随机事件及其概率
• 自然界和社会上发生的现象是多种多样的.在 观察、分析、研究各种现象时,通常我们将它们 分为两类:
(1)可事前预言的,即在准确地重复某些条件下, 它的结果总是肯定的,或者根据它过去的状况, 在相同条件下完全可以预言将来的发展,例如, 在标准大气压下,纯水加热到100℃必然沸腾;向 空中抛掷一颗骰子,骰子必然会下落;在没有外 力作用下,物体必然静止或作匀速直线运动;太 阳每天必然从东边升起,西边落下等等,称这一 类现象为确定性现象或必然现象.

概率统计公式大全

概率统计公式大全

概率统计公式大全概率统计是一门研究事件发生的可能性及其规律性的学科。

它以概率论为基础,通过概率模型和统计方法对随机现象进行建模、分析和预测。

在概率统计中,有很多重要的公式和定理,下面将简单介绍几个常用的公式。

1.加法原理加法原理是计算多个事件并集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的并集事件的概率可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。

2.乘法原理乘法原理是计算多个事件交集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的交集事件的概率可以表示为P(A∩B)=P(A)*P(B,A),其中P(B,A)表示在事件A发生的条件下事件B发生的概率。

3.条件概率条件概率是指在其中一事件已经发生的条件下,另一事件发生的概率。

条件概率可以表示为P(A,B)=P(A∩B)/P(B),其中P(B)不为0。

4.全概率公式全概率公式是计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。

5.贝叶斯定理贝叶斯定理是利用条件概率和全概率公式来计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(Bi,A)=P(A,Bi)*P(Bi)/(P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn))。

6.期望值期望值是度量随机变量平均取值的重要统计量,它可以表示为E(X)=∑x*P(X=x),其中x为随机变量X的取值,P(X=x)为X取值为x的概率。

7.方差方差是衡量随机变量取值的波动性的统计量,它可以表示为Var(X)= E((X - E(X))^2),其中E(X)为随机变量X的期望值。

概率与统计学的主要公式及解题技巧

概率与统计学的主要公式及解题技巧

一、基本概率公式及分布1、概率常用公式:P(A+B)=P(A)+P(B)-P(AB);P(A-B)=P(A)-P(AB);如A 、B 独立,则P(AB)=P(A)P(B);P(A )=1-P(A);B 发生的前提下A 发生的概率==条件概率:P(A|B)=P(AB)P(B);或记:P(AB)=P(A|B)*P(B);2、随机变量分布律、分布函数、概率密度分布律:离散型X 的取值是x k (k=1,2,3...),事件X=x k 的概率为:P{X=x k }=P k ,k=1,2,3...;---既X 的分布律;X X1X2....xn PkP1P2...pnX 的分布律也可以是上面的表格形式,二者都可以。

分布函数:F(x)=P{X ≤x},-∞ t ∞;是概率的累积!P(x1<X<x2)=F(x2)-F(x1);P{X>a}=1-P{X<a}离散型rv X;F(x)=P{X ≤x}=x k tp k ;(把X<x 的概率累加)连续型rvX ;F(x)=−∞xf x dx ,f(x)称密度函数;既分布函数F(X)是密度函数f(x)和X 轴上的(-∞,x)围成的面积!性质:F(∞)=1;F(−∞)=0;二、常用概率分布:①离散:二项分布:事件发生的概率为p,重复实验n次,发生k 次的概率(如打靶、投篮等),记为B(n,p)P{X=k}=n k p k(1−p)n−k,k=0,1,2,...n;E(X)=np,D(X)=np(1-p);②离散:泊松分布:X~Π(λ)P{X=k}=λk e−λk!,k=0,1,2,...;E(X)=λ,D(X)=λ;③连续型:均匀分布:X在(a,b)上均匀分布,X~U(a,b),则:密度函数:f(x)=1b−a,a t0,其它=0,x x−a b−a1,x≥b,a t分布函数F(x)=−∞x f x dx④连续型:指数分布,参数为θ,f(x)=1θe−xθ,0 t0,其它F(x)=1−e−xθ0,x 0;⑤连续型:正态分布:X~N(μ,σ2),most importment!密度函数f(x),表达式不用记!一定要记住对称轴x=µ,E(X)=µ,方差D(X)=σ2;当µ=0,σ2=1时,N(0,1)称标准正态,图形为:分布函数F(x)为密度函数f(x)从(-∞,x)围成的面积。

