高中数学必修三最全知识点汇总

合集下载

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结一、函数的概念与性质1. 函数的定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,记作$y=f(x)$。

2. 函数的表示法:列表法、图像法、解析式法。

3. 函数的性质:单调性、奇偶性、周期性、有界性。

4. 反函数:如果一个函数$y=f(x)$在其定义域内是单射的,那么它有反函数。

5. 函数的运算:和、差、积、商以及复合函数。

二、指数与对数1. 指数函数:形如$y=a^x$的函数,其中$a>0$且$a\neq 1$。

2. 对数函数:形如$y=log_a(x)$的函数,其中$a>0$且$a\neq 1$。

3. 指数与对数的关系:$a^y=x$等价于$y=log_a(x)$。

4. 指数函数和对数函数的性质:增减性、特殊点、图像特征。

5. 指数方程和对数方程的解法。

三、三角函数1. 角的概念:任意角、象限角、轴线角。

2. 正弦、余弦、正切函数:定义、性质、图像。

3. 三角函数的周期性:$T=\frac{2\pi}{\omega}$。

4. 三角函数的增减性:在不同象限的行为。

5. 三角恒等式:基本恒等式、和差公式、倍角公式、半角公式。

四、平面向量1. 向量的概念:有序实数对,可以表示为$\vec{a}=(x,y)$。

2. 向量的加法、减法、数乘。

3. 向量的模:长度,计算公式为$|\vec{a}|=\sqrt{x^2+y^2}$。

4. 向量的数量积(点积):$\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$。

5. 向量的线性运算:线性组合、线性相关与线性无关。

五、数列与数学归纳法1. 数列的概念:按照一定顺序排列的一列数$a_1, a_2, a_3,\ldots$。

2. 等差数列与等比数列:定义、通项公式、求和公式。

3. 数列的极限:数列的收敛与发散。

4. 数学归纳法:证明方法,包括奠基步骤和归纳步骤。

六、概率与统计1. 随机事件:可能发生的事件,具有不确定性。

高中数学必修三知识点大全

高中数学必修三知识点大全

知識點串講必修三第一章:演算法1. 1.1 演算法得概念1、演算法(algorithm)一詞源於算術(algorism),即算術方法,是指一個由已知推求未知得運算過程。

後來,人們把它推廣到一般,把進行某一工作得方法和步驟稱為演算法。

廣義地說,演算法就是做某一件事得步驟或程式。

2、任意給定一個大於1得整數n,試設計一個程式或步驟對n是否為質數做出判定。

解析:根據質數得定義判斷解:演算法如下:第一步:判斷n是否等於2,若n=2,則n是質數;若n>2,則執行第二步。

第二步:依次從2至(n-1)檢驗是不是n得因數,即整除n得數,若有這樣得數,則n不是質數;若沒有這樣得數,則n是質數。

3、一個人帶三隻狼和三隻羚羊過河,只有一條船,同船可以容納一個人和兩隻動物.沒有人在得時候,如果狼得數量不少於羚羊得數量,狼就會吃掉羚羊.請設計過河得演算法。

解:演算法或步驟如下:S1 人帶兩隻狼過河;S2 人自己返回;S3 人帶一隻羚羊過河;S4 人帶兩隻狼返回;S5 人帶兩隻羚羊過河;S6 人自己返回;S7 人帶兩隻狼過河;S8 人自己返回;S9 人帶一隻狼過河.1.1.2程式框圖(1得流程圖得首末兩端必須是起止框。

(2表示資料得輸入或結果得輸出,它可用在演算法中得任何需要輸入、輸出得位置。

(3(4判斷框一般有一個入口和兩個出口,有時也有多個出口,它是惟一得具有兩個或兩個以上出口得符號,在只有兩個出口得情形中,通常都分成“是”與“否”(也可用“Y ”與“N ”)兩個分支。

