概率统计公式大全

合集下载

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学中研究随机事件的理论,它用于描述事件发生的可能性,并通过概率的计算和分析来预测、评估和决策。

下面给出一些概率论中常用的公式,帮助你更好地理解和运用概率论。

1.概率定义公式:P(A)=N(A)/N,表示事件A发生的概率,N(A)代表事件A发生的次数,N代表试验的总次数。

2.互补事件公式:P(A')=1-P(A),表示事件A的补事件发生的概率。

3.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),表示事件A或B发生的概率。

4.独立事件公式:P(A∩B)=P(A)*P(B),表示事件A和事件B同时发生的概率,当事件A和事件B相互独立时成立。

5.条件概率公式:P(A,B)=P(A∩B)/P(B),表示事件B已经发生时事件A发生的概率。

6.乘法公式:P(A∩B)=P(A,B)*P(B),也可以写作P(A∩B)=P(B,A)*P(A),表示事件A和事件B同时发生的概率。

7.全概率公式:P(A)=ΣP(A,Bᵢ)*P(Bᵢ),表示事件A发生的概率,Bᵢ代表一组互不相容且构成样本空间的事件。

8.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A),表示在事件A发生的条件下,事件B发生的概率。

9.随机变量的概率公式:P(X=x)≥0,表示随机变量X取值为x的概率非负。

10.随机变量期望公式:E(X)=ΣxP(X=x)*x,表示随机变量X的期望或均值。

11.随机变量方差公式:Var(X) = E[(X - µ)²],表示随机变量X的方差,其中µ为X的期望。

12.二项分布公式:P(X=k)=C(n,k)*p^k*q^(n-k),表示n次独立重复实验中,事件发生k次的概率,其中,C(n,k)为组合数,p为事件发生的概率,q为事件不发生的概率。

13.泊松分布公式:P(X=k)=e^(-λ)*(λ^k)/k!,表示单位时间或空间中,事件发生了k次的概率,λ为事件发生率。

概率统计公式大全

概率统计公式大全

概率统计公式大全第1章随机事件及其概率P(A) =P(B 1)P(A| B 1) P(B 2)P(A| B 2)P(B n )P(A|B n )。

我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发 生或A 不发生;n次试验是重复进行的,即A 发生的 概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否公式2°则有nA二B ii -4(16 设事件B 1, 1。

B 1, P(Bi)>0,—, B 2,…, B 2 •… 2 •…B n及A 满足Bn两两互不相贝叶斯 nA B i,且 P(A)公式 (用于 求后验P(B i /A)nP(B i )P (A/Bi),i=1 , 2, •…n o、P(B j)P(A/B j)此公式即为贝叶斯公式。

驴i), (“1, 率 o P( B i/ A), 后验概率 o 的概率规律,并作出了由果溯因”的 推断。

2,…,ni =1 2(17)伯努利第二章随机变量及其分布P k二 1 (1) P k_o ,kT2, (2) k.( 1) 离散型随机变量的 分布X对于连续型随机变量 , F(x) = f(x)dxa4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) =P(X沁)称为随机变量X 的分布函数,本质上是一个累积函数。

P(a XEb) =F(b)—F(a)可以得到X 落入区 间(a,b ]的概率。

分布函数F(x)表示随机变量 落入区间(-X, x ]的概率。

分布函数具有如下性质:1° 2°岂 F (x)乞 1, -二::x ::二; F(x)是单调不减的函数,即-X2时, 有34° 5°F(X 1)二 F (X 2);F(-::)二 Jim F(x) = 0 , F(二)二 JimF(x)二 1 ; 即F(x)是右连续的;F(x 0HF(x), P(X = x) = F(x) _ F(x _0)。

概率统计公式大全(复习重点)汇总情况

概率统计公式大全(复习重点)汇总情况

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。

本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。

一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。

例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。

解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。

2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。

解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。

二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列【重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

^这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

高中数学《概率与统计》重要公式

高中数学《概率与统计》重要公式

高中数学《概率与统计》重要公式1.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).2.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B).3.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).4.等可能性事件的概率()m P A n=. 5.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n k n n P k C P P -=- 6.互斥事件A ,B 分别发生的概率的和P(A +B)=P(A)+P(B).7.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=; (2)121P P ++=.8.数学期望的性质(1)()()E a b aE b ξξ+=+.(2)若ξ~(,)B n p ,则E np ξ=.(3) 若ξ服从几何分布,且1()(,)k P k g k p qp ξ-===,则1E pξ=. 9.数学期望 1122n n E x P x P x P ξ=++++ 10.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+11.方差的性质(1)()2D a b a D ξξ+=; (2)若ξ~(,)B n p ,则(1)D np p ξ=-.(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则2q D pξ=. 12.方差与期望的关系()22D E E ξξξ=-.13.标准差 σξ=ξD .14.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞. 15.正态分布密度函数 ()()()2226,,x f x x μ--=∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.16.对于2(,)N μσ,取值小于x 的概率()x F x μσ-⎛⎫=Φ ⎪⎝⎭. ()()()12201x x P x x P x x x P <-<=<<()()21F x F x =-21x x μμσσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭. 17.相关系数 ()()ni ix x y y r --=∑ ()()n i i x x y y --=∑|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.18.回归直线方程y a bx =+,其中()()()1122211n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑.。

概率统计公式大全

概率统计公式大全

A B
(6) 事件的关 系与运算 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B: A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可 表示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
(3) 一些常见 排列 (4) 随机试验 和随机事 件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有 如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 (5) 基本事件、 这样一组事件中的每一个事件称为基本事件,用 来表示。 样 本 空 间 基本事件的全体,称为试验的样本空间,用 表示。 一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母 和事件 A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :
(15) 全概率公 式
A Bi
i 1
n

P( A) P( B1) P( A | B1) P( B2) P( A | B2) P( Bn) P( A | Bn) 。
设事件 B1 , B 2 ,…, Bn 及 A 满足 1° B1 , B 2 ,…, Bn 两两互不相容, P( Bi) >0, i 1,2,…, n ,

概率统计公式大全

概率统计公式大全
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=Φ,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)
连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)
古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)=P =
(9)
几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
直接判断,充要条件:
①联合概率密度函数可分离变量。
②正概率密度区间为矩形。
二维正
态分布
其中 是5个参数
随机变量
的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:

概率统计公式大全

概率统计公式大全

概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。

在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。

1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。

(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。

3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。

(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。

4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。

(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但和随机事件在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事①关系:件的关系与运算如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全

概率统计公式大全

概率统计公式大全第1章随机事件及其概率行,而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出 现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

在一个试验下,不管事件有多少个,总 可以从其中找出这样一组事件,它具有 如下性质:① 每进行一次试验,必须发生且只能发 生这一组中的一个事件;② 任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本 事件,用”来表示。

基本事件的全体,称为试验的样本空间, 用°表示。

一个事件就是由"中的部分点(基本事 件小 组成的集合。

通常用大写字母儿 B,C,…表示事件,它们是©的子集。

为必然事件,0为不可能事件。

不可能事件(0)的概率为零,而概率为 零的事件不一定是不可能事件;同理, 必然事件(Q )的概率为1,而概率为1随机试 验和随 机事件 (5)基本事件、样本空间和事件第二章随机变量及其分布设离散型随机变量X 的可能取值为 X(k=1,2,…)且取各个值的概率,即事件 (X=X<)的概率为P(X=x<)=p k , k=1,2,…,则称上式为离散型随机变量X 的概率 分布或分布律。

有时也用分布列的形式给出: x | X —X 2, ,x k ,P(X x k ) p 1, p 2, , p k,。

显然分布律应满足下列条件:p k 1(1) p k 0,k 1,2,, (2)k1。

1) 离型 机 量 分 律散 随 变 的 布对于离散型随机变量,F(x) pxk Xx对于连续型随机变量 ,F (x) f (x) dx4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) P(X x)称为随机变量X 的分布函数,本质上是一 个累积函数。

P(a X b) F(b) F(a)可以得到X 落入区 间(a,b ]的概率。

分布函数F(x)表示随机变量 落入区间(-R, x ]的概率。

概率统计公式大全

概率统计公式大全
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是,若X~N( ,(X,Y)未必是二维正态分布。
(10)
关于随机变量的函数的分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
第1章 随机事件及其概率
(1)
排列组合公式
从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)
加法和乘法原理
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n
试验的可能结果称为随机事件。
(5)
基本事件、样本空间和事件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
(7)
函数分布
离散型
已知 的分布列为

