数控机床的伺服系统

合集下载

数控机床的伺服系统

数控机床的伺服系统

第七章 数控机床的伺服系统
但直流电机有电刷,限制了转速的提高,而且结构复杂, 价格也高。进入80年代后,由于交流电机调速技术的突破,交 流伺服驱动系统进入电气传动调速控制的各个领域。交流伺服 电机,转子惯量比直流电机小,动态响应好。而且容易维修, 制造简单,适合于在较恶劣环境中使用,易于向大容量、高速 度方向发展,其性能更加优异,已达到或超过直流伺服系统, 交流伺服电机已在数控机床中得到广泛应用。
第七章 数控机床的伺服系统
进给伺服系统的作用:接受数控装臵发出的进给速度和位 移指令信号,由伺服驱动装臵作一定的转换和放大后,经伺服 电机(直流、交流伺服电机、功率步进电机等)和机械传动机 构,驱动机床的工作台等执行部件实现工作进给或快速运动。 数控机床的进给伺服系统能根据指令信号精确地控制执行 部件的运动速度与位臵,以及几个执行部件按一定规律运动所 合成的运动轨迹。如果把数控装臵比作数控机床的“大脑”, 是发布“命令”的指挥机构,那么伺服系统就是数控机床的 “四肢”,是执行“命令”的机构,它是一个不折不扣的跟随 者。
第七章 数控机床的伺服系统
二、步进电机工作原理
步进电机伺服系统是典型的开环控制系统,在此系统中, 步进电机受驱动线路控制,将进给脉冲序列转换成为具有一 定方向、大小和速度的机械转角位移,并通过齿轮和丝杠带 动工作台移动。进给脉冲的频率代表了驱动速度,脉冲的数 量代表了位移量,而运动方向是由步进电机的各相通电顺序 来决定,并且保持电机各相通电状态就能使电机自锁。但由 于该系统没有反馈检测环节,其精度主要由步进电机来决定, 速度也受到步进电机性能的限制。
第七章 数控机床的伺服系统
直线电动机的实质是把旋转电动机沿径向剖开,然后拉直 演变而成,利用电磁作用原理,将电能直接转换成直线运动动 能的一种推力装臵,是一种较为理想的驱动装臵。在机床进给 系统中,采用直线电动机直接驱动与旋转电动机的最大区别是 取消了从电动机到工作台之间的机械传动环节,把机床进给传 动链的长度缩短为零。正由于这种传动方式,带来了旋转电动 机驱动方式无法达到的性能指标和优点。由于直线电动机在机 床中的应用目前还处于初级阶段,还有待进一步研究和改进。 随着各相关配套技术的发展和直线电动机制造工艺的完善,相 信用直线电动机作进给驱动的机床会得到广泛应用。

第4章 数控机床伺服系统

第4章 数控机床伺服系统
图4-7 永磁直流伺服电动机
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f

数控机床的伺服系统

数控机床的伺服系统

第6章 数控机床的伺服系统
伺服驱动装置
位置控制模块 速度控制单元
工作台 位置检测
速度环 速度检测 位置环
伺服电机
测量反馈
图6-1 闭环进给伺服系统结构
数控机床闭环进给系统的一般结构如图,这是一个双闭环系统,内 环为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。 速度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控 制系统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由 CNC装置中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组 成。
第6章 数控机床的伺服系统
A C1 B4 2 B 3C A
逆时针转30º
C 4 B
A 1 2 3 A
B
C 1 B
A 2
B 3 C
C
逆时针转30º
4 A
第6章 数控机床的伺服系统
采用三相双三拍控制方式,即通电顺序按AB→BC→CA→AB(逆时针 方向)或AC→CB→BA→AC(顺时针方向)进行,其步距角仍为30。由于 双三拍控制每次有二相绕组通电,而且切换时总保持一相绕组通电,所以 工作比较稳定。
第6章 数控机床的伺服系统
设 A 相首先通电,转子齿与定子 A 、 A′ 对齐(图 3a )。然后在 A 相继续通电的情 况下接通 B 相。这时定子 B 、 B′ 极对转子 齿 2 、 4 产生磁拉力,使转子顺时针方向转 动,但是 A 、 A′ 极继续拉住齿 1 、 3 ,因 此,转子转到两个磁拉力平衡为止。这时转 子的位置如图 3b 所示,即转子从图 (a) 位 置顺时针转过了 15° 。接着 A 相断电, B 相继续通电。这时转子齿 2 、 4 和定子 B 、 B′ 极对齐(图 c ),转子从图 (b) 的位置又 转过了 15° 。其位置如图 3d 所示。这样, 如果按 A→A 、 B→B→B 、 C→C→C 、 A→A… 的顺序轮流通电,则转子便顺时针 方向一步一步地转动,步距角 15° 。电流 换接六次,磁场旋转一周,转子前进了一个 齿距角。如果按 A→A 、 C→C→C 、 B→B→B 、 A→A… 的顺序通电,则电机 转子逆时针方向转动。这种通电方式称为六 拍方式。

