nastran动力学培训
NASTRAN_动力分析指南
第一章动力学分析方法及NX NASTRAN基本使用介绍1.1 有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。
近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科-计算机辅助工程CAE(Computer Aided Engineering)。
这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。
许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:●CAE仿真可有效缩短新产品的开发研究周期;●虚拟样机的引入减少了实物样机的试验次数;●大幅度地降低产品研发成本;●在精确的分析结果指导下制造出高质量的产品;●能够快速的对设计变更作出反应;●能充分的和CAD模型相结合并对不同类型的问题进行分析;●能够精确的预测出产品的性能;●增加产品和工程的可靠性;●采用优化设计,降低材料的消耗或成本;●在产品制造或工程施工前预先发现潜在的问题;●模拟各种试验方案,减少试验时间和经费;●进行机械事故分析,查找事故原因;●等等当前流行的商业化CAE软件有很多种,国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。
其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。
看板网Nastran有限元分析课程内容
看板网Nastran有限元分析课程内容由于Nastran极高的软件可靠性、优秀的软件品质、作为工业标准的输入/输出格式、强大的软件功能、高度灵活的开放式结构和无限的解题能力等六大优势所以被广泛应用于机械、汽车、家电、电子产品、家具、建筑、医学骨科等产品设计及研发。
Nastran分析功能主要有动力学分析、正则模态分析、复特征值分析、瞬态响应分析(时间-历程分析)、随机振动分析、响应谱分析、频率响应分析和声学分析等八大分析功能。
Nastran有限元分析的作用是确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本;在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费;是产品设计研发的核心技术。
那么我们要学习Nastran有限元分析我们应该学哪些内容呢?以下是看板网根据超过十年的Nastran项目经验和Nastran培训经验,根据社会需求,根据企业和个人的需求,做出了以下Nastran有限元分析课程内容;一、课程大纲:1.静力分析1)具有惯性释放的静力分析2)非线性静力分析2.屈曲分析3.动力学分析1)随机振动分析2)正则模态分析3)复特征值分析4)瞬态响应分析(时间-历程分析)5)响应谱分析6)频率响应分析7)声学分析4.非线性分析1)非线性静力分析2)非线性静力分析3)非线性边界(接触问题)4)非线性瞬态分析5)非线性单元5.热传导分析1)线性/非线性稳态热传导分析2)线性/非线性瞬态热传导分析3)相变分析4)热控分析6.空气动力弹性及颤振分析1)静动气弹响应分析二、Nastran的自适应早在1986年MSC公司就开发出了P单元算法,命名为MSC.PROBE,历经十多年的应用和改进而完善,该算法正逐步移入MSC.NASTRAN中。
H-法是我们在以往有限元分析中经常使用的算法,其特点是适用于大多数分析类型,对于高应力区往往要通过网格的不断加密细化来满足分析精度。
NASTRAN_动力分析指南
NASTRAN_动⼒分析指南第⼀章动⼒学分析⽅法及NX NASTRAN基本使⽤介绍1.1 有限元分析⽅法介绍计算机软硬件技术的迅猛发展,给⼯程分析、科学研究以⾄⼈类社会带来急剧的⾰命性变化,数值模拟即为这⼀技术⾰命在⼯程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、⼒学、计算机图形学和计算机硬件发展的最新成果,根据不同⾏业的需求,不断扩充、更新和完善。
近三⼗年来,计算机计算能⼒的飞速提⾼和数值计算技术的长⾜进步,诞⽣了商业化的有限元数值分析软件,并发展成为⼀门专门的学科-计算机辅助⼯程CAE(Computer Aided Engineering)。
这些商品化的CAE软件具有越来越⼈性化的操作界⾯和易⽤性,使得这⼀⼯具的使⽤者由学校或研究所的专业⼈员逐步扩展到企业的产品设计⼈员或分析⼈员,CAE在各个⼯业领域的应⽤也得到不断普及并逐步向纵深发展,CAE⼯程仿真在⼯业设计中的作⽤变得⽇益重要。
许多⾏业中已经将CAE分析⽅法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE仿真在产品开发、研制与设计及科学研究中已显⽰出明显的优越性:●CAE仿真可有效缩短新产品的开发研究周期;●虚拟样机的引⼊减少了实物样机的试验次数;●⼤幅度地降低产品研发成本;●在精确的分析结果指导下制造出⾼质量的产品;●能够快速的对设计变更作出反应;●能充分的和CAD模型相结合并对不同类型的问题进⾏分析;●能够精确的预测出产品的性能;●增加产品和⼯程的可靠性;●采⽤优化设计,降低材料的消耗或成本;●在产品制造或⼯程施⼯前预先发现潜在的问题;●模拟各种试验⽅案,减少试验时间和经费;●进⾏机械事故分析,查找事故原因;●等等当前流⾏的商业化CAE软件有很多种,国际上早20世纪在50年代末、60年代初就投⼊⼤量的⼈⼒和物⼒开发具有强⼤功能的有限元分析程序。
其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。
nastran动力学培训
(续)
TLOAD2
载荷作用的起止时间
频率
相位角
载荷集的组合-DLOAD卡
整体比例因子 第2个载荷的比例因子 及TLOAD标识号
(续)
DAREA卡
Grid number Component号
比例因子
LSEQ卡
