有限元分析论文
生物材料的热-电-化-力学多场耦合理论和有限元分析方法论文
第1章绪论詈量置量s——鼍—■■—■■●墨■■皇鲁—■E曼——舅兰蔓寰皇E—田■—■■—■皇篁■量蜘|1I墨舅罾舅|量—墨墨■■置舅■皇舅|曼皇寰皇E嘲1.1引言第l章绪论随着科学技术的进步和工程应用领域的不断扩大,生物材料(BiologicalMaterial)的研究显得越来越重要fl】。
当材料处于人体环境时,通常具有复杂的介质环境,如渗流场、温度场、应力场、电场和化学场等,这些环境相互作用、相互影响,从而构成了相互制约的动态平衡体系的复杂状态【2J。
因此,研究生物材料在多场耦合作用下的性能研究就显得尤为重要。
这里研究的生物材料是一种特殊的多孔介质(PorousMedia)。
多孔介质可以看作由带电可渗透性固体构成,固体间充满电解质溶液。
水凝胶体、粘土、页岩、生物软骨组织等材料都可以近似地看作是多孔介质pJ。
我们所研究的生物材料是多孔介质中的一类,在介质中,当改变相关盐水浓度时,材料通常会发生膨胀或收缩现象,这主要是由于附在固体上的电荷以及存在于流体中的离子的相互作用产生的。
他们之间的相互作用产生了唐南渗透、电渗透、扩散势和扩散电流等特征【4l,当材料变形时还要考虑到流体压力的作用p,6J。
由于生物材料结构的复杂性、多相性导致了研究的困难性。
就人体软骨组织而言,人体内的软骨具有极特殊的力学性能,在关节润滑和减弱动力作用中起着重要的作用【”。
但是人体软骨组织内无血管,一旦损伤很难修复,多年来人们一直试图修复或重建受损后的软骨组织。
人体内部的软骨组织所具有的多成分、非匀质性各项异性的本质使得力学分析复杂化。
因此简化几何条件的实验工作应当与有限元计算相联系悼J。
图1-1豚鼠鼻中隔内软骨组织的割断面Fig.1-1Crosssectionofcartilagetissueinthenoseofcavy图I-2同源软骨细胞群中的软骨组织Fig.1-2Cartilagetissuewithcapsuleandmatrixinthehomologouscartilagecellpopulation由于生物材料特殊的结构及广泛的应用性,因此有必要对这种结构在热.电一力一化学多场耦合作用下的性能进行进一步的研究,建立符合实际的模型。
基于abaqus的ujoint有限元分析有限元分析论文大学论文
有限元分析课程论文课程名称:有限元分析论文题目:ujoint有限元分析学生班级;学生姓名:任课教师:学位类别:评分标准及分值选题与参阅资料(分值)论文内容(分值)论文表述(分值)创新性(分值)评分论文评语:总评分评阅教师: 评阅时间年月日注:此表为每个学生的论文封面,请任课教师填写分项分值基于abaqus的ujoint有限元分析摘要:万向传动装置在汽车中起到了传递扭矩的关键作用,在abaqus中导入ujoint实体模型,之后对其进行坐标系建立,wire 建立,以及各部件之间的连接关系的建立,最后对该模型施加边界条件,令其运动。
关键词:abaqus、有限元、ujoint一问题的描述对导入的ujoint在所有步骤完成后,施加力:在stepinitial:均设为0;step SPIN:doundary1:限制除UR2的所有,且把UR2值设为:pi。
在boundary2 中,限制UR1和UR3自由度。
二在abaqus中导入ujoint实体模型启动abaqus CAE,在文件下拉菜单中选择:import ,选择最终文件位置or 输入ws_connector_ujoint.py.inp打开文件ujoint。
(如下图所示)2.1 创建坐标系单机操作界面中的tool,从下拉菜单中选择datum,再出来的窗口中选择coordinate,3points。
首先选择origin,在选择x正方向,Y正方向、z正方向。
创建完成。
2.2创建VERT和CROSS之间的2坐标系。
根据 2.1所述操作步骤创建坐标系V-C 和V-G (VERT和GROUND)。
Notice:1、创建过程中为了清晰分辨,可将IN的suppress,创建完成后再将其resume。
其他同样2、在V-C和I-C中,x轴与cross转动所绕轴平行。
根据2.1所属步骤创建I-C 和I-G. 结果如图;2.3 定义connector geometry1. 2.3.1 创建disjoint型wire在选项中选择interaction,在所出现窗口中点击Create Wire Feature tool.,在所出现的窗口中选择Disjointwires,单机添加要成wire的点。
(完整版)有限元分析法设计说明书含图纸毕业设计论文
建筑工程学院本科毕业设计(论文)学科专业机械设计制造及其自动化辅导教师目录第1章前言······················································11.1塔式起重机概述 (1)1.2塔式起重机的发展情况 (1)1.3塔式起重机的发展趋势 (3)第2章总体设计 (5)2.1 概述 (5)2.2 确定总体设计方案 (5)2.2.1 金属结构 (5)2.2.2 工作机构 (22)2.2.3 安全保护装置 (29)2.3 总体设计设计总则 (32)2.3.1 整机工作级别 (32)2.3.2 机构工作级别 (32)2.3.3主要技术性能参数 (33)2.4 平衡重的计算 (33)2.5 起重特性曲线 (35)2.6 塔机风力计算 (36)2.6.1 工作工况Ⅰ (37)2.6.2 工作工况Ⅱ (41)2.6.3 非工作工况Ⅲ (43)2.7整机的抗倾翻稳定性 (45)2.7.1工作工况Ⅰ (46)2.7.2工作工况Ⅱ (47)2.7.3非工作工况Ⅲ (49)2.7.4工作工况Ⅳ (50)2.8固定基础稳定性计算 (51)第3章塔身的有限元分析设计 (53)3.1 塔身模型简化 (53)3.2 有限元分析计算 (54)3.2.1 方案一 (54)3.2.2 方案二 (79)3.2.3 方案三 (98)第4章塔身的受力分析计算 (121)4.1 稳定性校核 (121)4.2 塔身的刚度检算 (122)4.3 塔身的强度校核 (124)4.4 链接套焊缝强度的计算 (125)4.5 塔身腹杆的计算 (126)4.6 高强度螺栓强度的计算 (127)第5章毕业设计小结 (129)致谢 (130)主要参考文献 (131)目计算与说明结果塔身的有限元分析设计塔身模型简化三种待优化方案有限元分析计算前处理塔身标准节节点建模定义单元类型和材料参数定义标准节的外框立柱杆件第3章塔身的有限元优化分析设计ANSYS解决问题的基本流程为:前处理(preprocessor)求解(solution)一般后处理(genneral postprocessor)和时间历程后处理(time domain postprocessor)结果处理。
有限元分析小论文
有限元分析小论文有限元分析是一种基于数值计算的工程分析方法,用于研究结构在外载荷作用下的应力、变形、振动等特性。
该方法通过将结构分割成有限个小元素,对每个小元素进行单独分析,再将各个小元素的结果组合起来得到整个结构的响应。
本文将从有限元分析的原理、应用和优缺点等方面进行论述。
有限元分析的原理是以连续体的离散为基础,将结构分割成很多小单元,每个小单元的物理特性可以通过有限个参数进行描述。
然后,根据力的平衡关系和物体运动学等基本理论,可以得到每个小单元的受力和运动情况。
最后,将所有小单元的受力和运动结果组合起来,得到整个结构的响应。
有限元分析在工程领域有广泛的应用。
首先,它可以用于研究结构在静态或动态加载下的应力和应变分布情况。
例如,在计算机辅助设计中,可以通过有限元分析预测结构在不同载荷下的变形情况,帮助工程师优化结构设计。
其次,有限元分析还可以用于模拟材料的行为和响应。
例如,在材料科学领域,可以通过有限元分析研究材料的强度、疲劳寿命等特性。
此外,有限元分析还可以用于求解流体力学、热传导等问题。
然而,有限元分析也存在一些局限性。
首先,该方法需要将结构分割成有限个小单元,因此分割的大小和形状会对结果产生影响。
如果分割不合理,可能导致结果不准确。
其次,有限元分析需要对结构的物理特性进行建模和输入,这对分析人员的经验要求较高。
最后,有限元分析的计算量较大,在分析大型结构时可能需要较长的计算时间。
综上所述,有限元分析是一种重要的工程分析方法,能够帮助工程师研究结构的响应和行为。
虽然该方法存在一些局限性,但它仍然是解决工程问题的一种有效工具。
随着计算机技术的不断发展,有限元分析的精度和效率也将进一步提高。
机器人机械手的有限元分析及相关控制的研究(长沙理工2014优秀论文)
第 1 关节
电机自带
结合机器人机械手的工作状况,选择如表 3-3 所示电机和减速机构。
3.4 机器人结构设计
图 3.3 各关节结构图
4 机器人关键部件的有限元分析
4.1 机器人关键部件有限元模型的建立
-3-
4.1.1 基座、大臂、小臂实体模型的简化 通常对于实体模型的细节进行一定的几何简化,尽量忽略一些不必要的细节,去除一些与分析意图影响不大的零件 及特征,以利于有限元分析。
-3
图 3.2 关节的极限位置图 3.2.2 各关节功率估算 电机功率计算采用公式 又有 n=ω×60/2 π 得到如下计算结果(单位 W) : 表 3-2 各关节极限力矩和功率计算结果 关节号 极限力矩(N·m) 计算功率(W) 7 2.400 12.0 6 3.213 32.1 5 3.675 30.6 4 26.435 164.2 3 22.638 189.3 2 51.451 430.1 1 64.345 750.3
1.引言
机器人技术是现代科学技术高度集成和交融的产物,它涉及机械、控制、电子、传感器、计算机、生物学、人工智 能等众多学科领域,是当代最具代表性的机电一体化技术之一 。随着科技的日益先进,消费者的生活不断的得到提高。 然而,人们对生活的品质要求却越来越高。本课题就是在这样一个背景下展开工作的。 目前,市场上大型工业机器人已经日趋成熟。而对于贴近人们生活层面的小型机器人机械手却很稀少,而我国在这 一方面存在更大的空缺。将工业机器人小型化,引入人们的生活做一些必要的工作,将大大提高人们的生活品质。
(3-1)
极限位置的速度和加速度由表 2-2 所示。 (1) 第 7 关节力矩
图 3.1 第 7 关节传动示意图 -2-
第 6 关传动示意节图
有限元分析设计论文
一、问题描述。
图4-4所示为一直齿圆柱齿轮,图4-5为其1/2纵截面的结构示意图,试对该齿轮进行模态分析。
齿轮材料参数:弹性模量E=220GPa;泊松比=0.3;密度=7800kg/m3图4-4 直齿圆柱齿轮结构示意图图4-5 齿轮1/2纵截面结构示意图二、单元类型的选择与设定(说明理由),材料属性指定。
该问题属于模态分析问题。
在分析过程中先建立其中一个轮齿的几何模型,再循环生成整体齿轮,选择SOLID90单元进行模态分析求解。
齿轮的模态分析需要创建三维实体模型,选择单元类型的时候一般选择实体模型Structural Solid来创建齿轮,单元类型选择对复杂形状具有较好的适应性的20节点的Brick 20node 95。