的分布列( 互不相等)如下:

若有某些 相等,则应将对应的 相加作为 的概率。
连续型
先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。

概率统计公式大全

概率统计公式大全

概率统计公式大全
LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试验
A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用
)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0 =。

第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。

概率统计公式大全

概率统计公式大全
(8)二维均匀分布
设随机向量(X,Y)的分布密度函数为
其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。
例如图3.1、图3.2和图3.3。
y
1
D1
O1x
图3.1
y
1
O2x
图3.2
y
d
c
Oa b x
图3.3
(9)二维正态分布
设随机向量(X,Y)的分布密度函数为
其中 是5个参数,则称(X,Y)服从二维正态分布,
(1)
(2)F(x,y)分别对x和y是非减的,即
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)
离散型与连
X的边缘分布为

Y的边缘分布为

连续型
X的边缘分布密度为
1°0≤P(A)≤1,
2°P(Ω) =1
3°对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)
古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)=P =
(9)
几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
。其中L为几何度量(长度、面积、体积)。
(10)
加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)

高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式高中数学公式大全:概率计算与统计分析的实例公式一、概率计算公式1. 事件的概率计算公式:P(A) = (事件A的样本点数) / (样本空间的样本点数)2. 加法法则:对于两个互斥事件A和B,有P(A或B) = P(A) + P(B)3. 减法法则:对于事件A和B,有P(A且B的补集) = P(A的补集) - P(A且B)4. 乘法法则:对于两个独立事件A和B,有P(A且B) = P(A) × P(B)5. 条件概率公式:对于事件A和B,有P(A|B) = P(A且B) / P(B)6. 全概率公式:对于事件A和B1、B2、...、Bn构成的样本空间分割,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)二、统计分析的实例公式1. 平均数(均值)公式:对于一组数据x1、x2、...、xn,均值(平均数)为平均数 = (x1 + x2 + ... + xn) / n2. 加权平均数公式:对于一组数据x1、x2、...、xn及其对应的权重w1、w2、...、wn,加权平均数为加权平均数 = (x1w1 + x2w2 + ... + xnwn) / (w1 + w2 + ... + wn)3. 中位数公式:对于一组有序数据,中位数为若数据个数为奇数,中位数为第(n+1)/2个数据;若数据个数为偶数,中位数为第n/2个数据和第(n/2+1)个数据的平均数。

4. 众数公式:对于一组数据,众数为数据中出现次数最多的值。

5. 方差公式:对于一组数据x1、x2、...、xn,均值为μ,方差为方差 = ( (x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2 ) / n6. 标准差公式:对于一组数据x1、x2、...、xn,均值为μ,标准差为标准差= √方差7. 相关系数公式:对于两组数据x1、x2、...、xn和y1、y2、...、yn,其相关系数为相关系数 = (协方差) / (x的标准差 × y的标准差)其中,协方差的计算公式为协方差 = ( (x1 - μx)(y1 - μy) + ... + (xn - μx)(yn - μy) ) / n8. 样本方差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本方差为样本方差 = ( (x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2 ) / (n - 1)9. 样本标准差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本标准差为样本标准差= √样本方差综上所述,以上是高中数学中概率计算和统计分析的常用公式。

概率统计公式大全汇总

概率统计公式大全汇总

概率统计公式大全汇总1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本点数,n(S)表示样本空间的样本点数。

2.条件概率公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B的概率。

3.乘法公式:P(A∩B)=P(A)*P(B,A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

4.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A和事件B至少有一个发生的概率,P(A)和P(B)分别表示事件A和事件B的概率,P(A∩B)表示事件A和事件B同时发生的概率。

5.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A)其中,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B)和P(A)分别表示事件B和事件A的概率。

6.期望值公式:E(X)=∑(x*P(X=x))其中,E(X)表示随机变量X的期望值,x表示X的取值,P(X=x)表示X取值为x的概率。

7.方差公式:Var(X) = E[X^2] - (E[X])^2其中,Var(X)表示随机变量X的方差,E[X^2]表示X的平方的期望值,E[X]表示X的期望值。

8.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。

9.二项分布概率公式:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示从n个元素中选择k个元素的组合数,p表示每个元素成功的概率,n表示试验次数。

