日本钢结构桥资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日本钢桥新技术资料
日本是钢桥的王国,钢桥的结构形式随着时代的发展而不断地进行着改进。教科书里介绍的结构形式有许多已经过时,日本桥梁建设协会的资料是实际工程设计的参考资料。
少数主梁桥
少数主梁桥是通过采用大跨度的合成桥面板或PC桥面板,达到减少主梁数目,并使横梁,风撑结构简素化以至于省略的新形桥梁。近年来已经成为一种常见的钢桥形式。适用于曲率半径大于700米的场合,经济跨径30到80米。特长:由于采用合成桥面板或PC桥面板,提高了桥面板的跨度。合成桥面板的底钢板同时兼做混凝土的模板。现场打设的PC桥面板或工厂预制的桥面板均可对应。由于桥面板跨度的增大,减少了主梁数目。横梁的间隔也达到10米程度,横梁可以直接使用型材。通过桥面板抵抗横方向的荷重,省略了下风撑。除去强风地域,一直到70米均可保证抗风安全性。跨径再大的话需要对抗风做特别的考虑。
狭小箱梁桥的主梁比从前的箱梁窄,翼缘的板厚较大,纵向加强肋的设置个数少,省略了横向加强肋,并且通过使用大跨度的合成桥面板,PC桥面板,简化了床组结构。适用于曲率半径大于300米的场合,经济跨径60-110米。特长:纵加强肋的设置个数大大减少,或者省略横加强肋。较大跨径时,虽然箱梁断面较宽,箱内结构也可以简素化。例如最大跨径97.6米,梁高3.1米,腹板间隔2.5米的狭小箱梁,但纵加强肋只设了一处。
当上下线一体化时狭小箱梁
适用于曲率半径大于300米的场合,经济跨径50-90米。
当上下线一体化时开断面箱梁
合理化钢床板少数I梁桥
适用于曲率半径大于700米的场合,经济跨径60-110米。采用大尺寸的U形加强肋。
合理化钢床板少数I梁桥采用了较厚的钢桥面板,增强了耐久性。
合理化钢床板少数I梁桥与从前桥梁的比较。
合理化钢桁架桥
与从前的钢桁架桥相比,省略了支持桥面板的纵梁和牛腿等床组结构,采用了适用于大跨度的合成桥面板或PC桥面板。通过桥面板抵抗横向荷载,省略了上风撑。
结构简素化钢桥
从前日本的钢桥,为了最大限度上节省材料,结构做的过分复杂。但由于总成本中材料费用比重的下降,制作安装费用比重的上升,钢桥结构上需要做相应的改进。在工程实践中,日本技术者在工作细节上总有一种复杂化的倾向,不利于降低桥梁的总造价,为此,1998和2003年,日本桥梁建设协会两次发行新的钢桥设计指针,力图使钢桥结构简素化。
与以前相比,主要的改变点:
1、在一个部材(节段)内,断面不进行变化。以前的公路钢桥,在一个节段内,上下翼缘的宽度和厚度都要进行变化。由于考虑运输问题公路钢桥的节段节段都不太长,截面变化过多,给工厂制造带来很多不便;而且上翼缘宽度变化的话,在打设桥面板混凝土时,模板设置十分麻烦,为此进行了简化。
2、在全桥范围内,上翼缘宽度不作改变;下翼缘,原则上保持一致,对于连续梁的中间支点附近可根据需要加宽。
3、通过适当加大腹板板厚,水平加强肋设置一段。以前有些桥
梁设置了两段,并且腹板板厚多次改变。
4、腹板的连接板,以前多用三块,上下主要抵抗弯矩,中间主要抵抗剪断力,在简素化结构中,只用一块连接板。
5、各节段翼缘的板厚一般有改变,所以,在连接板处设置板厚调整垫板。
合成桥面板
以前日本钢桥的桥面板都是采用RC结构的,RC桥面板跨度能力有限(3米),使得桥梁结构复杂化。虽然初期设置费用较低,但伴随着交通量的增加和车辆的重型化,RC桥面板受损严重,维护费用居高不下。为适应新型钢桥主梁间距增加,桥面板跨度增大到6米以上和增加桥面板耐久性的要求,日本的多家钢铁制品公司开发出形式各异的合成桥面板。合成桥面板的底钢板和侧钢板顺桥方向每段长2米程度,段之间通过螺栓进行现场连接,同时兼有混凝土打设模板的作用。直桥方向采用钢板,带钢或型钢形成底钢板的加强肋。在加强肋上方或在加强肋的腹板上开孔设置钢筋网或仅在顺桥方向设置钢筋。
在某些情况下,对桥梁的梁高有非常严格的限制条件。适用于跨径10米至40米的钢混合成桥面板桥应运而生。其最突出的特点是高跨比可达1/30至1/42。用钢量约为200~500kg/m2。底钢板兼做混凝土打设模板。为了增强与混凝土的结合性能,在型钢的上翼缘设了突起。当跨径较大时,先用轻质发泡材料对下半部进行充填,然后才用混凝土打设床板。设计时一般用梁格法,主要结构的结构重力由合成前的钢断面单独承担,路面铺装,护栏等的结构重力及汽车荷载由钢和混凝土的合成后的断面共同承担。
钢混合成梁桥
钢混合成梁桥依靠钢主梁和混凝土桥面板(或合成桥面板,预应力混凝土桥面板)合成后的截面共同承受荷载,充分发挥了材料的特性,提高经济性。在上世纪60年代,在钢混合成梁桥在日本被广泛采用。但有些技术问题还未得到很好的解决,桥面板的耐久性比较差,随着交通量的增加和汽车荷重的加大,桥面板常受到损伤;在连续梁的中间支点附近桥面板受到负弯矩,而防水层的性能尚不足。由于桥面板也是主要承重构件,桥面板的损伤给交通安全带来较大隐患。所以到了70年代以后,大家都对合成梁桥敬而远之。但近些年来,随着
技术的进步,伴随着PC桥面板,合成桥面板的开发,桥面板的耐久性问题得到解决;并且简化了原来一些过分复杂的结构,现在的所谓PC桥面板,是指在横桥方向是PRC构造,在顺桥方向为RC构造。合成梁桥又重新活跃起来。
合成梁桥在设计过程中,需考虑各阶段构造体系的变化,应力逐步叠加。在混凝土截面合成以前,钢梁及混凝土构件的恒载,全部由钢梁承担。合成以后的桥面荷载,汽车荷载,混凝土徐变,干燥收缩,温度差等由合成后截面共同承担。但对于中间支点附近(左右各0.15倍跨径范围内)的汽车荷重项,由于桥面板受到拉应力,不考虑混凝土的刚性,仅考虑钢梁及混凝土床板中钢筋的合成作用。
钢桥的节段与断面变化
钢桥的一个好处是制作在工厂进行,使得现场作业时间得以短缩。中间的运输问题,对于大江大河上的桥梁可以通过水路运输,但对于一般的公路桥梁,须通过公路运输才能将在工厂制作好的节段运到现场,公路的运输能力在相当程度上决定了钢桥的规模。日本公路