2、順序結構:順序結構描述得是是最簡單得演算法結構,語句與語句之間,框與框之間是按從上到下得順序進行得。

3、已知一個三角形得三邊分別為2、3、4,利用海倫公式設計一個演算法,求出它得面積,並畫出演算法得程式框圖。

演算法分析:這是一個簡單得問題,只需先算出p 得值,再將它代入公式,最後輸出結果,只用順序結構就能夠表達出演算法。

解:程式框圖:24、條件結構:根據條件選擇執行不同指令得控制結構。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个数集(定义域)中的每个元素都对应到另一个数集(值域)中的一个唯一元素。

2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。

3. 函数的性质:单调性、奇偶性、周期性、有界性等。

4. 函数的运算:函数的加法、减法、乘法、除法等运算。

5. 函数的复合:两个或多个函数的复合运算。

6. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。

7. 函数的极限:当自变量无限接近某个值时,函数值无限接近的值。

8. 函数的连续性:如果一个函数在某一点的极限存在,那么这个函数在这一点就是连续的。

9. 函数的导数:描述函数变化率的概念,可以用来研究函数的增减性、极值、凹凸性等性质。

10. 函数的积分:描述函数积累效果的概念,可以用来计算面积、体积等。

11. 一元二次方程:形如ax²+bx+c=0的方程,其中a≠0。

12. 一元二次方程的解法:因式分解法、配方法、公式法、求根公式等。

13. 一元二次方程的应用:求最值、求解实际问题等。

14. 一元一次不等式:形如ax+b>c或ax+b<c的不等式,其中a≠0。

15. 一元一次不等式的解法:移项、消去系数、求根等。

16. 一元一次不等式的应用:求解实际问题等。

二、数列与数学归纳法1. 数列的概念:数列是按照一定顺序排列的一组数。

2. 数列的性质:单调性、有界性、收敛性等。

3. 等差数列:每一项与前一项之差相等的数列。

4. 等比数列:每一项与前一项之比相等的数列。

5. 等差数列的性质:求和公式、通项公式等。

6. 等比数列的性质:求和公式、通项公式等。

7. 数学归纳法:通过证明一个命题对某个自然数成立,然后证明它对下一个自然数也成立,从而证明对所有自然数都成立的方法。

三、立体几何与空间向量1. 立体几何的基本概念:点、线、面、体等。

2. 空间直线与平面的位置关系:平行、垂直、相交等。

高中数学必修三知识点

高中数学必修三知识点

高中数学必修三知识点引言高中数学必修三通常包括概率统计、数列、算法、复数等重要数学领域,这些知识点对于培养学生的逻辑思维和解决问题的能力至关重要。

一、概率与统计1.1 随机事件与概率概念:随机事件的定义、概率的计算方法。

1.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。

1.3 条件概率与独立事件定义:条件概率的概念、独立事件的判断。

1.4 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。

1.5 统计图类型:条形图、直方图、饼图的绘制与解读。

二、数列2.1 等差数列公式:等差数列的通项公式、求和公式。

2.2 等比数列公式:等比数列的通项公式、求和公式。

2.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。

2.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。

三、算法3.1 算法的概念定义:算法的定义、特征。

3.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。

3.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。

四、复数4.1 复数的概念定义:复数的定义、实部与虚部。

4.2 复数的运算规则:复数的四则运算、共轭复数、复数的模。

4.3 复数的几何意义解释:复数与复平面的关系、复数的代数表示与几何意义。

4.4 复数的应用案例:复数在电气工程、流体力学等领域的应用。

五、解析几何5.1 坐标系介绍:直角坐标系、极坐标系的基本概念。

5.2 直线的方程形式:直线的点斜式、斜截式、一般式。

5.3 圆的方程形式:圆的标准方程、一般方程。

5.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。

六、逻辑推理6.1 逻辑与推理概念:逻辑推理的定义、演绎推理与归纳推理。

6.2 逻辑语句分析:逻辑语句的真假判断、逻辑运算。

6.3 推理方法总结:直接证明、间接证明、反证法的应用。

七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结高中数学必修3知识点总结高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:2.算法的特点:(1)有限性;(2)确定性;(3)顺序性与正确性;(4)不唯一性;(5)普遍性;1.1.2程序框图(一)构成程序框的图形符号及其作用(二)、演算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。