概率说课稿(说课稿)范文

概率说课稿(说课稿)范文

概率说课稿(说课稿)范文今天我说课的内容是《概率》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1、《概率》是人教版小学数学六年级下册第六单元第4课时的内容。

它是在学生已经学习了基本的数学运算和统计方面的知识基础上进行教学的,是小学数学领域中的重要知识点,而且概率在日常生活中有着广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解概率的定义和基本概念,掌握概率的计算方法。

②能力目标:培养学生运用概率进行问题求解的能力。

③情感目标:培养学生对概率的兴趣,增强学生对数学的积极态度。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解概率的定义和基本概念,掌握概率的计算方法。

难点是:运用概率进行问题求解。

二、说教法学法针对本节课的特点和教学目标,我采用了以下教法和学法:教法:情境导入法、示例引导法、练习巩固法。

学法:合作学习法、探究学习法。

三、说教学准备在教学过程中,我准备了多媒体课件和实物道具,以直观呈现教学素材,增加学生的学习兴趣,提高教学效果。

四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。

环节一、情境导入,引起学生兴趣。

我将以一个有趣的问题导入课程:“小明买彩票中奖的概率是多少?”。

通过该问题激发学生的思考和好奇心,进而引出本节课的主题——概率。

环节二、概念讲解,概率的计算。

我会通过实物道具和多媒体课件向学生展示一组由红、蓝两种颜色的小球组成的袋子,然后引导学生进行实际操作,了解概率的定义和计算方法。

我会结合具体的示例和练习,让学生逐步掌握概率的计算方法。

环节三、合作探究,问题求解。

我将让学生以小组合作的形式解决一些与概率相关的问题,通过合作讨论和思考,培养学生的问题解决能力和合作意识。

我会适时给予指导和反馈,引导学生正确思考和解决问题。

数学概率统计重点知识点详解

数学概率统计重点知识点详解

数学概率统计重点知识点详解2023年,数学概率统计依然是大学生必修课程。

在这门课程中,学生将学习各种数学概率和统计方法,以及如何将它们应用到现实生活中的问题中。

以下是数学概率统计的重点知识点详解。

一、概率论1、基本概率公式基本概率公式是指一个事件发生的概率等于这个事件发生的次数除以总的实验次数。

例如,一个硬币掷5次正面向上的概率是多少?假设每次掷硬币是独立的,则该事件的概率为 (1/2)^5=1/32。

2、独立事件在概率论中,独立事件指两个或多个事件之间没有联系,这意味着其中一个事件的发生与其他事件的发生没有关联。

例如,在掷硬币的例子中,每次掷硬币的结果都是独立事件。

3、条件概率条件概率是指在一个给定事件的前提下,另一个事件发生的概率。

例如,在问答游戏中,有50%的概率回答正确,知道前一个问题回答正确后,后一个问题回答正确的概率将得到提高。

因此,条件概率为 0.5。

4、期望值期望值是一组事件的平均值,它是每个事件的结果乘以概率的总和。

例如,假设你要掷两个骰子,每次掷骰子都有6个面,你想知道掷两个骰子的平均点数是多少。

你可以将每个点数与概率相乘,然后将它们加在一起。

结果表明,平均点数为 7。

5、方差方差是一组事件的差异,它是每个结果与平均值之间的差异的平方的总和。

例如,对于掷两个骰子的例子,如果你希望知道其方差,则可以计算每个点数与平均点数的差异,然后将其平方并相加。

结果表明,方差为(1-7)^2+(2-7)^2+(3-7)^2+(4-7)^2+(5-7)^2+(6-7)^2=17.5。

二、统计学1、频率分布频率分布是指一组数据中每个数据点的出现次数。

例如,考虑一组学生的测验成绩,你可以计算每个分数的出现次数,并将其组成频率分布表。

2、中心趋势在统计学中,中心趋势被用来衡量数据的平均值,它有三种主要的衡量方法:平均值、中位数和众数。

平均值是一组数据的所有数的总和除以这组数据的数量。

中位数是一组数据中间的值,它把数据分为一半。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率〔1〕排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

〔2〕加法和乘法原理加法原理〔两种方法均能完成此事〕:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理〔两个步骤分别不能完成这件事〕:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

〔3〕一些常见排列重复排列和非重复排列〔有序〕对立事件〔至少有一个〕顺序问题〔4〕随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