10.正态分布概率公式:P(X≤x)=Φ((x-μ)/σ)其中,P(X≤x)表示X小于或等于x的概率,Φ表示标准正态分布的累积分布函数,μ表示正态分布的均值,σ表示正态分布的标准差。

概率和统计公式大全

概率和统计公式大全

概率和统计公式大全1.基本概率公式-事件发生的概率:P(A)=n(A)/n(S),其中n(A)是事件A发生的可能结果数,n(S)是总的可能结果数。

-互斥事件的概率:P(A∪B)=P(A)+P(B),其中A和B是互斥事件。

-对立事件的概率:P(A')=1-P(A),其中A'表示事件A的补集。

2.条件概率公式-两个事件A和B同时发生的概率:P(A∩B)=P(A)*P(B,A),其中P(B,A)表示已知事件A发生的条件下,事件B发生的概率。

-两个事件A和B互斥的概率:P(A∪B)=P(A)+P(B)-P(A∩B)。

-两个事件A和B互相独立的概率:P(A∩B)=P(A)*P(B)。

3.随机变量和概率分布- 随机变量的期望:E(X) = ∑(xi * P(X=xi)),其中xi是随机变量X的可能取值,P(X=xi)是随机变量X取值为xi的概率。

- 随机变量的方差:Var(X) = E((X - E(X))^2) = E(X^2) -(E(X))^2-二项分布的概率:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中C(n,k)表示从n个元素中选取k个的组合数,p是单次实验成功的概率。

-正态分布的概率:P(a≤X≤b)=Φ((b-μ)/σ)-Φ((a-μ)/σ),其中Φ(x)是标准正态分布的累积分布函数,μ是正态分布的均值,σ是标准差。

4.抽样与统计推断-样本均值的期望:E(x̄)=μ,其中μ是总体均值。

- 样本方差的无偏估计:s^2 = Σ(xi - x̄)^2 / (n-1),其中xi是样本中的观察值,x̄是样本均值,n是样本容量。

-正态总体均值的置信区间:x̄±t*(s/√n),其中x̄是样本均值,s是样本标准差,n是样本容量,t是自由度为n-1的t分布的临界值。

-正态总体比例的置信区间:p±z*√(p(1-p)/n),其中p是样本比例,n是样本容量,z是标准正态分布的临界值。

最新概率统计公式大全

最新概率统计公式大全
精品文档
第 1 章 随机事件及其概率
(1) 排列组合 公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2) 加法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14) 独立性
若事件 A ,B 相互独立,则可得到 A 与 B , A 与 B , A 与 B 也都相互独
立。
必然事件 和不可能事件Φ与任何事件都相互独立。
A所包含的基本事件数 基本事件总数
(9) 几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10) 加法公式
Φ与任何事件都互斥。 ②多个事件的独立性 设 A,B,C 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6) 事件的关 系与运算
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
(11) 减法公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
当 B A 时,P(A-B)=P(A)-P(B)
当 A=Ω时,P( B )=1- P(B)
(12) 条件概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
A、B 同时发生:A B,或者 AB。A B=Φ,则表示 A 与 B 不可能同时发生,
称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
1 / 32
Ω-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生
的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5) 基本事件、 样本空间 和事件
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
A所包含的基本事件数 基本事件总数
(9) 几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10) 加法公式
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
(8) 古典概型
1° 1, 2 n ,

P(1 )
P( 2
)
P( n
)
1 n

设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)= P(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
设 A,B,C 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
第 1 章 随机事件及其概率
(1) 排列组合 公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
Байду номын сангаас
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2) 加法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14) 独立性
(15) 全概率公 式
若事件 A ,B 相互独立,则可得到 A 与 B , A 与 B , A 与 B 也都相互独
立。
必然事件 和不可能事件Φ与任何事件都相互独立。
Φ与任何事件都互斥。
②多个事件的独立性
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
种方法来完成,则这件事可由 m×n 种方法来完成。
(3) 重复排列和非重复排列(有序)
一 些 常 见 对立事件(至少有一个)
排列
顺序问题
(4) 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
随 机 试 验 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
和 随 机 事 验。
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(13) 乘法公式
例如:P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A) P(B)P(A/ B)
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
n
A Bi

Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7) 概率的公 理化定 义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P Ai P(Ai) i1 i1
相关文档
最新文档