2、条件结构:条件结构是依据指定条件选择执行不同指令的控制结构。

依据条件P是否成立而选择执行A框或B框。

无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。

一个预判判断结构可以有三十多个判断框。

3、循环结构:在一些算法中,经常会发生从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

1.2.1输入、输出语句和赋值语句AB1、输入语句一般格式Input“提示内容”;变量Print“提示内容”;表达式2、输出语句:一般格式3、赋值语句(1)赋值语句的一般格式变量=表达式(2)赋值语句的作用是将表达式所积极作用代表者的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中所的等号的意义是不同的。

赋值号的左右两边不必对换,它将赋值号右边的表达式的值赋给赋值号右边的变量;(4)赋值语句名号左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以真值十多次赋值。

1.2.2条件语句1、条件语句的一般格式:IF语句的一般格式为图1,对应的程序框图为图2。

if表达式语句序列1;else语句序列2;图1图2否满足条件?是语句1语句2end必修三IF语句的最简单格式为图3,对应的程序框图为图4。

1.2.3循环语句循环结构是由循环语句来实现的。

新人教版高中数学必修三知识点总结(详细)

新人教版高中数学必修三知识点总结(详细)

新人教版高中数学必修三知识点总结(详
细)
本文旨在总结新人教版高中数学必修三的主要知识点,帮助学生复和掌握这一课程内容。

一、函数基本性质
1. 定义:函数是一个有输入和输出的对应关系。

2. 定义域和值域:函数的定义域是所有可能的输入值集合,值域是所有可能的输出值集合。

3. 图像与映射:函数可以通过图像表示,其中横坐标表示输入值,纵坐标表示输出值。

4. 奇偶性:函数可以根据输入值和输出值的奇偶性进行分类。

二、三角函数
1. 正弦函数:表示角的正弦值与其对边与斜边的比值。

2. 余弦函数:表示角的余弦值与其邻边与斜边的比值。

3. 正切函数:表示角的正切值与其对边与邻边的比值。

4. 幅角和周期:三角函数的图像在一定区间内呈周期性重复。

5. 三角函数的性质:包括奇偶性、单调性、增减性等。

6. 三角函数的简化:通过三角恒等式将复杂的三角函数化简为简单形式。

三、三角恒等式
1. 倍角公式:表示角的两倍与原角之间的关系。

2. 和差公式:表示两个角的和与差与它们的三角函数值之间的关系。

3. 积化和差公式:表示两个角的积与和与差与它们的三角函数值之间的关系。

4. 和差化积公式:表示两个角的和与差与它们的三角函数值之间的关系。

以上是新人教版高中数学必修三的主要知识点总结,通过复习和掌握这些知识,学生将能够更好地理解和应用数学。

希望本文对大家有所帮助!。

高中数学必修(3)知识点汇总

高中数学必修(3)知识点汇总

高中数学必修(3)第一章算法初步与程序框图1、算法的概念:算法通常指按照一定的规则解决某一类问题的明确和有限的步骤。

2、程序框图:用程序框、流程线及文字说明来表示算法的图形叫做程序框图或流程图。

(1)用框图表示算法步骤的一些常用的图形符号图形符号 名称 功能终端框(起止框) 表示一个算法的起始和结束,是任何算法程序框图不可缺少的输入、输出框 表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框(执行框) 赋值、计算.算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内判断框 判断某一条件是否成立,成立时出口处标明“是”或“Y ”;不成立时标明“否”或“N ”流程线 连接程序框,表示算法进行的前进方向以及先后顺序 连接点 如果一个流程图需要分开来画,要在断开处画上连接点,并标出连接的号码(2)程序框图的结构形式①顺序结构; ②条件结构; ③循环结构;(3)基本算法语句①输入语句;②输出语句;③赋值语句;④条件语句;⑤循环语句;3、程序框图举例:(1) (2)开始11抽样方法叫做简单随机抽样.①总体的个体数有限;②样本的抽取是逐个进行的,每次只抽取一个个体;③抽取的样本不放回,样本中无重复个体;④每个个体被抽到的机会都相等,抽样具有公平性.第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(5)抽签法的优点和缺点:抽中,从而能保证样本的代表性.所需要的样本,这种抽样的方法叫做系统抽样.①当总体容量N较大时,采用系统抽样。