材料属性题目已指定:弹性模量E=220GPa,泊松比=0.3,密度=7800kg/m3。
1.定义工作文件名和工作标题。
1)选择Utility Menu︱File︱Change Jobname命令,出现Change Jobname对话框,在[/FILNAM]Enter new jobname输入栏中输入工作文件名EXERCISE1,单击OK按钮关闭该对话框。
2)选择Utility Menu︱File︱Change Title命令,出现Change Title对话框,在输入栏中输入MODAL ANALYSIS OF A GEAR,单击OK按钮关闭该对话框。
2.定义单元类型1)选择Main Menu︱Preprocessor︱Element Type︱Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现Library of Element Types对话框。
2)在Library of Element Types列表框中分别选择Structural Solid、Brick 20node 95,在Element type reference number输入栏中输入1,如图4-6所示,单击OK 按钮关闭该对话框。
ansys 论文
计算力学结课论文(普通高等教育)论文题目 ANSYS 有限元分析学 院专业名称班 级学 号姓 名指导教师 赵东 职 称ANSYS软件介绍ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。
ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。
前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。
软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。
该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。
ANSYS软件提供的分析类型1.结构静力分析用来求解外载荷引起的位移、应力和力。
静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题。
ANSYS程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。
带轮淬火过程的有限元分析(毕业设计说明书论文模板)
带轮淬火过程的有限元分析摘要【为分析带轮淬火过程中的各场量变化情况,利用ANSYS的热分析功能对带轮进行瞬态热传递分析。
以采用实体单元离散带轮模型及设定时间历程变量的方法来研究锻造带轮在终锻后进行淬火的过程,分析其表面到中心各个部分的温度变化。
】关键词:淬火,数值模拟,有限元法,热分析Belt wheel quenching process based on finite element analysisABSTRACT【Analysis of quenching process for belt wheel in the field variation, The use of ANSYS thermal analysis function of belt wheel for transient heat transfer analysis. By using the solid element discrete belt wheel model and setting the time history variable approach to the study of forging belt wheel in the end after forging quenching process. Analysis of the surface to the center of the various parts of the temperature change.】KEY WORDS: Quench,Numerical simulation,The finite element method,Thermal analysis目录前言 (1)第1章问题描述 (3)1.1 设置带轮初始条件 (3)第2章问题的分析 (5)2.1 瞬态热分析 (5)2.2 分析模型的选择 (5)2.3求解的问题 (6)第3章带轮瞬态热分析的求解过程 (7)3.1 建立工作文件名和工作标题 (7)3.2 定义单元类型 (7)3.3 定义材料性能参数 (8)3.4创建几何模型、划分网络 (9)3.5加载求解 (20)3.6查看求解结果 (23)第四章命令流文件 (36)第五章实验结论 (42)谢辞 (43)参考文献 (44)附录 (46)外文资料翻译 (47)前言【有限元法是以电子计算机为手段的“电算”方法,它以大型问题为对象,未知的个数可以成千上万,因而为解决复杂的力学问题提供了一个有效的工具并被广泛应用于分析其他各种问题,尤其是热分析中的场问题,甚至成了该领域主要的分析方法。
有限元分析方法在机械零件失效分析中的应用_王铁
有限元分析方法在机械零件失效分析中的应用王铁 李光辉 张瑞亮 赵富强(太原理工大学齿轮研究所 山西省太原市 030024)摘要:在机械零件的设计中可利用CAD/CAE软件进行强度分析计算,当零件发生失效时,对其进行有限元分析可以为失效分析提供依据。
