计量经济学

合集下载

计量经济学概念

计量经济学概念
13
第二节 计量经济学方法
一. 计量经济学方法的内容
任何计量经济研究包含两个基本要素:理论和事实, 计量经济学的主要功能就是将这两个要素结合在一起。 计量经济研究既使用理论,也使用事实,将二者结合 起来,用统计技术估计经济关系,如图1.1所示。
14
理论统计理论
计量经济模型
加工好的数据
10
3. 学科发展环境 同时,随着科学技术的发展,各门学科相互渗透,数
学、系统论、信息论、控制论等相继进入经济研究领 域,使经济科学进一步数量化,有助于计量经济学的 发展。高速电子计算机的出现和发展,为计量经济技 术的广泛应用铺平了道路。
11
4. 发展过程
上世纪三十年代,侧重于个别商品供给与需求的计 量,基本上属于个量分析或微观分析。
1. 需求函数的数学模型
尽管需求定律假定价格(P)与需求量(Q)之间 呈反向关系,但并没有给出二者之间关系的精 确形式。例如,该定律并没有告诉我们价格与 需求量之间关系是线性的还是非线性的,如图 1.2中(a)和 (b) 所示。
21
Q
Q
(a)
P
(b)
P
图1.2 线性和非线性的需求函数
22
事实上,斜率为负的曲线有千千万万,在它们 之中选择正确的函数是计量经济学家的任务。
7
计量经济学的艺术成分
计量经济学虽然以科学原理为基础,但仍保留了一 定的艺术成分,主要体现在试图找出一组合适的假设 ,这些假设既严格又现实,使得我们能够使用可获得 的数据得到最理想的结果,而现实中这种严格的假设 条件往往难以满足。
“艺术”成分的存在使得计量经济学有别于传统 的科学,是使人对它提供准确预测的能力产生怀疑的 主要原因。
31

计量经济学

计量经济学

计量经济学计量经济学,是一门使用统计方法分析经济现象的学科。

计量经济学主要通过收集、处理、分析和解释经济数据,以确认和识别经济核心问题,比如需求和供给、价格变动、市场结构和经济增长等。

这门学科的进步和应用在各种政策制定和经济决策上有着广泛的应用领域,比如经济政策的分析,股票市场的预测和企业的经营决策等。

接下来,本文将解释计量经济学的主要内容和方法,并探讨计量经济学在实践中的应用。

一、计量经济学的主要内容计量经济学分析的主要对象是经济现象和经济数据。

这些现象和数据可以描述为变量和关系,比如价格,工资,利润和经济增长等。

计量经济学主要研究的是这些变量及其之间的相互关系,以便为决策者提供更好的政策建议。

在计量经济学中,通常会涉及到如下的主要内容:1. 变量的含义和测量。

计量经济学要求研究者对变量的含义进行明确界定,以便能够对其进行测量,并进行数据收集和分析。

例如,如果要研究通货膨胀的影响因素,通货膨胀就是一个重要的变量,需要进行合理的测量。

2. 经济关系的建模。

计量经济学则进一步探索变量之间的数量关系,并通过数学模型来描述它们之间的联系。

例如,经济学家可以建立一个供求模型来研究商品价格的形成。

3. 假设检验。

计量经济学通过提出假设并使用统计检验方法来验证假设。

通过检验结果,经济学家可以同样的推理得出各种假设是否成立。

4. 统计分析。

该领域强调通过统计分析方法检验模型的假设,这是检验数据和变量关系的重要手段。

统计分析包括回归分析、时间序列分析以及多元统计分析等方法。

二、计量经济学方法计量经济学的重要方法包括统计分析、回归分析、时间序列分析、概率论和经济实验等。

其中最常使用的方法是回归分析。

1. 回归分析回归分析是计量经济学的核心方法。

回归分析将一个自变量与因变量相关联。

例如,如果我们想知道变量X与变量Y的相关性,我们就会回归一个X对Y的方程。

这个方程告诉我们,当X发生变化时,Y的变化程度。

回归分析需要建立方程,并根据现有数据的信息来确定系数。

[经济学]计量经济学

[经济学]计量经济学

名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。

3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。

4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。

6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。

7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。

11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。

12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。

13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。

14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。

15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。

1.1 计量经济学的概念

1.1 计量经济学的概念

第一节计量经济学的概念计量经济学起因:对经济问题的定量研究;名词的产生:弗瑞希在其1926年发表的《论纯经济问题》一文中,按照“生物计量学”一词的结构仿造出来的。