系统抽样又称等距抽样,间隔一般为k .n样.(2)应用分层抽样应遵循以下要求:即遵循不重复、不遗漏的原则。

(3)分层抽样的一般操作步骤是:第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.(4)分层抽样的优点:分层抽样时,每个个体被抽到的机会是均等的,由于分层抽样充分利用了已知信息,充分考虑了保持样本结构与总体结构的一致性,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用。

高中数学必修3全册知识点

高中数学必修3全册知识点

第1讲算法初步一.算法的概念1.算法的概念1、算法定义:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有穷性:一个算法在执行有限个步骤之后,必须结束.(2)确定性:算法的每一个步骤和次序应该是确定的.(3)可行性:原则上算法能够精确地元算,而且人们用笔和纸做有限次即可完成.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)输出:一个算法有0个或多个输入,以刻画运算对象的初始条件.所谓0个输入是指算法本身已经给出了初始条件.(6)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果,没有输出的算法是毫无意义的.3.算法的描述:自然语言、程序框图、程序语言。

例1、写出1×2×3×4×5×6的一个算法.解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步: 将第二步的运算结果6与4相乘,得到24;第四步: 将第三步的运算结果24与5相乘,得到120;第五步: 将第四的运算结果120与6相乘,得到720;第六步:输出结果.例2、写出按从小到大的顺序重新排列三个数值的算法.,,x y z 解:(1).输入三个数值;,,x y z (2).从三个数值中挑出最小者并换到中;x (3).从中挑出最小者并换到中;,y z y (4).输出排序的结果.二.程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

高中数学必修三知识点总结

高中数学必修三知识点总结

高中数学必修三知识点总结高中数学必修三是高中数学教育的重要组成部分,是学生进一步完善数学知识结构的关键环节。

通过学习必修三的知识,学生能够全面掌握高阶数学概念和方法,为未来进阶学习打下扎实的基础。

本文将结合高中数学必修三的主要知识点,对其中的代数、函数和三角函数等内容进行总结和分析。

一、代数1.1 代数基础概念代数是数学的一个重要分支,是研究符号和数的关系的数学学科。

在高中数学必修三中,代数是一个重要的知识点,包括了多项式、方程组、不等式等内容。

1.2 多项式多项式是代数中的重要概念。

它是由常数与变量的乘积和的形式构成的代数式。

高中数学必修三中,学生将学习如何对多项式进行加减乘除和因式分解等。

在学习多项式的过程中,学生需要掌握多项式的基本运算和求解方法,并了解多项式在现实生活中的应用。

1.3 方程组方程组是指由若干个方程组成的数学系统。

在高中数学必修三中,方程组是一个重要的知识点,包括线性方程组、非线性方程组等内容。

学生需要学会如何利用代数方法解决方程组,并能够应用方程组的知识解决实际问题。

1.4 不等式不等式是代数中的重要内容之一。

在高中数学必修三中,学生将学习不等式的性质、求解方法以及应用技巧。

不等式的学习有助于提高学生的逻辑思维能力,同时也为学生将来学习更深入的数学知识奠定基础。

1.5 经典知识点总结代数部分的知识点主要涵盖了多项式、方程组和不等式。

通过对这些知识点的学习,学生能够掌握代数基础概念,提高解题能力,为以后的数学学习打下坚实的基础。

二、函数2.1 函数的基本概念函数是高中数学中重要的知识点之一。

函数是自变量和因变量之间的一种对应关系。

在高中数学必修三中,函数是一个非常重要的内容,包括定义域、值域、函数图像、函数的性质、函数的运算等方面的内容。

2.2 一元二次函数一元二次函数是高中数学中的重要内容之一。

它是一个常数与自变量的平方项的和,通常表示为f(x)=ax^2+bx+c。

学生需要学习如何求一元二次函数的顶点、零点、对称轴等性质,还要掌握一元二次函数的图像特征以及实际问题中的应用。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