本文借助齿轮和花键联接说明这种方法的应用。
针对零件的结构特点,采用有合理效的有限元分析方案,根据对分析结果的研究,对机械零部件提出改进意见。
关键词:CAD/CAE,失效分析,花键,齿轮机械零件是组成机器或机构的基本单元,在我们的日常设计中常常是采用经验法或类比法进行设计,只有对一些新的结构才采用有限元分析等方法,但是随着CAD/CAE软件的应用与普及,我们应该在条件许可的情况下,对所设计的关键部件进行有限元分析计算,这样可以提高设计的可靠性和可信性。
齿轮与花键是最常用的机械结构形式,它们在整个机械领域中的应用极其广泛,其性能指标直接影响到机器设备工作的可靠性。
我们以这两个基本元件作为分析计算的实例。
通过分析计算可以为改进系统设计提供技术支持,对提高系统的可靠性意义重大。
1 齿轮与花键的三维建模三维几何模型是有限元分析的基础,鉴于齿轮和花键的结构特点,在三维CAD软件中,齿轮和花键均采用参数化建模,提高建模效率和精确度。
在精确建模的过程中,主要是创建齿轮的端面齿形。
一个渐开线轮齿,其端面齿廓曲线是由齿顶圆、渐开线、齿根过渡曲线和齿根圆四部分曲线组成,均依靠各自的参数方程生成。
本文只介绍齿根过渡曲线创建方法,其余部分的创建可参考文献1。
一般在齿轮三维建模时,齿根过渡曲线通常以半径0.38×m(m为模数)的圆弧替代,这样做与实际齿轮的过渡曲线形状存在明显误差,在进行有限元分析时,则可能产生较大的误差。
因此应该对齿轮齿根或花键槽孔根的过渡曲线进行精确的三维建模。
本文仅以齿轮齿根过渡曲线的精确三维建模作为实例进行说明。
图1 齿根过渡曲线生成示意图齿根过渡曲线由齿条刀具圆角部分切出,刀具的加工节线与齿轮的加工节圆相切作纯滚动,如图1所示,显然,刀顶圆角将描出延伸渐开线。
有限元分析结课论文
有限元分析课程论文题目平面结构静力有限元分析姓名李涵学号1403180608学院机电工程学院班级________ 过控05班2016年12月20日摘要:本文比较典型地介绍了如何用有限元分析工具分析平面带孔平板收到平面静力时的应力分布状态我们遵循对平板结构进行有限元分析的方法,建立了一个完整的有限元分析过程。
首先是建立结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论。
输出各种图形供参考。
通过本文,我们对有限元法在现代工程结构设计中的作用,使用方法有个初步的认识。
关键字:Ansys 静力分析有限元目录一、引言,,,,,,,,,,,,,,,,,,,,,,,, 4' 」I I—I 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ~二、前处理,,,,,,,,,,,,,,,,,,,,,,, 5- *■、口J ,,,,,,,,,,,,,,,,,,,,,,,三、计算,,,,,,,,,,,,,,,,,,,,,,,, 9- 、卜I '丿['------ 555555555555555555555555 7四、后处理,,,,,,,,,,,,,,,,,,,,,,, 11I 1 / I—I ———L-^ ,,,,,,,,,,,,,,,,,,,,,,, 1 1五、命令流,,,,,,,,,,,,,,,,,,,,,,, 13六、总结,,,,,,,,,,,,,,,,,,,,,,,, 14 /、、)匕八口,,,,,,,,,,,,,,,,,,,,,,,,I一、引言有限元方法发展到今天。
已经成为一门相当复杂的实用工程技术。
有限元分析的最终目的是还原一个实际工程系统的数学行为特征。
即分析必须针对一个物理原型准确的数学模型。
模型包括所有节点、单元、材料属性、实常数、边界条件以及其他用来表现这个物理系统的特征。
ANSYS(analysis system)是一种融结构、热、流体、电磁和声学于一体的大型CANE通用有限元分析软件,可广泛应用于航空航天、机械、汽车交通、电子等一般工业及科学研究领域。
车辆工程专业毕业论文--汽车驱动桥壳UG建模及有限元分析
本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。
作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。
因此,驱动桥壳的研究对于整车性能的控制是很重要的。
本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。
并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。
从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。
【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析This graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys.【Key words】Finite element method,UG,ANSYS,Drive axle housing,Static analysis,Modal analysis目录前言 (1)第一章绪论 (2)1.1 汽车桥壳的分类 ..................... 错误!未定义书签。
(机械制造及其自动化专业论文)大型薄壁零件装配误差有限元分析