计量经济学标志:1930年成立计量经济学会本意是经济度量,研究对经济现象和经济关系的计量方法,因此有时也译为经济计量学。

译为计量经济学,是为了强调计量经济学是一门经济学科,不仅要研究经济现象的计量方法,而且要研究经济现象发展变化的数量规律。

Econometrics计量经济学产生的意义反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求,从定性研究到定量分析的发展,是经济学更精密、更科学的表现,是现代经济学的重要特征。

计量经济学产生的特点计量经济学与其他西方经济理论不同的一个重要特点,是它自身并没有固定的经济理论,计量经济学中的各种计量方法和技术,大多来自数学和统计学。

若干代表性表述:⚫“计量经济学是统计学、经济学和数学的结合。

”——计量经济学的奠基人弗瑞希(弗瑞希)⚫“计量经济学是用数学语言来表达经济理论,以便通过统计方法来论述这些理论的一门经济学分支。

”——美国现代经济词典若干代表性表述:⚫“计量经济学可定义为:根据理论和观测的事实,运用合适的推理方法使之联系起来同时推导,对实际经济现象进行的数量分析。

”——萨谬尔逊等各种表述的共性:➢计量经济学绝不是对经济的一般度量,它与经济理论、统计学、数学都有密切的关系。

计量经济学定义:在经济理论的指导下,以经济数据的事实为依据,运用数学和统计学的方法,借助于计算机技术,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

计量经济学1.计量经济学是一门应用经济学,是以经济现象为研究对象的;2.计量经济学的目的在于揭示经济关系与经济活动的数量规律;3.计量经济学是经济理论、统计学、数学三者的结合;4.计量经济学的核心内容是建立和应用具有随机特征的计量经济模型。

计量经济学研究的主体(出发点、归宿、核心):经济现象及数量变化规律;研究的工具(手段):数学、统计学和计算机技术;必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务。

计量经济学

计量经济学

计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。

计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。

计量经济学的研究对象:经济问题,包括各种经济现象。

经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》20世纪40、50年代的大发展和60年代的扩张20世纪70年代以来非经典(现代)计量经济学的发展2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计(4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响; 4)其它随机因素的影响。