高中数学必修三知识点归纳一、函数与方程1. 函数的定义与性质- 函数是一个或多个变量间的依赖关系。

- 定义域、值域、图像、奇偶性、单调性等。

2. 一元二次函数- 基本形式:f(x) = ax² + bx + c (a≠0)- 参数a、b、c对函数图像的影响- 顶点坐标、对称轴- 判别式和根的关系- 单调性、最大值最小值- 图像的平移、伸缩、翻转3. 幂函数、指数函数和对数函数- 幂函数:f(x) = x^a (a为实数,a≠0)- 指数函数:f(x) = a^x (a > 0, a ≠ 1)- 对数函数:f(x) = loga(x) (a > 0, a ≠ 1)- 特性和性质- 图像和变化规律4. 三角函数和三角方程- 正弦函数、余弦函数、正切函数、余切函数的定义- 周期和振幅- 正弦定理、余弦定理和正切定理- 三角方程的解法和应用二、数列与数学归纳法1. 数列的概念和性质- 数列是按照一定规律排列的一组数。

- 等差数列、等比数列、等差数列的前n项和- 通项公式、递推公式- 数列图像的性质2. 数列的极限- 数列趋于无穷的极限- 数列的收敛与发散- 等差数列、等比数列的极限- 极限的运算性质3. 数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用三、数学推理与证明1. 几何证明方法- 直接证明、间接证明、反证法、数学归纳法- 常见几何定理的证明2. 合理推理方法- 演绎推理、归纳推理、直觉推理、假设-验证法 - 合理推理的特点和要求3. 几何证明- 平行线证明- 三角形的证明- 圆的证明。

(word版)高中数学必修三所有知识点总结和常考题型练习,文档

(word版)高中数学必修三所有知识点总结和常考题型练习,文档

高中数学必修3知识点第一章算法初步一,算法与程序框图1,算法的概念:按一定规那么解决某一类问题的明确和有限的步骤。

2,算法的三个根本特征:明确性,有限性,有序性。

3,程序框图:也称流程图,是一种用程序框,流程线及文字说明来表示算法的图形。

图形符号名称功能终端框表示一个算法的起始和结束输入〔输出框〕表示一个算法输入和输出的信息处理框赋值、计算判断某一个条件是否成立,成立时在出口处标明“是〞或“Y〞,判断框不成立时标明“否〞或“N〞。

流程线连接程序框连接点连接程序框图的两局部4,三种程序框图1〕顺序结构:顺序结构在程序框图中的表达就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

2〕条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。

〔3〕循环结构:直到型循环结构,当型循环结构。

一个完整的循环结构,应该包括三个内容:1〕循环体;2〕循环判断语句;3〕与循环判断语句相关的变量。

二,根本算法语句〔一定要注意各种算法语句的正确格式〕1,输入语句INPUT“提示内容〞;表达式注意:提示内容用双引号标明,并2,输出语句PRINT“提示内容〞;表达式与变量用分号隔开。

3,赋值语句变量=表达式注意:“=〞的含义是赋值,将右边的值赋予左边的变量4,条件语句IF条件THEN IF条件THEN语句体1语句体ELSEEND IF语句体2END IF5,循环语句:直到型当型DO WHILE条件循环体1循环体LOOP UNTIL条件WEND直到型和当型循环可以相互演变,循环体相同,条件恰好互补。

三,算法案例1,辗转相除法:例:求2146与1813的最大公约数2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0..............余数为0时计算终止。

37为最大公约数2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比拟,并以大数减小数。

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)一、初等函数1、函数基本概念(1)函数的定义函数是在一个或多个自变量之间,存在着 if and only if 关系的量的集合。

函数f 是由实域上的一个集合D 到实域上的另一个集合F 的一种规律性关系:若x 属于D,则必有y=f(x) 属于F,而且将元素xˆD 与元素f(x)ˆF 间确定起“一一”对应关系,称f 为从D 到F 的函数,表示为f:D→F ,称D 为函数f 的定义域,称F 为值域,f(x) 称为定义在x 处的函数值,D 和F 都是实域,实域外的点及点之间无关;(2)单调性函数y=f(x) 在定义域D 上单调,若:当x1<x2 时,有f(x1)<f(x2) ,则称函数y=f(x) 在D 上是递增的;当x1<x2 时,有f(x1)>f(x2) 时,则称函数y=f(x) 在D 上是递减的;当x1≠x2 时,f(x1)=f(x2) 时,则称函数y=f(x) 在D 上是偶函数。