大型薄壁零件装配误差有限元分析摘要在机械、船舶、航空航天等领域中有许多薄壁零件,它们主要由各种薄型板、腔体和加强筋条构成,结构复杂,一般认为零件最大尺寸大于2m,且零件厚度与零件最大尺寸比小于5%即属于大型薄壁零件。
600MW超临界汽轮机组低压缸体由各种薄型板、加强筋、支承梁和叶片等构成。
缸体尺寸较大,直径约为6m。
上下爿缸体装配后,高约为7m。
而缸体壁厚较薄,约为32mm。
因此,600MW超临界汽轮机组低压缸体属于典型大型薄壁零件。
由于体积大、总体刚性较差,薄壁零件在装配过程中极易在重力、夹紧力的作用下产生变形,采用传统的装配工艺方法已难以保证其装配精度要求。
针对超临界600MW机组低压缸体在装配过程中出现的垂直中分面间隙过大、裙座接触不良和通流间隙超差等装配问题,文章首先在理论上分析零件定位方式和各种装配工艺对薄壁零件装配精度的影响,并利用提出的装配工艺评价原则对缸体总装配工艺进行了设计和评价。
接触问题由于其边界非线性,即使是弹性光滑接触问题,采用数值方法分析求解也有很大的难度。
缸体装配过程主要通过多体接触分析模拟,文章中详细介绍了接触问题,研究了接触分析的边界条件、接触参数及单元尺寸、形状、网格划分方法,以确立适合缸体零件全装配的三维接触分析有限元模型,从而得到更为精确的计算分析结果。
最后,基于有限元分析软件ANSYS/LS-dyna,模拟了低压缸体总装配过程。
根据不同装配误差问题,分别建立了相应的有限元分析模型。
分析了缸体零件装配变形及其在装配体中的传递情况,确定了缸体变形部位以及变形趋势并量化了具体的变形量,为装配工艺的改进提供了依据。
关键词:汽轮机缸体,接触问题,装配变形,误差传递 THE FINITE ELEMENT ANALYSIS OF ASSEMBLY ERROR FOR LARGE THIN-WALL PARTABSTRACTLarge-scale thin-wall part is used wildly in mechanical, ship, aviation& aeronautic industries.Many parts have thin-wall (shell)、cavity and rib enforcement,complex structure. Generally speaking, large-scale part refers to those structure the largest size of part is more than 2m and the ratio of wall thick and largest part’s size is less than 5%. 600MW stream turbine cylinder is mainly constructed by all kinds of thin-wall、rib enforcement 、bearing bar and lamina. The cylinder’s diameter is almost 6m. The height of cylinder assembled is almost 7m. To some extent, 600MW stream turbine cylinder is some kind of large-scale thin-wall part. Because this kind of part has large volume and bad stiffness, there is serious deformation during processes of assemblying.It’s difficulty to satisfay the assembly error requirements using the old means.Aim at the large middle plane flatness error ,plane contact gap and flow clearance error occurred in the process of 600MW stream turbine cylinder’s assemblage, the article analyzed the parts fixture ways and diversified assembly technics in principle, then designed and evaluated the turbine cylinder assemblage technics by using the assemblage thecnics priciple provided preciously.Because of boundary non-linearity, even it’s the elastic smooth contact question ,it’s very difficulty to analysize with numerical method. The analysis of turbine assembly is mainly involved with polysome contact, so the article particularly introduced contact problem, research on the boundary condition of the contact analysis、contact parameter and element dimension、shape