4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。

5.参数的普通最小二乘估计(OLS )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。

由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。

6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

这三个准则也称作估计量的小样本性质。

拥有这类性质的估计量称为最佳线性无偏估计量。

计量经济学

计量经济学

第二讲

第一章 绪论 第3节 计量经济模型及其应用 第4节 统计和计量经济分析软件

第二章 计量经济分析的统计学基楚 第1节 概率和概率分布
一、计量经济模型的分类
● 单方程模型和连立方程模型:单方程模型描述一个因变量和若干自变量间 的结构关系;连立方程模型则是由多个方程组成的方程组,描述整个经济 系统或子系统。 例:① 消費函数就是一个单方程模型。
实证分析 实证分析
三、 计量经济分析的步骤(1)
● 下面通过一个实例来说明计量经济分析的步骤 例: 一空调生产商請计量经济学家为他研究价格上涨対空调需求的影响。下 面対该问题进行计量经济分析。 步骤1 陈述理论 根据需求定律:一商品的价格与其需求量成反比。 步骤2 建立计量经济模型 (1)根据需求定律建立需求函数的数学模型。需求定律只是说一商品 的价格与其需求量成反比,但没有说明具体的关系(图1-2,图1-3)。
三、 计量经济分析的步骤(6)
● 通过本次课的学习,主要了解计量经济学的定义、计量经济学研究的内容 和方法,重点把握计量经济分析的步骤:
1.陈述理论或假说 需求定律 2.建立计量经济模型 Q=α+βP+u 3.収集数据 表1-1 4.估计参数 5.假设检验 Q*=76.05-3.88P 是否β<0
〇 1979年,成立了“中国数量经济研究会”和“数量经学研究所”, 出版了《数量经济技术经济研究》 〇 1982年,召开了第一届数量经济研究学会 〇 1992年,开始毎年対中国宏观经济进行分析和预测,11月出版 《中国经济蓝皮书》 〇 1998年,经教育部审定,计量经济学确定为经济类各専业八门核 心课程之一
--1935年,J.Tinbergen建立了世界上第一个宏观经济模型,开創了微观转向宏观模 型的新阶段 --1936,Keynes《就业、利息和货币通论》为计量经济学提供了理论根据 --1950年代,H.Theil发表了二阶段最小二乗法、计算机技术的迅速发展为计量经济 学提供了重要手段 〇 发展应用时期(20世纪70年代后)

计量经济学

计量经济学

1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。

(同一)3、建立与应用计量经济学模型的主要步骤。

①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X 的某种函数11、样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。

总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。

13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。

计量经济学1-5章(超详细完整版)

计量经济学1-5章(超详细完整版)

26
理论计量经济学和应用计量经济学
计量经济学根据研究对象和内容侧重面不同,
可以分为理论计量经济学和应用计量经济学。 理论计量经济学:是以介绍研究计量经济学的 理论与方法为主要内容,侧重于理论与方法的数学 证明与推导。
应用计量经济学:以建立与应用计量经济学模
型为主要内容,强调应用模型的经济学和经济统计
拉格纳·弗里希( R. Frish )
19
计量经济学是用数学语言 来表达经济理论,以便通 过统计方法来论述这些理 论的一门经济学分支。
计量经济学可定义为:根据
理论和观测的事实,运用合
适的推理方法使之联系起来 同时推导,对实际经济现象 进行的数量分析。
20
教科书中的一般表述: 统计学、经济
理论和数学
(1.1) (1.1)式为数理经济模型,该模型是不可以 估计的。要研究收入I 的变化对消费支出C的数量 影响程度,需要对(1.1)进行改造模型。
35
首先,明确(1.1)式的函数形式。例如, C a bI (1.2) 其中 a、 b 为未知的参数, 其次,在(1.2)式右端引入随机变量u,以
16
当前的计量理 论前沿问题
17
○ 计 量 经 济 学 在 中 国 的 发 展
我国计量经济学研究
和应用水平同世界前
沿的差距迅速缩小
2000年
我国计量经济学研 究和应用的普及阶 段
成立了“中国数量经济研
究会”,为创立我国的计
1984年 量经济学奠定了基础
1979年
18
二、什么是计量经济学?
用数学方法探讨经济学可以从好几个方面着手,但 任何一个方面都不能和计量经济学混为一谈。计量 经济学与经济统计学绝非一码事;它也不同于我们 所说的一般经济理论,尽管经济理论大部分具有一 定的数量特征;计量经济学也不应视为数学应用于 经济学的同义语。经验表明,统计学、经济理论和 数学这三者对于真正了解现代经济生活的数量关系 来说,都是必要的,但本身并非是充分条件。三者 结合起来,就是力量,这种结合便构成了计量经济 学。

计量经济学

计量经济学

关于计量经济学英文“Econometrics”这个词,它最早是由挪威经济学家、统计学家、第一届诺贝尔经济学奖获得者之一(弗瑞希)于1926年仿照”Biometrics”(生物计量学)一词而提出的。

中文译名有两种:经济计量学与计量经济学。

关于它的定义,也有很多的论述。

美国现在经济词典认为:计量经济学是用数学语言来表达经济理论,以便通过统计方法来论述这些理论的一门经济学分支。

拉缪尔森、科普曼斯、斯通等三位著名的经济学家在1954年计量经济学家评审委员会的报告中认为:“计量经济学可以定义为”根据理论和观测的事实,运用合适的推理方法,对实际经济现象进行的数量分析。