定义作为动态载荷来应用的静态载荷。 通过LOADSET工况控制命令来选中LSEQ模型数据卡 包含一个DAREA卡,以表明是和TLOAD卡一起作用的载荷集。
(续)
激励的定义:与瞬态响应中TLOAD对应,在频率响应中 为RLOAD。其中RLOAD1是按照实部与虚部的形式来定 义频变载荷;RLOAD2按幅值和相位的形式来定义频变载 荷。 几点考虑:如果激励的最高频率比系统的最低谐振频率小 得多,那么使用静态分析就足够了;阻尼很小的结构在激 励频率接近于谐振频率的时候,会表现出很大的动力响应。 在这样的问题中,模型上一个小的改动(或仅换一台电脑 来计算)都可能产生响应的明显变化;如果希望对峰值响 应进行充分的预测,必须使用足够好的频率步长(Δ f)。 对每个半能带宽至少使用5个点。
(续)
BEGIN BULK PARAM, COUPMASS, 1 PARAM, WTMASS, 0.00259 $ SPECIFY STRUCTURAL DAMPING PARAM, G, 0.06 PARAM, W3, 1571. $ APPLY EDGE CONSTRAINTS $ SPC1, 200, 12456, 1, 12, 23, 34, 45 $ $ PLACE BIG FOUNDATION MASS (BFM) AT BASE $ CMASS2, 100, 1000., 23, 3 $ $ RBE MASS TO REMAINING BASE POINTS $ RBE2, 101, 23, 3, 1, 12, 34, 45 $ $ APPLY LOADING TO FOUNDATION MASS $ TLOAD2, 500, 600, , 0, 0.0, 0.004, 250., -90. $ DAREA, 600, 23, 3, 2.588 $ $ SPECIFY INTEGRATION TIME STEPS $ TSTEP, 100, 200, 2.0E-4, 1 ENDDATA
NAstran_DMAP培训资料
打印输出OUTPUTPrinted OUTPUT
How to get information into the program
– 如何读写矩阵
– 用标准输出打印输出数据Calculating and printing data using standard output
How to read and write Matrices
有效参数类型如下Allowable Types of Parameter are as follows:
– 整型Integer ,(I) - 1 – 单精度实型 (RS) Real-single precision , - 1.23 – 双精度实型Real-double precision (RD) - 1.23D-01 – 单精度复型Complex-single precision, (CS) - (1.0,.12)= 1. + .12i – 双精度复型Complex-double (CD) precision - (1.3d3,1.23D04) – 字符型Character ,(Chari) – 其中,i为字符数where i is the number of
information stored in the database (SEID, PEID, MPC, SPC, etc)
Two-Day DMAP Notes prepared 2021/2/27
10 Page 10
参数(续)
Parameters (Cont)
参数是取单值的可变量Parameters are variables with a single value
– 一条重要定理是:输出辆次。通常,一个矩阵或表格用于 输出仅一次。如果要在一个DMAP模块中试图建立一个已 经建立好的矩阵,将出现致“FATAL”信息。An important rule is
MSC.Patran&MD.Nastran基础培训日程NAS120-Jeff
MSC.Patran & MD.Nastran基础培训计划♦培训内容/级别:Patran & Nastran基础培训(NAS120)♦培训形式:5天,讲解结合实例♦参加培训人员:针对初次接触Patran & Nastran软件的工程技术人员♦培训目标:通过培训,使得参加培训人员●了解Patran & Nastran软件的基本理论和相关术语;●掌握Patran界面的操作;●了解Nastran常用单元的应用;●达到独立创建有限元模型,进行线性静力学、模态和屈曲分析,●并对结果进行后处理的目的。
培训大纲:课程内容课程时间第一天Part 1:Patran & Nastran总体介绍Part 2:Patran & Nastran求解典型工程问题Part 3:有限元方法的基本原理Part 4:Patran的界面和Nastran的输入文件Part 5:单元库介绍Part 6:当天培训内容回顾及问题讨论上午9:00-12:00下午13:00-17:00第二天Part 1:1维几何建模Part 2:1维有限元实体(CBAR)建模Part 3:静力学分析和查看结果Part 4:各种坐标系统的定义和使用Part 5:1维有限元实体(CBEAM)静力学分析Part 6:当天培训内容回顾及问题讨论上午9:00-12:00下午13:00-17:00第三天Part 1:2维板壳单元建模Part 2:边界条件和2维网格划分器Part 3:复合材料建模介绍Part 4:2维单元和1维单元的混合建模Part 5:当天培训内容回顾及问题讨论上午9:00-12:00下午13:00-17:00第四天Part 1:3维单元建模Part 2:轴对称建模技术Part 3:分组、列表和0维单元Part 4:刚性单元和系统单位Part 5:当天培训内容回顾及问题讨论上午9:00-12:00下午13:00-17:00第五天Part 1:正则模态分析Part 2:线性屈曲分析Part 3:Patran的CAD建模功能Part 4:线性接触建模技术Part 5:后处理和建模相关技巧Part 