and meshing way to construct the 3D contact analysis FE model suitable for the turbine assembly, and work out more accurate results.Finally,based on the software of ANSYS/LS-dyna,the finite element simulation of the turbine overall assembly is provided. According to the different assembly error problem, the FEA models were constructed with ANSYS. Through the computing of assembly deformation and it’s transferin the assembly parts, the location and deformation trend is verified, the guidance is offered for improvement of assembly thchnics.KEY WORDS: stream turbine cylinder, contact problem, assembly analysis, error propagation上海交通大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
有限元分析论文范文3篇
有限元分析论文范文3篇立柱整机有限元分析论文论文摘要:基于连续体ICM拓扑优化方法,提出了以体积为约束条件,机床的固有频率为目标函数的结构动态设计方法。
为提高拓扑优化的精度,在结构优化过程中,同时也考虑了非设计区域的动态特性。
将该方法应用到XH6650高速加工中心的立柱结构优化中,从而提高了机床的整机动态特性。
论文关键词:拓扑优化;动态设计;动态特性本文针对XH6650高速卧式加工中心进行了整机的CAD/CAE建模和模态分析,根据分析结果确定该加工中心的立柱对整机的动态特性影响最大。
因此,选择加工中心的立柱为对象,基于ICM(independent—continuousmapping)拓扑优化方法,对其结构进行拓扑优化,以通过提高立柱的动态性能来达到提高整机动态性能的目的。
针对立柱结构,文中以结构的固有频率为目标函数,体积为约束的优化模型,在模型的建立过程中,也考虑到了安装在立柱上的主轴箱对其动态特性的影响,把主轴箱用相同的质量块来模拟代替,这样得到的立柱的优化结果,将使整个机床的动态性能得到更好的改善。
1XH6650高速卧式加工中心的CAD/CAE模型与模态分析该加工中心主要结构件由机床床身、立柱、主轴箱、工作台等组成,如图1所示。
整机主要采用8节点单元Solid185对各零、部件进行网格划分,导轨结合面采用测试获得的动刚度和阻尼进行界面连接,螺栓结合面采用梁单元相连接,根据实际边界条件,对该模型中的床身底部进行约束处理。
最终得到整机有限元模型共有21.2万Solid185单元,如图2所示。
为确定加工中心主要结构件对机床动态特性的影响,对整机进行了模态分析,图3~图6是整机前4阶振型和对应的固有频率。
由模态分析结果可以看出,第1阶模态主要是立柱的左右向摆动,整机的振动模态频率为86.45Hz。
立柱和主轴箱等部件作为一个刚体在底座与工作台组成的基础件上部作横向摆动,主振系统是立柱和主轴箱。
因此,该振动频率取决于立柱和主轴箱的y向刚度与质量。
有限元分析ujoint有限元分析论文
有限元分析课程论文课程名称:有限元分析论文题目:ujoint有限元分析学生班级;学生姓名:任课教师:学位类别:评分标准及分值选题与参阅资料(分值)论文内容(分值)论文表述(分值)创新性(分值)评分论文评语:总评分评阅教师: 评阅时间年月日注:此表为每个学生的论文封面,请任课教师填写分项分值基于abaqus的ujoint有限元分析摘要:万向传动装置在汽车中起到了传递扭矩的关键作用,在abaqus中导入ujoint实体模型,之后对其进行坐标系建立,wire 建立,以及各部件之间的连接关系的建立,最后对该模型施加边界条件,令其运动。
关键词:abaqus、有限元、ujoint一问题的描述对导入的ujoint在所有步骤完成后,施加力:在stepinitial:均设为0;step SPIN:doundary1:限制除UR2的所有,且把UR2值设为:pi。
在boundary2 中,限制UR1和UR3自由度。
二在abaqus中导入ujoint实体模型启动abaqus CAE,在文件下拉菜单中选择:import ,选择最终文件位置or 输入ws_connector_ujoint.py.inp打开文件ujoint。
(如下图所示)2.1 创建坐标系单机操作界面中的tool,从下拉菜单中选择datum,再出来的窗口中选择coordinate,3points。
首先选择origin,在选择x正方向,Y正方向、z正方向。
创建完成。
2.2创建VERT和CROSS之间的2坐标系。
根据 2.1所述操作步骤创建坐标系V-C 和V-G (VERT和GROUND)。
Notice:1、创建过程中为了清晰分辨,可将IN的suppress,创建完成后再将其resume。
其他同样2、在V-C和I-C中,x轴与cross转动所绕轴平行。