戈德伯格的《计量经济学通论》中把计量经济学定义为这样的社会科学:它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。

克莱因在他的《经济计量学讲义》中定义计量经济学是数学方法、统计技术和经济分析的综合。

就其字义来说,计量经济学不仅是指对经济现象加以测量,而且包含根据一定的经济理论进行计算的意思。

尽管对计量经济学定义的表述并不相同,但是我们可以看出它是经济学、数学和统计学相结合的一门综合学科。

具体地说,计量经济学就是在经济理论的指导下,根据实际观测的统计数据(或以客观事实为依据),运用数学和统计学的方法,借助于计算机技术从事经济关系与经济活动数量规律的研究,并以建立和应用计量经济学模型为核心的一门经济学科。

必须指出的是,这些计量经济模型是具有随机特性的。

在这个定义中,强调以下几点:第一,计量经济学是经济学的一个分支科学,是一门应用经济科学,它是以经济现象为研究对象的。

第二,计量经济学目的在于揭示经济关系与经济活动的数量规律。

第三,计量经济学是经济理论、统计学和数学三者的结合。

第四,计量经济学核心内容是建立和应用具有随机特征的计量经济模型。

作为计量经济学的初学者,我认为计量经济学可以这样定义:首先“计量”这个词的本意是指实现单位统一、量值准确可靠的活动,在此可以理解为以数理统计方法做定量研究,而“经济”就是用较少的人力、物理、财力、空间获取较大的成果或收益,在此可以理解为社会生产、交换分配和消费等经济活动和经济规律。

计量经济学ppt课件(完整版)

计量经济学ppt课件(完整版)
注意事项
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。

计量经济学

计量经济学

计量经济学第六章6.1 解释概念(1)双对数模型 (2)对数-线性模型 (3)线性-对数模型 (4)多项式回归(5)标准化变量 (6)边际效应 (7)弹性 (8)瞬时增长率 答:(1)双对数模型是一种广泛应用的函数形式,模型中的因变量和自变量都以对数度量,比如设定一个双对数模型12ln ln Y X u ββ=++(2)对数线性模型是指因变量取对数、解释变量为原有形式的模型。

比如:12log()wage educ u ββ=++。

(3)线性对数模型是指因变量为原有形式,解释变量取对数的模型。

比如:12ln Y X u ββ=++(4)多项式回归模型中解释变量并不都是以线性的形式出现,多项式是由常数和一个或多个解释变量及其正整数次幂构成的表达式。

多项式回归模型的一般函数形式表示为21123k k Y X X X u ββββ-=+++++(5)标准化变量是标准化变量就是将变量减去其均值并除以其标准差。

(6)边际效应是指一单位变量X 的变化所引起的变量Y 的单位变化。

(7)弹性是指一个变量变动的百分比相应于另一变量变动的百分比来反应变量之间的变动的灵敏程度。

(8)瞬时增长率是指仅当时间变动很小时,才近似等于因变量的相对变化。

6.2 考虑双对数模型12ln ln Y X u ββ=++分别描绘出21β=,21β>,201β<<,21β=-,21β<-,210β-<<时表现Y 与X 之间关系的曲线。

答:当21β=时,Y 和X 对应的是曲线是:当21β>时,对应的曲线是:201β<<时:21β=-时,Y 和X 对应的图形为:21β<-时,对应的函数为:210β-<<时,Y 和X的曲线为:6.3 在研究生产函数时,我们得到如下结果2ln 8.570.460ln 1.285ln 0.272(4.2)(0.025)(0.347)(0.041)360.889K L t se n R θ=-+++===其中θ为产量,K 为资本,L 为劳动时数,t 为时间变量。