6: 培训总结和验收上午9:00-12:00下午13:00-17:00◆培训具体安排:课程内容课程时间第一天上午Part 1:Patran & Nastran总体介绍9:00-9:15●软件初级培训的大致框架内容Part 2:Patran & Nastran求解典型工程问题9:15-9:45●Patran的工作流程●有限元法的基本工作流程●帮助文件的获取方法练习:起落架结构分析9:45-10:30 Part 3:有限元方法的基本原理10:30-11:15●什么是有限元法●有限元法的主要概念练习:简支梁分析11:15-12:00下午Part 4:Patran的界面和Nastran的输入文件13:00-14:00●Patran的基本用户界面●Nastran的输入文件练习:手动创建桁架结构输入文件14:00-15:30 Part 5:单元库介绍15:30-16:00●Nastran单元库●单元、材料和属性的参考关系Part 6:当天培训内容回顾及问题讨论16:00-17:00课程内容课程时间第二天上午Part 1:1维几何建模9:00-9:30●1维几何建模●分组建模方法练习:桥梁桁架结构的几何模型9:30-10:00 Part 2:1维有限元实体(CBAR)建模10:00-10:30●梁单元的种类●梁单元的截面属性●梁单元的偏置练习:桥梁桁架结构网格划分10:30-11:00 Part 3:静力学分析和查看结果11:00-11:30●定义外力和边界条件●创建多重子工况●提交分析并查看结果练习:桥梁桁架结构静力学分析13:30-12:00 下午Part 4:各种坐标系统的定义和使用13:00-13:45●参考坐标系统●节点位移坐标系统练习:创建和使用多种坐标系统13:45-14:30 Part 5:1维有限元实体(CBEAM)静力学分析14:30-15:15●CBEAM的物理属性●场的概念练习:交通信号灯杆的静力学分析15:15-16:00 Part 6:当天培训内容回顾及问题讨论16:00-17:00课程内容课程时间第三天上午Part 1:2维板壳单元建模9:00-9:45●2维几何建模●2维网格的类型和网格划分控制●抽中面功能介绍练习:拉力试片几何建模及网格划分9:45-10:30 Part 2:边界条件和2维网格划分器10:30-11:15●2维单元的载荷和边界条件●2维单元的结果查看●网格划分器的比较练习:拉力试片静力学分析11:15-12:00下午Part 3:复合材料建模介绍13:00-13:45●复合材料单元的定义●复合材料分析结果的查看练习:复合拉力试片的静力学分析13:45-14:30 Part 4:2维单元和1维单元的混合建模14:30-15:15●混合建模方法●梁的偏置练习:加筋板分析15:15-16:00 Part 5:当天培训内容回顾及问题讨论16:00-17:00课程内容课程时间第四天上午Part 1:3维单元建模9:00-9:45●六面体网格的自动划分●通过拉伸等方法划分六面体网格●3维网格的类型和四面体网格的划分练习:夹具分析9:45-10:30 Part 2:轴对称建模技术10:30-11:15●Patran的几何导入功能●轴对称建模技术●用2维单元简化3维模型练习:压力容器应力分析11:15-12:00下午Part 3:分组、列表和0维单元13:00-13:45●分组功能●列表●广义0维单元-质量、弹簧和CBUSH练习:航空器整流罩模型13:45-14:30 Part 4:刚性单元和系统单位14:30-15:15●RBE2、RBE3介绍●RBE2和RBE3的异同●有限元的单位系统练习:RBE2和RBE3的比较分析15:15-16:00 Part 5:当天培训内容回顾及问题讨论16:00-17:00课程内容课程时间第五天上午Part 1:正则模态分析9:00-9:45●模态的基本概念●模态分析的相关输入卡片●模态分析的单位练习:矩形板的模态分析9:45-10:30 Part 2:线性屈曲分析10:30-11:15●屈曲的基本概念●屈曲分析的相关输入卡片练习:潜艇耐压壳屈曲分析11:15-12:00下午Part 3:Patran的CAD建模功能13:00-13:30●创建和编辑实体Part 4:线性接触建模技术13:30-14:15●线性接触的基本概念●线性接触的基本参数设置练习:板和实体的线性接触分析14:15-15:00 Part 5:后处理和建模相关技巧15:00-16:00●云图、曲线和动画查看●数据结果输出●有限元模型检查和建模相关技巧Part 6: 培训总结和验收16:00-17:00。
Nastran基础教程01_概述
平的MSC.Patran的开发、发行和支持公司
● MSC.Patran是一个开放的用于主要的有限元分析(FEA)
软件,包括MSC.Nastran 和 MSC.Marc的前后处理程序
NAS120v, Section 1, April 2010 Copyright© 2010 MSC.Software Corporation
创建有限单元网格
NAS120v, Section 1, April 2010 Copyright© 2010 MSC.Software Corporation
S1 - 14
STEP 3 -创建分析模型(续.)
约束悬臂板的一条边
NAS120v, Section 1, April 2010 Copyright© 2010 MSC.Software Corporation
使用MD Nastran 分析图示的悬臂板结构并且用 手工计算验证分析结果
材料: Steel
● ●
E = 30 x 106 psi n = 0.3
NAS120v, Section 1, April 2010 Copyright© 2010 MSC.Software Corporation
S1 - 9
NAS120v, Section 1, April 2010 Copyright© 2010 MSC.Software Corporation
S1 - 17
STEP 3 -创建分析模型(续.)
定义模型属性.