2、指数函数与对数函数指数函数是指以自然数e 为底数得到的函数,表示为:y=a·ebx,其中a、b 为实数,此函数有加法律:若f1 (x)=a1·eb1 ·x,f2 (x)=a2·eb2 ·x,则有f1 (x)+f2 (x)=(a1+a2)·eb·x,并且有乘法律:若f1 (x)=a1·eb1 ·x,f2 (x)=a2·eb2 ·x,则有f1 (x)·f2 (x)=(a1·a2)·eb1+b2 ·x;(2)对数函数定义:若y=ax,其中a 为常数,a>0,x>0,则称f (x)=loga x 叫做以a 为底数的对数函数,简称对数函数,这样的函数是满足增函数类型以及幂律。

二、二次函数若函数f(x)为一关于x的二阶函数,则f(x)=ax^2+bx+c,其中a 不等于0,a 、b、c 均为实数,则称f(x) 为二次函数。

高一数学必修3 知识点总结

高一数学必修3 知识点总结

高中数学必修3 知识点总结第一章算法初步知识梳理一、理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,其意义具有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明书是空调使用的算法…(algorithm)1. 描述算法有三种方式:自然语言,流程图,程序设计语言.2. 算法的特征:①有限性:算法执行的步骤总是有限的,不能无休止的进行下去②确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可以是一个或多个。

没有输出的算法是无意义的。

③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定时间内可以完成,在时间上有一个合理的限度3.算法含有两大要素:①操作:算术运算,逻辑运算,函数运算,关系运算等②控制结构:顺序结构,选择结构,循环结构二、流程图:(flow chart): 是用一些规定的图形、连线及简单的文字说明表示算法及程序结构的一种图形程序,它直观、清晰、易懂,便于检查及修改。

注意:1. 画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯2. 拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。

3. 在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结到结束框。

直到型循环Ⅰ.顺序结构(sequence structure ):是一种最简单最基本的结构它不存在条件判断、控制转移和重复执行的操作,一个顺序结构的各部分是按照语句出现的先后顺序执行的。

Ⅱ.选择结构(selection structure ):或者称为分支结构。

其中的判断框,书写时主要是注意临界条件的确定。

它有一个入口,两个出口,执行时只能执行一个语句,不能同时执行,其中的A,B两语句可以有一个为空,既不执行任何操作,只是表明在某条件成立时,执行某语句,至于不成立时,不执行该语句,也不执行其它语句。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点一:算法初步7:辗转相除法与更相减损术(1)辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(2)更相减损术我国早期也有求最大公约数问题的算法,就是更相减损术。

在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:①任意给出两个正数;判断它们是否都是偶数。

若是,用2约简;若不是,执行第二步。

②以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

(3)辗转相除法与更相减损术的区别:①都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

②从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到8:秦九韶算法与排序(1)秦九韶算法概念:f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0 =(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0 =......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2 v3=v2x+a n-3 ...... v n=v n-1x+a0这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。

(2)两种排序方法:直接插入排序和冒泡排序①直接插入排序基本思想:插入排序的思想就是读一个,排一个。

2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总

2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总

高考数学必修三知识点总结人教版高考数学必修三考点篇一自变量某和因变量y有如下关系:y=k某+b则此时称y是某的一次函数。

特别地,当b=0时,y是某的正比例函数。

即:y=k某(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的某的变化值成正比例,比值为k即:y=k某+b(k为任意不为零的实数b取任何实数)2.当某=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像,一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与某轴和y轴的交点)2.性质:(1)在一次函数上的任意一点p(某,y),都满足等式:y=k某+b。

(2)一次函数与y轴交点的坐标总是(0,b),与某轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随某的增大而增大;当k当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点a(某1,y1);b(某2,y2),请确定过点a、b的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=k某+b。