计量经济学课件全完整版

计量经济学课件全完整版
ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。

计量经济学

计量经济学

计量经济学第一章1、什么是计量经济学计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、计量经济学的研究步骤选择变量和数学关系式——模型设定确定变量间的数量关系——估计参数检验所得结论的可靠性——模型检验作经济分析和经济预测——模型应用3、为什么要对参数进行估计一般来说参数是未知的,又是不可直接观测的。

由于随机项的存在,参数也不能通过变量值去精确计算。

只能通过变量样本观测值选择适当方法去估计。

4、模型检验的内容经济意义的检验—所估计的模型与经济理论是否相符统计推断的检验—检验参数估计值是否抽样的偶然结果,包括拟合优度检验,总体显著性检验,变量显著性检验计量经济学检验—是否符合计量经济方法的基本假定,包括异方差性检验,序列相关性检验,多重共线性检验模型预测检验—将模型预测的结果与经济运行的实际对比,包括稳定性检验,预测性能检验5、模型应用有哪些方面经济结构分析,经济预测,政策评价6、数据类型有时间数列数据(同一空间、不同时间)截面数据(同一时间、不同空间)混合数据(面板数据 Panel Data)虚拟变量数据第二章1、注意几个概念和公式Y的条件分布:当解释变量X取某固定值时(条件),Y的值不确定,Y的不同取值形成一定的分布,即Y的条件分布。

Y的条件期望:对于X的每一个取值,对Y所形成的分布确定其期望或均值,称为Y的条件期望或条件均值E(Y|Xi)公式:2、回归线:对于每一个X的取值,都有Y的条件期望E(Y|Xi)与之对应,代表这些Y的条件期望的点的轨迹所形成的直线或曲线,称为回归线。

3、回归函数:应变量Y的条件期望E(Y|Xi)随解释变量X的的变化而有规律的变化,如果把Y的条件期望E(Y|Xi)表现为X的某种函数,这个函数称为回归函数。

4、总体回归函数的概念:假如已知所研究的经济现象的总体应变量Y和解释变量X的每个观测值, 可以计算出总体应变量Y的条件均值E(Y|Xi),并将其表现为解释变量X的某种函数,这个函数称为总体回归函数(PRF)。

计量经济学

计量经济学
2
1.826
b t 15.653 s e b
t0.025 (3) 3.182
接受" =0"的假设,拒绝" =0"的假设.
当样本容量n=30左右, t ≥ 2时 则至少以0.05的显著水平拒绝零假设。
一、基本思想
二、预测的点估计
三、平均值的区间估计
四、个别值的区间估计
2 2 X Y nXY X nX t tt




定义: S XX X t X X t2 nX 2
2
S XY X t X Yt Y X tYt nXY 则 式变为: S XX S XY S XY S XX
部分占的比重越大,模型拟合优度越好。反乊可决系数 越小,说明模型对样本观测值的拟合程度越差。 可决系数的特点: 2 ●可决系数取值范围: 0 R 1 ●随抽样波动,样本可决系数 是随抽样而变 动的随机变量 ●可决系数是非负的统计量
39
3、可决系数与相关系数的关系
R2 ˆ x) ˆ y ( y y ˆ x ( x y ) x ( x ) y y
t t 2 t XX
a vtYt wt ,vt 均为确定性变量。
t
Xt X 令:wt ,wt 满足: wt 0 S XX
w X
t
t
1
1 1 a Y bX Y wtYt X Xwt Yt , 令vt wt X n n
Y X
Y:某国家(地区)消费 X:收入
2、计量经济学的发展史 1926年,挪威经济学家、第一届诺贝尔经济学奖得主 弗里希(R.Frish)仿照生物计量学(biometrics)提出 来计量经济学(econometrics)这个词。