〔5〕根本领件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的局部事件组成的。

这样一组事件中的每一个事件称为根本领件,用ω来表示。

根本领件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的局部点〔根本领件ω〕组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必定事件,Ø为不可能事件。

不可能事件〔Ø〕的概率为零,而概率为零的事件不肯定是不可能事件;同理,必定事件〔Ω〕的概率为1,而概率为1的事件也不肯定是必定事件。

〔6〕事件的关系与运算①关系:如果事件A的组成局部也是事件B的组成局部,〔A发生必有事件B发生〕:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的局部所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率说课稿(说课稿)

概率说课稿(说课稿)

概率说课稿(说课稿)概率说课稿引言概述:概率是数学中的一个重要分支,它研究的是随机现象的规律性。

概率在现实生活中有着广泛的应用,如天气预报、股票市场分析、医学诊断等。

本文将从概率的基本概念、概率的计算方法、概率的应用、概率的实际案例和概率的发展趋势等五个方面,详细阐述概率的相关内容。

一、概率的基本概念:1.1 概率的定义:概率是指某一事件发生的可能性大小,用一个介于0和1之间的数表示。

1.2 概率的基本性质:概率是非负的,且所有可能事件的概率之和为1。

1.3 概率的分类:概率可以分为经典概率、几何概率和统计概率等不同类型。

二、概率的计算方法:2.1 经典概率的计算:经典概率是指在样本空间中,所有可能事件发生的概率相等的情况下,计算某一事件发生的概率。

2.2 条件概率的计算:条件概率是指在已知某一事件发生的条件下,计算另一事件发生的概率。

2.3 事件的独立性:独立事件是指两个或多个事件之间互不影响,计算独立事件的概率可以通过乘法原理进行计算。

三、概率的应用:3.1 概率在天气预报中的应用:根据历史数据和气象模型,通过计算概率可以预测未来一段时间内的天气情况。

3.2 概率在股票市场分析中的应用:根据历史数据和技术指标,通过计算概率可以评估股票价格的涨跌概率,辅助投资决策。

3.3 概率在医学诊断中的应用:根据患者的症状和检查结果,通过计算概率可以评估患某种疾病的可能性,辅助医学诊断。

四、概率的实际案例:4.1 蒙特卡洛方法:蒙特卡洛方法是一种基于概率的数值计算方法,通过随机抽样和统计分析,模拟复杂系统的行为。

4.2 随机森林算法:随机森林是一种基于概率的机器学习算法,通过构建多个决策树并进行投票,提高模型的预测准确性。

4.3 马尔科夫链:马尔科夫链是一种基于概率的数学模型,描述状态之间的转移概率,广泛应用于自然语言处理和图像处理等领域。

五、概率的发展趋势:5.1 大数据时代的概率应用:随着大数据技术的发展,概率在数据分析和决策支持中的应用将更加广泛。

概率论与数理统计必背公式

概率论与数理统计必背公式

概率论与数理统计必背公式在概率论与数理统计中,掌握好一些重要的公式是非常重要的,这些公式可以帮助我们解决问题、推导证明以及计算概率和统计量。

下面将介绍一些必须掌握的概率论与数理统计的重要公式。

一、概率论公式:1.加法定理:如果事件A和B是互不相容的(即A和B不会同时发生),则它们的和事件的概率为P(A∪B)=P(A)+P(B)。

2.条件概率公式:对于两个事件A和B,A在给定B发生的条件下发生的概率定义为P(A,B)=P(A∩B)/P(B)。

3.乘法定理:对于两个事件A和B,其交事件的概率可以通过条件概率公式来计算,即P(A∩B)=P(A,B)*P(B)。

4.全概率公式:如果事件B1,B2,...,Bn是一组互不相容的且其并集为样本空间(即事件B1∪B2∪...∪Bn=S),则对于事件A,它的概率可以通过条件概率公式和全概率公式来计算,即P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。

5.贝叶斯公式:贝叶斯公式是条件概率公式的推广,对于事件A和B,其交事件的概率可以通过贝叶斯公式来计算,即P(A,B)=P(B,A)*P(A)/P(B)。

二、数理统计公式:1.期望:对于一组随机变量X,其期望(也称为均值)定义为E(X)=ΣX*P(X),即随机变量X乘以其概率的和。

2. 方差:对于一组随机变量X,其方差定义为Var(X) = E((X - μ)^2),其中μ为X的期望。

3. 协方差:对于两组随机变量X和Y,其协方差定义为Cov(X,Y) = E((X - μx)(Y - μy)),其中μx和μy分别为X和Y的期望。

4. 标准差:对于一组随机变量X,其标准差定义为σ = √Var(X),即方差的平方根。

5. 协方差矩阵:对于多组随机变量X1,X2,...,Xn,其协方差矩阵定义为Cov(X) = [Cov(Xi,Xj)],其中i和j分别表示第i组和第j组随机变量。