数控机床对伺服系统的要求

数控机床对伺服系统的要求

数控机床对伺服系统的要求(1) 精度高伺服系统的精度:输出量能复现输入量的精确程度。

伺服系统的位移精度:指令脉冲要求机床工作台进给的位移量和该指令脉冲经伺服系统转化为工作台实际位移量之间的符合程度。

两者误差愈小,位移精度愈高。

(2) 快速响应特性好快速响应是伺服系统动态品质的重要指标,它反映了系统跟踪精度。

机床进给伺服系统实际上就是一种高精度的位置随动系统,加工时为保证所要求的轮廓外形精度和的表面粗糙度,要求伺服系统跟踪指令信号的响应要快,跟随误差小。

(3) 调速范围要大调速范围:生产机械要求电机能供应的最高转速和最低转速之比。

在数控机床中,由于所用刀具、加工材料及零件加工要求的不同,为保证在各种状况下都能得到最佳切削条件,就要求伺服系统具有足够宽的调速范围。

既能满意高速加工要求,又能满意低速进给要求。

在低速切削时,还要求伺服系统能输出较大的转矩。

(4) 系统牢靠性要好系统的牢靠性常用发生故障时间间隔的长短的平均值作为依据,即平均无故障时间,这个时间越长牢靠性越好。

对主轴伺服系统,除上述要求外,还应满意如下要求:(1)主轴与进给驱动的同步掌握为使数控机床具有螺纹和螺旋槽加工的力量,要求主轴驱动与进给驱动实现同步掌握。

(2)准停掌握在加工中心上,为了实现自动换刀,要求主轴能进行高精确位置的停止。

(3)角度分度掌握角度分度掌握有两种类型:一是固定的等分角度掌握;二是连续的任意角度掌握。

任意角度掌握是带有角位移反馈的位置伺服系统,这种主轴坐标具有进给坐标的功能,称为“C”轴掌握。

“C”轴掌握可以用一般主轴掌握与“C”掌握切换的方法实现,也可以用大功率的进给伺服系统代替主轴系统。

第五章 数控机床的伺服驱动系统

第五章 数控机床的伺服驱动系统
机可能在过载的条件下工作,这就要求电动机有较强的抗过 载能力。通常要求在数分钟内过载4~6倍而不损坏。
(7)惯性匹配 移动部件加速和降速时都有较大的惯量,由于要求系统
的快速响应性能好,因而电动机的惯量要与移动部件的惯量 匹配。通常要求电动机的惯量不小于移动部件惯量。
数控机床的伺服驱动系统
5.2 位置控制
D/A 转换器
伺服放大器
伺服 电动机
Pf 反馈脉冲
位置检测
脉冲处理
图 5-2 脉冲比较伺服系统结构框图
工作台
光栅或光 电编码器
数控机床的伺服驱动系统
(1) 由计算机数控制装置提供指令的脉冲。 (2) 反映机床工作台实际位置的位置检测器。 (3) 完成指令信号与反馈信号相比较的比较器。 (4) 将比较器输出数字信号转变成伺服电动机模拟控制 信号的数/模转换器。 (5) 执行元件(伺服电动机)。
数控机床的伺服驱动系统
(1)指令脉冲PC=0,这时反馈脉冲Pf=0,则Pe=0,则伺
服电动机的速度给定为零,工作台继续保持静止不动。
(2)现有正向指令PC+=2,可逆计数器加2,在工作台尚 未移动之前,反馈脉冲Pf+=0,可逆计数器输出Pe=Pc+-Pf+=2
-0=2,经转换,速度指令为正,伺服电动机正转,工作台 正向进给。