NAS120v, Section 1, April 2010 Copyright© 2010 MSC.Software Corporation
MD Nastran
具有广泛的支持文档 (包括在线百科全书)
Natran官方培训教程Nastran静力分析79章
二维正交异性材料(MAT8)
二维正交异性材料: 平面应力—应变关系
横向应力—横向应变关系
Natran官方培训教程Nastran静力分 析79章
MAT8卡只适用于板(壳)单元,格式如下
名称 MID E1 E2 MU12 G12 G1Z G2Z RHO Ai TREF Xt、Xc
与 G1 结 点 同 一 面 上 的 对 角 结 点 编 号 , 仅 对 于 体 单 元 CHEXA 和 CPENTA才要求的。对于CPENTA单元的三角面是不要求的。
参考面至底面之距(实数)。
单位面积非结构质量(实数)。
胶接材料允许剪应力(实数>0.0)。
破坏准则识别码(BCD值):FT = HILL,HILL准则;FT = HOFF, Hoffman准则;FT = TSNI,Tsai-Wu准则;FT =STRN,最大应变破坏准 则。
参考温度(实数)。
叠层排列方式识别码(BCD值):LAM = SYM,对称铺层,仅需输入半铺 层;LAM为空白,需输入全部层数据。
不同层的标识号ID,各层是以底层为1号依次定义的。
各铺层的厚度(实数)。
每层纵向与单元材料轴的夹角(实数)。
应力或应变输出请求(YES或NO)。
Natran官方培训教程Nastran静力分 析79章
第8章
静力载荷
Natran官方培训教程Nastran静力分 析79章
概述
。 Nastran中,每一类载荷可以单独或以任何线性组合形式施加给结构 集中力和力矩
参考温度(实数)。
分别为纵向拉伸、压缩时的允许应力或允许应变 (实数>0.0)。 分别为横向拉伸、压缩时的允许应力或允许应变 (实数>0.0)。 允许的面内剪切应力或应变(实数>0.0)。
MSC Nastran_2017新功能培训
Multi-axial As能
Surface Resolved Stress Nodal Averaged
MSC Nastran内嵌振动疲劳
• 自从第一次在MSC Nastran 2013中引入内嵌疲劳(NEF),MSC Nastran Embedded Fatigue (NEF)就不断有新功能增加:
• 使用PEAKOUT输入请求参与因子分析
- 3 个峰值 - 在两个峰值之间最小5.0 Hz 分隔 - 声响应用分贝(DB)表示
•
• • •
2 个工况subcases
前支柱激励 驾驶员和前排乘客耳朵的压力响应 面板和点上的贡献因子输出请求
PEAKOUT 参与因子分析
• 测试工况的结果 F06 输出
有黏着力接触的粘接接触
• 很多仿真涉及到多个组件的装配。装配过程通过各种工艺流程实现,如铆接, 螺栓,点焊,缝焊,或粘合。
– 对每一个离散的连接都建立模型往往成本太高 – 粘接接触功能是用来简化降低计算成本的。虽然这种方法容易使用,但往往会导致 结构过于刚性,因为高效的连接是刚性连接。
•
为了缓解这一点,引入了有黏着力的接触功能
MSC Nastran内嵌振动疲劳
局部应力曲线
P1(t) P2(t)
P1(t) P2(t)
ij (t )
疲劳寿命
• 振动疲劳是在频域中进行疲劳分析:
ij ( f )
(Stress)2 Hz fk
m0 m1 m2 m4
Gk(f) Frequency, Hz
疲劳
MSC Nastran内嵌振动疲劳
初始间隙
• 保留初始间隙和过盈
• 增加BCONPRG卡片
焊料蠕变和Anand 本构模型
Nastran 基础培训6_基本单元库
第六章Nastran 的基本单元库一、概述1 基本NX NASTRAN 单元使用NX Nastran单元一般需注意以下方面:* 对于模型中的所有单元,都应具有唯一的单元标识号EID。
绝不能按不同单元类型重复使用单元号。
* 单元矩阵的形成与节点排序无关(指单元矩阵中的元素会随着节点排序的改变而自动调整位置)。
* 每个单元有它自己的单元坐标系,这类坐标系是由连接次序或由其他单元数据定义的。
单元的输出量(例如单元力或应力)是以单元坐标系输出的。
* UGS 公司会不断地增强和改善NX Nastran 单元库的质量,因此,用户可以测试计算结果在本软件的序列版本间的变化(对于同样的模型)。
关于NX Nastran 单元的更详细说明可参看《NX Nastran Quick Reference Guide》第5 章。
二、各类单元的简要说明1. 标量单元,也称0 维单元* 所有标量单元都在结构模型两个自由度间或一个自由度和“地面”间来定义* 标量单元刚度由用户直接定义,静力分析中的标量单元如下:标量弹簧单元:CELAS 1,CELAS 2,CELAS 3,CELAS 4;标量质量单元:CMASS 1,CMASS 2,CMASS 3,CMASS 4 四种形式标量弹簧元,格式如下:说明:CELAS 1 和CELAS 3 性质卡(PELSA) 的格式如下:例题问题:弹簧一端固定,另一端受10 磅轴力,弹簧轴向刚度(K) 为100 磅/英寸,求:结点1202 的位移:模型数据卡为:* NASTRAN 101 静力分析中,PARAM,AUTOSPC,YSE 可自动约束不相关自由度。