计量经济学概论

计量经济学概论

二、计量经济学模型
模型是对现实的描述和模拟;计量经济模型是由随机 性的数学方程或方程组构成的,通过它们可以揭示现 实经济生活中的数量关系。 计量经济模型是计量经济学研究的核心。计量经济学 方法及其应用,都是围绕建立、估计、检验和运用计 量经济模型这一核心进行的。 如果离开了模型建立的经济背景、方法本身的经济学 解释、方法应用的经济对象,计量经济学模型将是一 堆无用的数学符号。
英文“Econometrics”一词最早是由挪威经济学家R.Frich提
出来的,将计量经济学定义为经济理论、统计学和数学的三 者结合。
经济学
数理经 济学
计量经 济学
数学
数理统 计学
经济统 计学
统计学
电脑这一必不可少的手段与工具
自1969年设立诺贝尔经济学奖,首届获得者就是 计量经济学的创始人弗里希和荷兰经济学家丁伯根, 表彰他们开辟了用计量经济方法研究经济问题这一领 域,之后,直接因为对计量经济学的发展作出贡献而 获奖者达十余人,因为在研究中应用计量经济方法而 获奖者占获奖总数的三分之二以上。
0 1 , 0 1 1
A 0 效率系数
Q 0 K Q 0 L
2Q K 2Biblioteka 02Q L20
四、建立统计或计量经济模型
根据散点图像,可以建立CLFPR与CUNR的简单数学模型 : CLFPR=B1 + B2* CUNR
考虑到所有其他影响劳动力参与率的因素,并假定其包含 在随机变量u中,于是可以得到以下计量模型:
随机扰动项
理论经济学和数理经济学一般假定经济变量之间存在
确定性的规律,从而建立确定性的模型。
计量经济模型与一般经济理论模型的主要区别就在于
模型中添加随机扰动项或误差项,建立的是所谓的概 率性模型。

计量经济学

计量经济学

1-1什么是计量经济学?它与经济学,统计学,数学的关系是怎样的?计量经济学是在经济理论的指导下,根据实际观测的统计数据,运用数学和统计学的方法,借助计算机技术从事经济关系和经济数量规律的研究,并以建立和应用计量经济模型为核心的一门经济学科。

简单地说,计量经济学是经济学、统计学和数学三科结合而成的交叉型学科。

计量经济模型建立的过程,是综合应用经济理论、统计和数学方法的过程,经济学为其提供理论基础,数学为其提供研究方法。

理论模型的设定和样本数据的收集是直接以经济理论为依据,建立在对研究对象的透彻认识的基础上的,而参数模型的估计和有效性的检验则是统计学和数学方法在经济研究中的具体应用。

没有理论模型和样本数据,统计学和数学方法将无法发挥作用的对象和原料,反过来如果没有统计学和数学提供的方法,原料将无法成为产品。

因此计量经济学广泛涉及了经济学、统计学、数学这三科的理论、原则、方法。

缺一不可。

1-4、建立与应用计量经济学模型的主要步骤有哪些?计量经济学模型主要有哪些应用领域?(1)、设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;估计模型参数;检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

(1)、结构分析,即研究一个或者几个经济变量发生变化及结构参数的变动对其他变量以至整个经济系统产生何种影响。

其原理是:弹性分析、乘数分析和比较静力分析;经济预测,即进行中短期经济的因果预测。

其原理是:模拟历史,从已经发生的经济活动中找出变化规律;政策评价,即利用计量经济学模型定量分析政策变量变化对经济系统运行的影响,是对不同政策执行情况的“模拟仿真”;检验与发展经济理论,即利用计量经济学模型和实际统计资料实证分析某个理论假说正确与否。

其原理是:如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据,则意味着该理论是符合客观事实的,否则,则表明该理论不能解释客观事实。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、1、列举计量经济分析过程的几个要素:1、数据;2、计量模型。

3、解释变量;4、被解释变量;5、相关影响。

2、计量经济分析过程基本围绕着四类值。

例如要预测一个硬币被抛1000次出现正面的次数,第一步: 从理论上研究,出现正面的概率是1/2, 这个概率是真值;第二步:做实验,例如抛硬币100次,观察出现正面的次数,那么这个次数为观察值;第三步:估计概率,用观察的次数除以100作为概率的估计值;第四步:用估计的概率乘以1000作为硬币被抛1000次出现正面的预测值。