(2)因为在一次函数上的任意一点p(某,y),都满足等式y=k某+b。

所以可以列出2个方程:y1=k某1+b……①和y2=k某2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高中数学必修3知识点总结篇二高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学某某两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

高中数学必修三:知识点

高中数学必修三:知识点

必修3:知识点一:算法初步 1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. (2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

2: 程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。

如在示意图中,A 框和B 框是依次执行的,只有在 执行完A 框指定的操作后,才能接着执行B 框所指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。

高中数学必修三知识点

高中数学必修三知识点

高中数学必修三知识点高中数学必修三知识点是指高中数学学习中必须掌握和理解的知识点,它们是数学学习中的重要内容,扎实的掌握这些知识点可以帮助学生更好地应对高考和未来的学习和工作。

本文将从代数、几何和数理统计三个方面来介绍这些必修知识点。

一、代数1. 方程与不等式方程和不等式是代数学习的基础,在高中数学必修三中,主要掌握一元一次方程、一元一次不等式、二元一次方程、二元一次不等式和一元二次方程。

对于一元一次方程和不等式的解法,学生要掌握化简式子和移项的方法;对于二元一次方程和不等式,重点在于学习两种解法:代入法和消元法。

对于一元二次方程的解法,则需要掌握求根公式和配方法。

2. 函数函数也是代数学习的重点,包括一次函数、二次函数、指数函数、对数函数和三角函数等。

对于每种函数,要掌握其定义、图像、性质和应用,学会用函数式子来解决实际问题。

二、几何1. 平面几何平面几何是数学中的一项基本学科,也是高中数学必修三中的重要内容。

主要包括平面图形的性质、相似与全等、勾股定理、角平分线定理、中线定理、高线定理、圆的性质等。

学生需要掌握这些定理和公式的证明和应用,以及如何应用平面几何的理论去解决实际问题。

2. 空间几何空间几何也是高中数学必修三中的内容之一。

它包括空间图形的性质、相似与全等、投影与截面、三视图与三维坐标系等。

在学习空间几何时,学生需要掌握各种图形的性质和特点,学会用三维坐标系解决计算问题。

三、数理统计数理统计是数学中的一个分支,主要包括概率和统计两个方面。

在高中数学必修三中,主要掌握总体、样本、频率、频率分布、组距等概念,以及频数分布表、频率分布表、直方图等相关的统计方法。

在概率方面,学生需要掌握概率的概念和性质,以及条件概率、独立事件、贝叶斯定理等概率计算方法。

总之,高中数学必修三中的知识点是数学学习中的重要内容,学生必须掌握好这些知识点,才能实现数学知识的扎实掌握,并为未来的学习和工作打下坚实的基础。

高中数学必修三知识点(通用5篇)

高中数学必修三知识点(通用5篇)

高中数学必修三知识点〔通用5篇〕高中数学必修三知识点〔通用5篇〕高中数学必修三知识点篇1一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合中元素的三个特性:1.元素确实定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,一样的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此断定两个集合是否一样,仅需比较它们的元素是否一样,不需考察排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描绘法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A 的元素,就说a属于集合A记作a∈A,相反,a不属于集合A 记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描绘法:将集合中的元素的公共属性描绘出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描绘法:例:{不是直角三角形的三角形}②数学式子描绘法:例:不等式x-3》2的解集是{x?Rx-3》2}或{x x-3》2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x x2=-5}二、集合间的根本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分。

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,那么5=5)实例:设A={x x2-1=0}B={-1,1}“元素一样”结论:对于两个集合A与B,假设集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。

2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。

条件P是否成立而选择执行A框或B框。

无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。

一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

当型循环结构 直到型循环结构注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。

因此,循环结构中一定包含条件结构,但不允许“死循环”。

2在循环结构中都有一个计数变量和累加变量。

计数变量用于记录循环次数,累加变量用于输出结果。

计数变量和累加变量一般是同步执行的,累加一次,计数一次。

1.2.1输入、输出语句和赋值语句1、输入语句(1)输入语句的一般格式(2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开。