* 阻尼(第8 字场GE) 不适于静力分析,未计入* 第9 字场应力系数S是可选,用关系式σ= S * P(P 为单元内力),直接计算弹簧应力。
默认为0.0,不计算应力。
* 将CELAS2 卡上G1 和G2 顺序倒过来,则单元力的符号也反号。
部分输出结果:2. 线单元线单元,也称一维单元,用于表示杆和梁性质;* 杆单元支持拉、压和轴向扭转,但不允许弯曲;* 梁单元则包括弯曲,NX NASTRAN 有三种梁元;CBAR - 简单梁元,梁剖面剪心和形心吻合,不能用于具有翘曲的梁CBEAM - 复杂梁元,具有CBAR的全部能力,允许锥形剖面性质,非吻合的形心和剪心,以及剖面的翘曲;CBEND - 常曲率半径(圆弧) 简单曲梁元(1) 杆单元(CONROD)CONROD 单元,连接两结点,允许承受轴向力和绕轴向的扭转不需单元性质卡,定义多个不同性质杆单元CONROD 格式如下:说明:扭转应力系数C 用于计算扭矩引起的扭转应力(2) 杆单元(CROD)* CROD 单元同CONROD 单元* CROD 有单独的性质卡(PROD) 定义多个有同样性质的杆单元时,用CROD 卡。
Nastran静力学分析关键字解读培训
二、 Nastran软件输入文件内容
Nastran输入文件包括以下内容:
1、要执行的分析类型,例如静力学分析、屈曲分析、特征值响应、瞬态分析等; 2、计算结果输出要求,例如部分/全部的节点位移、单元应力、单元应变等; 3、模型几何,有限元计算通过离散化的空间节点来描述几何特征; 4、单元集合,通过节点号描述各种单元类型(1D/2D/3D); 5、材料参数,材料的应力应变关系需要用各种本构关系来描述; 6、载荷参数,例如集中力/力矩、分布力/力矩、惯性载荷等; 7、边界条件,例如单点约束(SPC)、多点约束(MPC)等。
号为206、209、210、205组成的CQUAD4单元
(单元ID号为101),单元属性ID号为1,依次定
4
义其它单元信息(……)。
五、Nastran关键字实例详解
1、定义ID号为3的Component,
包含ID号为101-200和301-400的所有
1
单元,定义每个Component的名字和
颜色信息,不参与计算,名为“c1”的
五、Nastran关键字实例详解
1、文件由hypermesh生成及相
1
关版本信息,可以删除;
2、执行控制语句,写入分析类
2
型、允许CPU时间等,该分析类型为
101,表示该文件采用静态受力分析,
以CEND语句结尾;
3
3、情况控制语句,选取载荷和
约束条件,选取输出条件定义子工况
等,该文件的输出情况(位移、应力、
沿全局坐标系Z向加载大小为10的集
Nastran-基础培训-4-控制卡片
第 4 章执行控制与情况控制下面是一个典型的Nastran 输入文件:一、执行控制语句(1) 该段语句用自由格式书写(2) 执行控制段基本功能a) 识别作业b) 选择分析类型c) 设置允许CPU 时间d) 输出诊断信息e) 设定用户编写的DMAP 系列分别说明如下:a) ID 语句* ID 语句是可选的,其作用为识别作业;* 必须为执行控制段第一条语句* ID 语句格式为:ID i1,i2其中,i1 和i2 为字符串,i1 可为 1 至8 个字符串,i2 可为任何长度的字符串。
* 每一个字符串都必须以字母开头。
* 在Nastran 输出文件的每一页开头都会输出ID 语句的内容。
b) SOL 语句* SOL 语句是必须的,用于选择分析类型(求解系列)* SOL 语句格式为:SOL n其中,n 是识别求解类型的正整数或解法系列的字符名如:SOL 101 (或SOL SESTATIC ),即线性静力分析;SOL 103(或SOL SEMODES ),即模态分析SOL 105(或SOL SEBUCKL ),即屈曲分析。
等。
c) TIME 语句* Time 语句是可选的,设置最大CPU 时间和作业I/O 时间,它的格式为:TIME t1 , t2其中,t1 为最大允许CPU 执行时间,以分计(实数或整数,缺省值为 1 分钟);t2 为最大允许I/O 时间,以秒计(缺省值是无限大)。
注意,执行时间的默认值仅对于非常小的作业才适用。
d) CEND 语句* CEND 语句是必须的,作用是表示执行控制段的结束,情况控制段的开始。
它的格式为:CEND例子:一个简单模型线性静力分析的执行控制段:ID SIMPLE, STATICS ANALYSISSOL 101TIME 5CEND二、NX NASTRAN结构化求解序列下表为NX Nastran 提供的求解类型及其序列号:三、情况控制指令* 情况控制段是NX NASTRAN 输入文件的必须部分* 跟在执行控制段(CEND) 后,在模型数据集(BEGIN BULK) 之前* 基本功能:选取载荷与约束条件等模型数据;选取输出结果;定义子情况;* 情况控制指令均用自由格式书写1. 输出选择:TITLE = {任何BCD 数据}SUBTITLE = {任何BCD 数据}LABEL={任何BCD 数据}TITLE、SUBTITLE 和LABEL 分别定义输出每页第一行、第二行和第三行标题。
NastranFX中文培训教材
MIDAS Information Technology Co., Ltd.