3、估计量一般都采用哪三种评选标准:1、无偏性;2、有效性;3、一致性.4、无偏估计量的概念:若估计量的数学期望存在且等于其对应真值,即 ()E θθ=。

4估计量的有效性:设 1θ与 2θ均为θ的无偏估计量,若对于任意θ,有 1θ的方差小于等于 2θ的方差,则 1θ较 2θ有效。

5、列举计量经济分析的三种数据类型:1、横截面数据;2、时间序列数据;3、面板数据。

6、虚拟变量即一种二值变量,是对解释变量的一种定性描述。

二、:1、简述多元线性回归中('i i i y x βε=+)的高斯-马科夫假设(Gauss – Markov assumption )?若要求得到无偏估计量需满足其中的哪(些)项?112{}0,1,2,...,{,...,}{,...,}{}1,2,...,{,}0i N N i i j E i Nx x V i N C ov εεεεσεε=====与相互独立,若想得到无偏估计量,需满足{}0,1,2,...,i E i N ε==,和11{,...,}{,...,}NNx x εε与相互独立某种元件的寿命X(以小时计)服从正态分布N(),均未知.现测得16只元件的寿命如下(已知 t 0.05(15) =1.7531) :159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)? 2:解 按题意需检验:=225,:取a =0.05.此检验问题的拒绝域为t=t a (n-1).现在n=16, t 0.05(15) =1.7531.又根据,s=算得 =241.5, s=98.7259,即有t ==0.6685 1.7531.t 没有落在拒绝域中,故接受,即认为元件的平均寿命不大于225小时.3、在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一只平炉上进行的,每炼一炉钢时除操作方法外,其他条件都尽可能做到相同.先用标准方法炼一炉,然后用建议的方法炼一炉,以后交替进行,各炼成了10炉,其得率分别为(1) 标准方法 78.1 72.4 76.2 74.3 77.4 78.476.0 75.5 76.7 77.3(2) 新方法 79.1 81.0 77.3 79.1 80.0 79.179.1 77.3 80.2 82.1设这两个样本相互独立,且分别来自正态总体N()和N(),,均未知.问建议的新操作方法能否提高得率?(取a =0.05,已知 t 0.05(18)=1.7341)3:解 需要检验假设 : -0,: -0分别求出标准方法和新方法下的样本均值和样本方差如下: 根据 ,s==10,=76.23,=3.325,根据 ,s==10, =79.43,=2.225.又,==2.775, t 0.05(18)=1.7341,故拒绝域为 t =-t0.05(18)=-1.7341.现在由于样本观察值t = -4.295-1.7341,所以拒绝,即认为建议的新操作方法较原来的方法为优.4、时间序列过程tY 为平稳过程需要满足哪些条件?若121.20.32tt t tY Y Y ε--=-+,试问这个过程是一个平稳过程吗?解:平稳过程需满足三个条件:1、{}tE Y μ=,期望为有限常数与时间t 无关。

2、{}tV Y γ=,方差为有限常数与时间t 无关。

3、{,},1,2,3,.....tt kk Cov Y Yk γ-==,协方差仅与k 有关与时间t 无关这个过程为一个AR (2)过程. 写成滞后操作符的形式:(10.8)(10.4)t t L L Y ε--=特征根的解一个为1/0.8,另一个为1/0.4均大于1,所以此过程平稳。

5、什么是工具变量,什么时候应用工具变量模型?如何用2SLS 方法估计工具变量模型中的参数?当某些解释变量为内生变量,即解释变量(xi )受被解释变量(y )影响的时候,应采用工具变量来辅助回归,以取得无偏一致估计量。

工具变量应与内生变量(xi )相关,但不受被解释变量(y )的影响。

当存在内生变量要取得x 对y 的影响的无偏估计,可采用2SLS(两阶段法)。

例如:在模型01122y x x βββε=+++中x2为内生变量,可采用工具变量z ,满足z 与x2相关,但不受y 的影响。

第一阶段:OLS 回归20112xx z vααα=+++。

取得拟合值 2x第二阶段:OLS 回归 2112y x xβββε=+++,得到的系数估计量记作IVβ,即x 对y 影响的无偏估计量四、案例分析(35分)1、经济学家卡特通过1987年美国的就业调查数据分析了教育对收入的影响。