根据2.1所属步骤创建I-C 和I-G. 结果如图;2.3 定义connector geometry1. 2.3.1 创建disjoint型wire在选项中选择interaction,在所出现窗口中点击Create Wire Feature tool.,在所出现的窗口中选择Disjointwires,单机添加要成wire的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用有限元分析Hyperworks结构机制1091 19号何志强论文关键词:拓扑优化形状优化精密铸造后悬置支架有限元分析论文摘要: 本文主要阐述借助于Alatir公司的Hyperworks结构优化软件,对精密铸造产品进行结构优化设计,且以对某汽车驾驶室后悬置支架的结构优化为例,着重介绍了拓扑优化和形状优化在精密铸造产品结构设计上的应用方法及功能。
事实表明拓扑优化和形状优化的联合应用,对精密铸造产品的结构设计起到非常关键的帮助作用,最后通过此软件对优化后的产品结构进行有限元分析,验证优化后产品结构的强度和刚度。
HyperWorks在精密铸造产品优化设计中的应用一、引言在当前的汽车工业中,减轻设计重量和缩短设计周期是两个突出的问题,在传统的设计中,由于机械产品机构的复杂性,长期以来主要应用经验类比设计,对产品结构作定性分析和经验类比估算,在决定实际结构时,一般都取较大的安全系数,结果使得产品都是“傻”、“大”、“粗”,使材料的潜力得不到充分发挥,产品的性能也得不到充分的把握。
所以传统的汽车设计思路已经不能满足当前设计的需要。
汽车轻量化设计开始占据了汽车发展中的主要地位,它既可以提高车辆的动力性,降低成本,减少能源消耗又能减少污染。
但是,简单的汽车轻量化设计却是一把双刃剑,它在减轻汽车重量的同时,也牺牲了车辆的强度和刚度,甚至对产品的结构寿命也产生影响,在此情况下,有限元分析方法在汽车设计中的合理应用就得到了充分体现,经过近几年的实践证明,Altair公司的有限元分析技术以及拓扑优化技术在汽车行业获得了非常成功的应用。
特别是对于一些结构复杂的汽车铸造结构件,Hyperworks 的有限元分析技术、拓扑优化和形状优化技术的推广使得材料的潜能及铸造的优势得到了充分的发挥。
本文将详细介绍利用Hyperworks的拓扑优化和形状优化技术对东风商用车驾驶室后悬置支架进行减重优化设计的应用过程。
以及如何应用Hyperworks验证改进结构后的应力和应变情况,使该后悬置支架减重优化后的结构能够满足产品的使用性能和铸造工艺性要求。
二、有限元法的概念和优化设计流程确立2.1有限元法和有限单元的概念有限元法又称有限单元法,是结构分析的一种数值计算方法,它随着计算机的发展而应运而生,并得到了广泛应用,目前已成为工程数值分析的有力工具。
在实际工程应用中,我们首先把CAD模型分割成有限个实体或者壳单元。
一般作为实体单元所适合的结构,是具有三维形状变化的物体,不太适合棒状、平板状的物体。
实体单元是利用3D-CAD所作好的实体模型,能够拿来就能作有限元模型处理,这一点非常方便。
但是用实体单元制成的模型,因为节点数往往较多在分析时务必注意计算机磁盘用量和计算时间。
另外从实体单元能够把三维图形原封不动地适用于结构分析的模型上这一点来说,对于结构复杂的零件,采用实体单元是很好用的单元。
实体单元有六面体、五面体、四面体,在用自动生成的情况下使用四面体较多。
从分析精度而言,使用六面体为好,自动生成的三维形状也有必须限制用于六面体的等等,五面体单元在评价应力时尽量不使用此方法为好。
壳单元有三角形和四边形单元,对于板单元尽量使用四边形单元,对于实体单元尽量使用六面体单元。
使用三角形或四面体单元与使用四边形或六面体单元时相比有使结构增加刚性的模型化倾向。
在本文我们所做的驾驶室后悬置支架的优化计算中,由于结构和受力状况的复杂性,我们采用实体单元与壳单元相结合的划分方法。
2.2 确立优化设计流程在利用Hyperworks软件做优化分析时,通常的流程是首先读入CAD模型,然后划分网格,添加边界条件,设置优化分析模型参数。
优化分析模型一般是由目标函数、约束条件、优化设计变量三个方面组成,借助于Hyperworks软件的OptiStruct模块,对于后悬置支架的轻量化设计,在现有的计算机条件下可以很方便的实现。
首先,在轻量化分析过程中,一般选取优化设计变量为支架的体积的减少量,然后采用传统的拓扑优化方法,将总体的应变能作为目标函数。
在本次后悬置支架的优化分析中,主要采用OptiStruct模块的拓扑优化和形状优化。
首先,拓扑优化可以获得一个最佳的结构布局——即最佳的材料分布;然后在这个最优结构布局的基础上按照实际设计需求形成一个新的设计方案,并反馈到CAD软件中,形成新的CAD模型,最后应用更仔细的形状优化工具,同时添加适合铸造的约束条件,得到最有效的细节设计方案。
图(1)代表了该后悬置支架的简单优化设计流程,从最初的模型导入,以及之后的约束条件与目标函数的设定,同时包括制造工艺参数的设定,最后通过形状优化得到的最终设计方案。
根据优化需求,将三维模型进行非安装部位的材料填充导入三维模型3.1有限元模型建立3.1.1后悬置支架原始结构分析由于驾驶室后悬置系统布置方式比较复杂,整个驾驶室后悬置系统由安装于浮动横梁上的左右各一个橡胶缓冲块支撑,两个悬置支架对称的垂直立于车架大梁上,中间用一弧型横梁连接,在悬置支架的两侧对称的布置两个筒式减震器,而本文所要优化分析的后悬置支架是整个系统中受力最为复杂的关键零件。