SKn Technopark Tech-center 15th Fl., 190-1 Sangdaewon1-dong, Joongwon-gu, Seongnam, Gyeonggi-do, 462-721, Korea
2
1
3
在新项目中会自动弹出[分析设定]
对话框
[主菜单]
1
文件 > 分析 > 分析设定„
Cable Joint
7
Step
02
1
导入几何模型
操作顺序
模型工作目录树的几何里点击 [导入„]
2
选择“CableJoint_Geometry.stp” 。 点击[确认] 。 在模型窗口中点击鼠标右键选择 [隐藏基准面、栅格、三角标] 。
8
Shackle
26
Step
08
1
2 3 4 5 6 7
查看分析结果
操作顺序
9 8
模型的几何里点击[隐藏全部] 。 [结果类型]选择 [Von Mises 应力 (实体)] 。 点击[ 点击[ ] (记录) 按钮。 ] (停止) 按钮。
2 7 7 2
点击[最大] 按钮。 关闭软件左上端的[结果标记] 对话框。 [结果类型]中选择[安全系数 (实体)] 。
1
点击[确认] 。 在模型窗口中点击鼠标右键选择 [隐藏所有标签] 。
6
7
[主菜单]
1
分析 > 静荷载> 压力„
8
Cable Joint
13
Step
08
1 2 3 4
Nastran 基础培训 3_有限元模型
第三章NASTRAN 有限元模型知识1 离散化结构的描述有限元模型所需数据包括:* 坐标系* 模型几何(节点坐标)* 有限单元* 载荷* 边界条件* 材料性质A. 坐标系NX_NASTRAN 有默认的直角笛卡尔坐标系,称为基本坐标系,也称缺省坐标系。
NX_NASTRAN 允许用户建立局部坐标系,坐标系类型包括直角、柱面(r,θ,z) 与球面坐标系(r,θ,φ)。
作为一个例子,考虑如图所示的储水罐,这是一个具有半球顶的圆柱面,其轴线是偏离基本坐标系原点的。
对这种情况,建立局部柱面坐标系(γ,θ,z)和球面坐标系(γ,θ,?)来形成模型的几何记录,或检查计算出来的位移结果,显然是十分方便的。
B. 模型几何NX_NASTRAN中,模型几何用结点(Grid) 定义。
结构结点由于加载而移动:结构模型每一结点有六个可能位移(自由度),分别是:三个移动(在X、Y 和Z 方向) 和三个转动(绕X、Y 和Z 轴的转动) 。
C. 有限单元Nastran 中,单元名均以字母C 开头,C 是表示“connection”。
Nastran 中提供了以下单元:■弹簧元(性质如简单拉伸或扭转弹簧)■线单元(性质象杆、棒或梁)杆元:CROD,CONROD直梁元:CBAR,CBEAM曲梁元:CBEND■面单元(性质象膜或薄板)三结点三角形板元:CTRIA 3六结点三角形板元:CTRIA 6四结点四边形板元:CQUAD 4八结点四边形板元:CQUAD 8四结点剪力板元:CSHEAR■体元(性质象块料或厚板材)■约束元(无限刚硬,称为刚性元)·刚性杆:RROD·刚性梁:RBAR·刚性三角板:RTRPLT·刚性约束元:RBE1,RBE2·均方加权约束元:RBE3·内插约束元:RSPLINED. 载荷(1) NX_NASTRAN 可处理的载荷包括静力载荷、动力瞬态、振动载荷、热载、地震加速度和随机载荷……(2) 静力载荷包括:* 板和体表面上的压力载荷* 重力载荷* 由加速度引起的载荷* 强迫位移* 集中力和力矩* 梁上的分布载荷E. 边界条件(1) 结构对载荷的响应通过约束点或结构点处产生反力来响应;(2) 一些简单边界件:(3) NX_NASTRAN 中,边界条件通过约束适当自由度为零位移来处理。
nastran动力学培训
四、强迫运动
用于分析带有地基加速度、位移和速度的输入的受约束结 构。 直接指定法 例:一端固支的矩形结构,在地基上受到沿Z方向频率为 250HZ的单位正弦脉冲加速度作用,使用直接方法,确定 该结构的瞬态响应。在地基上施加1000lb的大质量,使用 的结构阻尼系数:g=0.06,并将此阻尼转化为在250HZ下 的等效粘性阻尼。
动力学培训内容介绍
1.模态分析 2.瞬态响应分析 3.频率响应分析 4.强迫运动 5.随机响应分析
结构动力学分析
一、模态分析 求解器:103 质量矩阵形式:MSC认为耦合质量比集中质量更精确,在 动力分析里出于对计算速度的考虑,更倾向于使用集中质 量。 使用方法:用PARAM,COUPMASS,1选择耦合质量; 缺省为集中质量。 求解方法:推荐的Lanczos方法。 EIGRL卡片
(续)
激励的定义:与瞬态响应中TLOAD对应,在频率响应中 为RLOAD。其中RLOAD1是按照实部与虚部的形式来定 义频变载荷;RLOAD2按幅值和相位的形式来定义频变载 荷。 几点考虑:如果激励的最高频率比系统的最低谐振频率小 得多,那么使用静态分析就足够了;阻尼很小的结构在激 励频率接近于谐振频率的时候,会表现出很大的动力响应。 在这样的问题中,模型上一个小的改动(或仅换一台电脑 来计算)都可能产生响应的明显变化;如果希望对峰值响 应进行充分的预测,必须使用足够好的频率步长(Δ f)。 对每个半能带宽至少使用5个点。
(续)
SOL 109 TIME 30 CEND TITLE = TRANSIENT RESPONSE WITH BASE EXCITATION SUBTITLE = USING DIRECT TRANSIENT METHOD, NO REDUCTION ECHO = UNSORTED SPC = 200 SET 111 = 23, 33 DISPLACEMENT (SORT2) = 111 VELOCITY (SORT2) = 111 ACCELERATION (SORT2) = 111 SUBCASE 1 DLOAD = 500 TSTEP = 100 $
MSCNastran操作与实战培训教程分解