2、输出语句(1)输出语句的一般格式(2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符。

3、赋值语句(1)赋值语句的一般格式(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。

赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。

如:2=X是错误的。

②赋值号左右不能对换。

如“A=B”“B=A”的含义运行结果是不同的。

③不能利用赋值语句进行代数式的演算。

(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

1.2.2条件语句1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句。

2、IF—THEN—ELSE 语句IF—THEN—ELSE语句的一般格式为图1,对应的程序框图为图2。

图2分析:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。

计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2。

3、IF—THEN语句IF—THEN语句的一般格式为图3,对应的程序框图为图4注意:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,结束程序;END IF表示条件语句的结束。

计算机在执行时首先对IF后的条件进行判断,如果条件符合就执行THEN后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句。

1.2.3循环语句循环结构是由循环语句来实现的。

对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。

即WHILE语句和UNTIL语句。

1、WHILE 语句(1)WHILE 语句的一般格式是(2)当计算机遇到WHILE 语句时,先判断条件的真假,如果条件符合,就执行WHILE 与WEND 之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。

这时,计算机将不执行循环体,直接跳到WEND 语句后,接着执行WEND之后的语句。

因此,当型循环有时也称为“前测试型”循环。

2、UNTIL 语句(1)UNTIL 语句的一般格式是 对应的程序框图是(2)直到型循环又称为“后测试型”循环,从UNTIL 型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL 语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。

分析:当型循环与直到型循环的区别:(先由学生讨论再归纳) (1) 当型循环先判断后执行,直到型循环先执行后判断;在WHILE 语句中,是当条件满足时执行循环体,在UNTIL 语句中,是当条件不满足时执行循环例题: . 99...531 的一个算法设计计算⨯⨯⨯⨯(见课本21P ) Sint Pr End IS S 2 Step 99 To 3 From I 1For For S ⨯←← Sint Prhile End I S S 2I I 97 I hile 11W W I S ⨯←+←≤←← Sint Pr hile End 2I I I S S99 I hile 11W W I S +←⨯←≤←←◆ ❖ ♦Sint Pr ) 99 I ( 001 I 2I I I S S o11>≥+←⨯←←←或者Until Loop D I S S int Pr99 I IS S 2I I o11≥⨯←+←←←Until Loop D I S⌧ ⍓ Sint Pr2I I I S S ) 100 I ( 99 I While o 11Loop D I S +←⨯←<≤←←或者 Sint Pr I S S 2I I ) 99 I ( 97 I While o 11Loop D I S ⨯←+←<≤←←或者颜老师友情提醒:1. 一定要看清题意,看题目让你干什么,有的只要写出算法,有的只要求写出伪代码,而有的题目则是既写出算法画出流程还要写出伪代码。

2. 在具体做题时,可能好多的同学感觉先画流程图较为简单,但也有的算法伪代码比较好写,你也可以在草稿纸上按照你自己的思路先做出来,然后根据题目要求作答。

一般是先写算法,后画流程图,最后写伪代码。

3. 书写程序时一定要规范化,使用统一的符号,最好与教材一致,由于是新教材的原因,再加上各种版本,可能同学会看到各种参考书上的书写格式不一样,而且有时还会碰到我们没有见过的语言,希望大家能以课本为依据,不要被铺天盖地的资料所淹没! 1.3.1辗转相除法与更相减损术1、辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下: (1):用较大的数m 除以较小的数n 得到一个商0S 和一个余数R ;(2):若R =0,则n 为m ,n 的最大公约数;若R ≠0,则用除数n 除以余数R 得到一个商1S 和一个余数1R ;(3):若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数R 除以余数1R 得到一个商2S 和一个余数2R ;…… 依次计算直至nR =0,此时所得到的1n R -即为所求的最大公约数。

2、更相减损术我国早期也有求最大公约数问题的算法,就是更相减损术。

在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:(1):任意给出两个正数;判断它们是否都是偶数。

若是,用2约简;若不是,执行第二步。

(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

例2 用更相减损术求98与63的最大公约数.分析:(略)3、辗转相除法与更相减损术的区别:(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

相关文档
最新文档