该零件在原始设计中,由于整个机构的复杂性,对产品的性能未能充分把握,在进行设计时只能作定性分析和类比估算,确定实际结构时,选择的安全系数过大,致使设计出来的产品结构过于笨重,粗大,缺乏美观。
另外,由于对实际的受力点未能牢牢把握,导致结构材料分布不够均匀,铸造工艺性较差。
原始结构见图(2)图(2)原始结构模型图3.1.2 有限元网格划分有限元网格划分是进行有限元优化分析至关重要的一步,有限元分析的精度和效率与网格单元的密度和几何形状有着密切的关系,并且有限元网格划分的好坏,对后续数值计算结果的精确性有着直接的影响,它不但涉及单元的形状及其拓扑类型、单元类型还有选择什么样的网格生成器、网格密度的定义、单元的编号以及几何体元素等等。
所以在实际应用中,选择合理的网格单元对整体模型的分析有重要的影响。
根据上述介绍,结合后悬置支架结构的复杂程度以及优化分析的要求,对其采用实体单元网格划分,同时,在非干涉和装配部位进行必要的材料填充;另外,对分析过程中涉及到的弧形横梁因结构简单,属于简化梁结构,故采用壳单元的划分方式具体网格划分见图(3)后悬置支架弧型横梁图(3)有限元网格模型其节点数和单元数见表(1)表(1)后悬置支架及横梁的节点与单元数表(1)后悬置支架及横梁的节点与单元数3.2 确定边界条件及设置优化参数3.2.1 确定边界条件由于驾驶室后悬置系统是以垂直方式布置,在车辆高速行使时,路面通过悬挂系统传递到驾驶室的冲击,发动机、传动系传递到驾驶室上的振动,以及侧向减振器所带来的瞬时冲击,是我们分析时主要考虑的因素。
计算时考虑驾驶室受垂知方向4G(瞬时),侧向2.5G(稳态)的冲击,同时对支架底端与车架大梁连接处用螺栓固定,该产品受力工况及约束条件如下图(4)所示图(4)后悬置支架受力工况3.2.2材料属性及性能参数该后悬置支架采用ZGD410-700制成,其材料参数如表(2)所示。
表(2)车身后悬置支架材料参数四、拓扑优化和形状优化4.1车身后悬置支架的拓扑优化拓扑优化就是在产品初时设计阶段,利用优化计算得到满足设计要求的结构外形,并且可以返回到CAD,进行详细的结构设计,然后再利用形状或尺寸优化调整细节,最终得到满足要求的设计方案。
对于这个后悬置支架的拓扑优化,主要问题是怎样使支架结构合理布置,以及如何最好的模拟支架所受的垂直载荷和侧向载荷。
在本次拓扑优化过程中,采用后悬置支架与横梁整体分析,但对后悬置支架单独优化的方式,这样获得的结果更趋近于真实的情况。
由于拓扑优化对加强筋及凸缘刚度的敏感性较高,因此在采用传统的拓扑优化方法,定义设计变量时,将体积和应变能作为目标响应,设计空间的体积减少量作为优化的约束条件,总体的应变能作为最终的目标函数,这里的总体应变能不仅包括设计空间的应变能,同时也包括非设计空间的应变能。
最后,根据拓扑优化结果云图,返回CAD模型,结合精密铸造工艺,尽可能的凸出筋骨,减少大平面,在遵循实体最小原则下重新进行三维设计造型。
优化云图及结构优化方案见图(5)拓扑优化云图(二)结构优化方案图(5)拓扑优化云图和结构优化方案4.2 车身后悬置支架的形状优化根据以上拓扑优化结果,确定了一个在给定载荷条件下满足设计要求的最佳结构布置方案,在此方案的基础上,对后悬置支架进行细节优化——形状优化,在形状优化中,同时要考虑结构应力和屈曲变形。
理论上为了突出筋骨,保持整个结构布置的均匀化,同时减少局部应力的集中,我们只对该有限元模型做局部形状优化,如图(7)所示,这样就避免整体优化时间上的浪费。
为形状优化建立了有限元模型之后,我们要将适合铸造的工艺参数、应力标准和屈曲要求作为形状优化的设计约束,将质量最小化设为设计目标函数,对于应力约束,设计约束不允许该处的最大应力超出材料的屈服极限,同时在实际优化过程中,该处结构的厚度只能要求向内侧移动,高度只能向上移动。
最终经过形状优化后结构见图(8)形状优化后最终结构图五、结构验证与对比分析经过拓扑优化和形状优化,我们最终得到了较为理想的设计方案,为了验证该优化方案的可靠性,特对此机构进行有限元分析计算,同时对用传统的经验类比方法设计的优化方案进行分析对比。
用传统经验类比方法设计的方案如图(9)传统优化设计方案结合实际受力情况对传统优化设计方案和拓扑优化方案分别做有限元验证分析,应力云图见图(10传统优化设计方案应力云图拓扑优化方案应力云图图(10)方案验证应力云图由以上分析可知,传统优化设计方案最大应力高达726MPa,出现在台肩处,而拓扑优化方案的最大应力虽然达到576MPa,但是位置出现在弧型横梁上,与传统优化设计方案相比,相同位置的最大应力由710MPa减少到216MPa。
其对比参数见表(3):表(3)优化前后结构性能对比六、结束语经过上述优化方案的对比,我们可以很清楚的看到,利用传统的优化方式和利用Hyperworks的拓扑和形状优化方式的差别,虽然重量相差不多,分别下降了35%和35.5%,但是在同种工况作用下,传统方式优化的产品结构多处应力超出材质屈服极限,且最大应力达到了726MPa,远远超出了材料的屈服极限,在使用过程中很容易就发生断裂;而采用Hyperworks的拓扑和形状优化方式优化的产品结构最大应力只有230MPa,低于所使用材质的屈服极限410MPa,且同一部位由传统优化结构的710MPa减少到218MPa,同比强度增加了2.65倍,刚度增加了1.27倍,并且优化后的产品结构更适合于铸造工艺。
由上述可知,车身后悬置支架的优化设计验证了HyperWorks软件的OptiStruct模块在精密铸造产品的成功应用,说明了此技术在工业制造中具有非常优秀的特点,打破了生产单位不能独立改善产品结构的历史。