MSCNastran操作与实战培训教程分解随着工程技术的不断发展和进步,越来越多的企业开始采用MSCNastran这款优秀的有限元分析软件来进行机电产品的设计及分析,它是目前世界公认的有限元分析软件中最为优秀和实用的一款软件之一。
因此,对于想要真正深入学习MSCNastran软件的人来说,必须要进行一些系统的操作与实战培训,并且对于这个软件的分解也是非常必要的。
MSCNastran的操作教程1.软件的安装首先要进行的操作就是把MSCNastran软件进行安装,因此,在进行安装操作的时候,首先要确认自己的电脑是否符合安装的要求,再选择合适的安装路径,最后根据安装向导进行安装。
2.软件的集成安装完成后,需要运行MSCNastran软件并将其集成到自己的工程中,这个过程需要掌握软件的使用方法、操作步骤、及相关问题的解决方案等。
3.进行模型的建立建立模型是一项非常重要的操作,该操作需要熟知MSCNastran软件的各种建模方法,如块模型法、无限域法、及高级建模技术等,并对这些方法进行深入理解与掌握。
4.进行单元网格的划分模型创建完成后,需要进行单元网格的划分,这个过程必须要掌握MSCNastran中单元网格划分的方法及相关的技术。
5.进行分析的设置分析的设置是在进行有限元分析前必须进行的操作,需要按照一定的流程和步骤进行分析的设置,并对其进行相关的参数配置,使之达到最理想的分析效果。
6.进行模型的优化在进行模型优化时,需要掌握MSCNastran的多种优化技术和方法,如模型的形状优化、参数优化、及约束优化等,并根据模型的实际情况进行优化处理。
MSCNastran的实战培训MSCNastran的实战培训是一项非常重要的教学内容,通过实际的操作与实验,可以让学习者更直观地了解软件的操作方法和技巧,并且可以熟悉真实的工程场景,更好的实现软件的应用。
实战教学需要以实际的机电产品为样本,使用MSCNastran软件进行分析和优化处理,让学员通过实际的操作和实验加深对工程实践的认识,掌握软件的实用方法和技巧。
MSCNastran操作与实战培训教程
l
刚性杆:RROD
l
刚性梁T
l
刚性体:RBE1,RBE2
l
均方加权约束元:RBE3
l
内插约束元:RSPLINE
载荷
(1) MSC/NASTRAN可处理的载荷包括静力载荷、动 力瞬态、振动载荷、热载、地震加速度和随机 载荷……
(2) 静力载荷包括:
l 板和体面上的压力载荷 l 重力载荷 l 由加速度引起的载荷 l 强迫位移 l 集中力和力矩 l 梁上的分布载荷
8) 特殊分析功能
l 声响分析 l 流体与结构耦合分析 l 循环对称分析 l 层复合材料分析
5 MSC/NASTRAN的前后处理
1、 MSC公司提供的 MSC/PATRAN,MSC/ARIES
2、通用CAD软件 如Unigraphics(UG),Pro/ENGINEER与I-DEAS等
3、所有著名CAD/CAM系统及专用有限元前后处理软件 都与MSC/NASTRAN有接口,均可生成MSC/NASTRAN的 输入文件,并进行后处理。
1995年,MSC/NASTRAN V68.2版
1996年,MSC/NATRAN V69版
1997年, MSC/NASTRAN V70版
2001年,MSC/NASTRAN2001版
3 MSC/NASTRAN主要特点与功能
• MSC/NASTRAN 的主要特点
1)大型、通用、功能齐全、适用面广 2)极高的软件可靠性 3)世界领先的计算结构技术先进性 4)独特的DMAP语言 5) 标准的输入/输出格式
结点 3# 单元 ② 结点 2# 单元 ① 结点 1#
2、形成单元刚度矩阵 3、总装刚度矩阵
4、施加边界条件 5、施加作用载荷
NASTRAN动力学分析教程
MSCNastran操作与实战培训教程分解
MSCNastran操作与实战培训教程分解随着计算机技术和CAE(计算机辅助工程)技术的不断发展,MSCNastran已经成为了工程师们解决结构分析问题的重要工具。
然而,初学者对于如何操作MSCNastran仍然比较迷惑。
本文将分解MSCNastran的操作教程,让初学者能够轻松上手实战操作。
1. 了解MSCNastran首先,我们需要了解MSCNastran的基本概念和用途。
MSCNastran是一种专业的有限元分析软件,可以模拟和预测各种物理现象,如结构变形、热传导、流体流动等等。
通过对复杂结构进行数值模拟分析,工程师可以更好地优化设计,提高工程质量和效率。
2. 安装MSCNastranMSCNastran是一种商业软件,需要购买后进行安装。
我们可以从MSC官方网站上下载安装包,并按照安装指南进行操作。
在安装过程中,要注意配置环境变量、路径等,以便正确调用软件。
3. MSCNastran界面MSCNastran的界面比较简洁,整体窗口可以分为三个部分:(1)图形界面:图形界面显示模型的三维模型和计算结果,可以用来进行后处理和结果查看。
(2)编辑界面:编辑界面用于输入模型数据,手动编辑各种数据文件,并通过命令行进行操作。
(3)输出界面:输出界面用于显示计算过程中产生的警告、错误信息和计算结果等。
4. MSCNastran的简单流程在使用MSCNastran进行分析之前,需要确定以下几个步骤:(1)定义模型几何:CAD软件可以用来创建模型,也可以从STEP或IGES格式的文件中导入模型。
(2)设置网格:将模型转化为有限元网络。
MSCNastran 支持多种网格类型,包括四边形、三角形、六面体、四面体、棱柱和棱锥等。
(3)定义材料和属性:定义材料类型、弹性模量、泊松比、密度和粘滞阻尼等物理特性。
(4)设置约束和载荷:设置模型的约束和载荷,包括支撑条件、力、扭矩、压力等。
(5)运行分析:启动MSCNastran,并输入数据文件以运行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(续)