数据包含了对3294个年轻劳动力,其中女性1569人,其平均工资为5.15美元,男性1725人,其平均工资6.31美元。

数据包括被观察对象的收入wage , 教育程度edu (教育年限),工作经验exp ,性别等信息。

1、若假定收入仅与教育程度,edu 有关,如何建立简单二元回归模型,如何估计其中参数? 建立二元线性回归:01wage edu ββε=++其中 121()()1()ni i i ni i x x y y x x β==---∑=∑, 01y x ββ=- 2、若二元回归模型所得参数估计值为理想的无偏估计值,应满足什么条件?应满足除教育程度外的所有变量,包括不可观测的因素,都与教育程度edu 无关。

3、现在假定收入与教育程度edu, 及工作经验exp 都有关系,建立多元线性回归模型一般形式012exp i i i iw age edu βββε=+++,其中i 代表数据中的第i 个观测值, ε满足高斯-马科夫假设条件。

若将模型写成矩阵的形式,Y X βε=+, 矩阵中的字母各代表模型一般形式下哪些变量?111102222121,,exp 1,,exp .,.,....1,,expN N N Nw age edu w age edu Y X w ageedu εβεββεβε⎛⎫⎛⎫⎛⎫⎪⎪⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4、请给出在模型的矩阵形式(YX βε=+)下参数β的OLS 估计公式。

1(')'X X X y β-= 5、请计算参数β的OLS 估计量( O LSβ)的期望与方差,如何理解 O LSβ为最佳线性无偏估计量(Best Linear Unbiased Estimator; BLUE )?111111{}{(')'}{(')'()}{(')(')(')')}{(')')}{(')'}{}E E X X X y E X X X X E X X X X X X X E X X X E X X X E ββεβεβεβεβ------==+=+=+=+=由此可得 O LSβ的期望等于真值,估计量为无偏估计量。

1111112121(')'(')'()(')'{}{()()'}{(')''(')}(')'()(')(')X X X y X X X X X X X V ar E E X X X X X X X X X I X X X X X ββεβεβββββεεσσ--------==+=+=--=== 1、 O LSβ=1(')'X X X y -,是y 中元素的线性组合,所以此估计量是一个线性估计量。

2、由上可得估计量是一个无偏估计量3、估计量的方差与其它的线性估计量方差相比最小,所以是一个最有效估计量。

所以OLS 估计量是一个最佳线性无偏估计量。

6、上述的多元线性回归模型,回归结果如下:3.380.530.137Wage eduexp =-++ (0.465) (0.0328) (0.023) 方程下面小括号内为各解释变量的标准差。

6.1 如何理解教育程度的系数0.53?在其它解释变量不变的情况下,即工作经验不变的情况下,每增加一年的教育,小时工资将增加0.53美元。

6.2 教育程度的影响是否在统计上显著?(0.05(3291) 1.96t =)进行t 检验:0111:0:0H H ββ=≠检验统计量 0.5316.16 1.960.0328z ==>,所以拒绝原假设。

教育对收入的影响是显著的。

6.3 如何计算拟合优度,若在回归中拟合优度为0.1326,如何理解这个值?拟合优度 32942213294211()i i ii Ryy ε===--∑∑。

拟合优度0.1326意味着工资变动的13.26%可以由教育程度,工作经验及常数来解释。

6.3 如何检验教育程度和工作经验在统计上的联合显著性,即01210:0:H H H ββ==非需采用F 检验: 第一步:回归原模型012exp ii i i wage edu βββε=+++,得到拟合优度21R第二步:回归限制模型,在这里为:0+v ii wage β=,得拟合优度2R第三步:检验统计量221021()/2(2,3291)(1)/(329412)R R fF R -=---然后比较检验统计量与临界值,选择假设条件。

相关文档
最新文档