人教九上数学《概率》复习示范课(实录+课件+教案+说课)

人教九上数学《概率》复习示范课(实录+课件+教案+说课)

《概率》复习说课稿一、说教材:1、说教材的地位和作用:《概率》是人教版新教材九年级上册第二十五章的内容。

概率与人们的日常生活密切相关,应用十分广泛。

因此,初中教材增加了这部分内容。

了解和掌握一些概率统计的基本知识,是学生初中毕业后参加实际工作的需要,也是高中进一步学习概率统计的基础,在教材中处于非常重要的位置。

2、说目标:在素质教育背景下的数学教学应以学生的发展为本,学生的能力培养为重,同时从知识教学、技能培训等方面,根据学生已有的认知结构及教材的地位、作用,依据课程标准确定本课的教学目标如下:知识与技能目标:能够准确区分三类事件(必然事件、不可能事件、确定性事件);在具体情境中了解概率的意义;能够熟练地用树形图法或列表法计算某个事件发生的概率;用频率估计概率。

过程与方法目标:经历列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。

渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。

情感与态度目标:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。

3、教学重点和难点:重点:熟练地用列表法和树形图法计算事件发生的概率。

难点:利用概率知识正确理解现实生活中的实际问题。

二、说教学方法:根据本节课教学内容的特点和学生的实际情况,在教学过程中采用了启发和探究相结合的教学方法,并利用多媒体辅助教学,增强课堂实例的直观性和启发性。

三、说教学过程:【1】激情导入:【2】自主学习:【3】概率与中考牵手:【4】生活中的概率:【5】拓展延伸:【6】小结本节课是一节复习课,在复习课上学生们往往没有新授课上情绪高,因此调动学生的学习兴趣是本节课学生高效参与课堂的首要任务,我通过激情透露大乐透的中奖,激发学生的学习兴奋点,为本节课学生高效参与做好情绪的调动。

概率和中考牵手以及生活中的概率这两部分题主要是帮助学生学会应用概率知识,会用列表或画树形图解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

A、B同时发生:A I B,或者AB。

A I B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。

基本事件是互不相容的。

Ω-A称为事件A的逆事件,或称A的对立事件,记为A。

它表示A 不发生的事件。

互斥未必对立。

②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:YI∞=∞==11iiii AABABA IY=,BABA YI=(7)概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件1A,2A,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(iiii APAP Y常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1°{}nωωωΛ21,=Ω,2°nPPPn1)()()(21===ωωωΛ。

设任一事件A,它是由mωωωΛ21,组成的,则有P(A)={})()()(21mωωωYΛYY =)()()(21mPPPωωω+++Λnm=基本事件总数所包含的基本事件数A=(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。

对任一事件A,)()()(Ω=LALAP。

其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当B⊂A时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B)=1- P(B)(12)条件概率定义设A、B是两个事件,且P(A)>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1⇒P(B/A)=1-P(B/A)(13)乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…A n,若P(A1A2…A n-1)>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A。

(14)独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的。

若事件A、B相互独立,且0)(>AP,则有)()()()()()()|(BPAPBPAPAPABPABP===若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。

必然事件Ω和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式设事件n BBB,,,21Λ满足1°n BBB,,,21Λ两两互不相容,),,2,1(0)(niBP iΛ=>,2°Y niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++=Λ。

(16)贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n,2°Y niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n。

此公式即为贝叶斯公式。

)(iBP,(1=i,2,…,n),通常叫先验概率。

)/(ABPi,(1=i,2,…,n),通常称为后验概率。

贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯我们作了n次试验,且满足努利概型◆ 每次试验只有两种可能结果,A 发生或A 不发生; ◆ n 次试验是重复进行的,即A 发生的概率每次均一样; ◆ 每次试验是独立的,即每次试验A 发生与否与其他次试验A发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,k n k kn n q p k P C -=)(,n k ,,2,1,0Λ=。

第二章 随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。

相关文档
最新文档