PARAM,LFREQ 给出保留模态频率的下限 PARAM,HFREQ 给出保留模态频率的上限 PARAM,LMODES 给出被保留的最低频率模态的数量。 载荷卡片:
时变载荷 TLOAD1(与表联用)
载荷类型(力、力矩或者强迫位 移、速度、加速度)的号
(续)
BEGIN BULK PARAM, COUPMASS, 1 PARAM, WTMASS, 0.00259 $ 3 PERCENT AT 250 HZ. = 1571 RAD/SEC. PARAM, G, 0.06 PARAM, W3, 1571. $ APPLY UNIT PRESSURE LOAD TO PLATE $ LSEQ, 100, 300, 400 $ PLOAD2, 400, 1., 1, THRU, 40 $(静态载荷) $ VARY PRESSURE LOAD (250 HZ) TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90. $ APPLY POINT LOAD OUT OF PHASE WITH PRESSURE LOAD $ TLOAD2, 500, 600, , 0, 0., 8.E-3, 250., 90. $ DAREA, 600, 11, 3, 1. $ $ COMBINE LOADS $ DLOAD, 700, 1., 1., 200, 50., 500 $ $ SPECIFY INTERGRATION TIME STEPS TSTEP, 100, 100, 4.0E-4, 1 输出跳跃因子 ENDDATA
(续)
SOL 109 TIME 30 CEND TITLE= TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS SUBTITLE= USE THE DIRECT METHOD ECHO= PUNCH SPC= 1 SET 1= 11, 33, 55 DISPLACEMENT= 1 SUBCASE 1 DLOAD= 700 $ SELECT TEMPORAL COMPONENT OF TRANSIENT LOADING (必须) LOADSET= 100 $ SELECT SPACIAL DISTRIBUTION OF TRANSIENT LOADING(可选) TSTEP= 100 $ SELECT INTEGRATION TIME STEPS (必须) $
(续)
激励的定义:与瞬态响应中TLOAD对应,在频率响应中 为RLOAD。其中RLOAD1是按照实部与虚部的形式来定 义频变载荷;RLOAD2按幅值和相位的形式来定义频变载 荷。 几点考虑:如果激励的最高频率比系统的最低谐振频率小 得多,那么使用静态分析就足够了;阻尼很小的结构在激 励频率接近于谐振频率的时候,会表现出很大的动力响应。 在这样的问题中,模型上一个小的改动(或仅换一台电脑 来计算)都可能产生响应的明显变化;如果希望对峰值响 应进行充分的预测,必须使用足够好的频率步长(Δ f)。 对每个半能带宽至少使用5个点。
B B1 B 2 G 1 1 K GEKE W3 W4
(续)
G=整体结构的阻尼系数(PARAM,G) W3=感兴趣的整体结构阻尼转化频率-弧度/秒(PARAM, W3) W4感兴趣的单元结构阻尼转化频率-弧度/秒(PARAM, W4) KE=单元刚度矩阵 由于瞬态分析不允许出现复系数。所以,结构阻尼通过等 效的粘性阻尼来施加。即PARAM,G和PARAM,W3同 时定义。 模态法的特点:模态截断。一般模态法并不需要计算所有的 模态,对于动力响应计算,经常仅需要最低的几阶模态就 足够了。
二、瞬态响应分析
分析目的:计算时变激励载荷作用下结构的动力行为。 载荷的形式可以是外力或强迫运动。 两种数值方法:直接法和模态法。直接法对全部耦合的 运动方程进行直接数值积分来求解;而模态法则是利用 结构的振型来对耦合的运动方程进行缩减和解耦,然后 再由单个模态响应的叠加得到问题的最终解答。 求解器:直接法 SOL 109;模态法 SOL 112 直接瞬态响应中的阻尼
(续)
静态载荷标识
与TLOADi中对应
温度载荷标识
例:
(续)
该结构受到随时间变化的激励作用:1磅/平方英寸的压力 载荷作用在整个板的表面,以250HZ的频率变化;一个50 磅的力加在顶端的角上,其变化频率也是250HZ,但与压 力载荷有180度的相位差。两个时间的动力载荷都只持续 作用0.008秒。作用g=0.06的结构阻尼,并把它转化为频 率为250HZ的等效粘性阻尼。对该结构进行0.04秒的瞬态 分析。
时间步数 作用时间
三、频率响应分析
频率响应分析是计算在稳态振动激励作用下结构动力响应 的一种方法(比如偏心旋转部件在一组转动频率下的旋转 分析)。 在频率响应分析中,激励载荷是在频域中明确定义的,所 有外力在每一个指定的频率上都是已知的。而力的形式可 以是外力、也可以是强迫运动。 与瞬态分析一样,也有两种方法供选用:直接法和模态法。 对应的求解器为SOL108、SOL111。
(续)
TLOAD2
载荷作用的起止时间
频率
相位角
载荷集的组合-DLOAD卡
整体比例因子 第2个载荷的比例因子 及TLOAD标识号
(续)
DAREA卡
Grid number Component号
比例因子
LSEQ卡
定义作为动态载荷来应用的静态载荷。 通过LOADSET工况控制命令来选中LSEQ模型数据卡 包含一个DAREA卡,以表明是和TLOAD卡一起作用的载荷集。
动力学培训内容介绍
1.模态分析 2.瞬态响应分析 3.频率响应分析 4.强迫运动 5.随机响应分析
结构动力学分析
一、模态分析 求解器:103 质量矩阵形式:MSC认为耦合质量比集中质量更精确,在 动力分析里出于对计算速度的考虑,更倾向于使用集中质 量。 使用方法:用PARAM,COUPMASS,1选择耦合质量; 缺省为集中质量。 求解方法:推荐的Lanczos方法。 EIGRL卡片