CP A9 ≥1
CP
RC
+Vcc B
A A10 RD Q +Vcc
A3
DS
A4
Q CP
≥1
A7
DS
CPQ
A8 ≥1
RC
+Vcc BQ
A A11 RD +Vcc
D Q7 A12

数控技术 第七章 数控机床的进给伺服系统

数控技术   第七章  数控机床的进给伺服系统

三 步进电动机的基本控制方法
(2) 双电压功率放大电路 优点:功耗低,改善了脉冲 优点:功耗低, 前沿。 前沿。 缺点:高低压衔接处电流波 缺点: 形呈凹形, 形呈凹形,使步进电机 输出转矩降低, 输出转矩降低,适用于 大功率和高频工作的步 进电机。 进电机。
三 步进电动机的基本控制方法
(3) 斩波恒流功放电路 优点: 优点:1)R3较小(小 R3较小( 较小 于兆欧) 于兆欧)使整个 系统功耗下降, 系统功耗下降, 效率提高。 效率提高。 2)主回路不串 电阻, 电阻,电流上升 快,即反应快。 即反应快。 3)由于取样绕 组的反馈作用, 组的反馈作用, 绕组电流可以恒定在确定的数值上, 绕组电流可以恒定在确定的数值上,从而保证在很大频率范 围内,步进电机能输出恒定的转矩。 围内,步进电机能输出恒定的转矩。
二 数控机床对伺服系统的基本要求
1 高精度 一般要求定位精度为0.01~0.001mm; ; 一般要求定位精度为 高档设备的定位精度要求达到0.1um以上。 以上。 高档设备的定位精度要求达到 以上 2 快速响应 3 调速范围宽 调速范围指的是 max/nmin 。 调速范围宽:调速范围指的是 调速范围指的是:n 进给伺服系统:一般要求 进给伺服系统 一般要求0~30m/min,有的已达到 一般要求 ,有的已达到240m/min 主轴伺服系统:要求 主轴伺服系统 要求1:100~1:1000恒转矩调速 要求 恒转矩调速 1:10以上的恒功率调速 以上的恒功率调速
一 直流伺服电动机调速原理
7-30 直流电动机的机械特性
二 直流电动机的PWM调速原理 直流电动机的 调速原理
7-24 脉宽调制示意图 脉宽调制示意图
Ud =
τ
T
U = δ T U δ T 称为导通率

第七章数控机床伺服系统

第七章数控机床伺服系统

第一节 概述
2、数控机床对进给伺服系统的要求
(5) 调速范围要宽,低速时能输出大转矩 调速范围要宽,低速时能输出大转矩。机床的调速范围RN是指机床要求 电动机能够提供的最高转速nmax和最低转速nmin之比,即:
R
N
=
n max n min
其中nmax和nmin一般是指额定负载时 额定负载时的电动机最高转速和最低转速,对于 额定负载时 小负载的机械也可以是实际负载时最高和最低转速。一般的数控机床进 给伺服系统的调速范围RN为1:24 000就足够了,代表当前先进水平的速 度控制单元的技术已可达到1:100 000的调速范围。同时要求速度均匀、 稳定、无爬行,且速降要小。在平均速度很低的情况下(1mm/min以下) 要求有一定瞬时速度。零速度时要求伺服电动机处于锁紧状态,以维持 定位精度。
第 二 节 典 型 进 给 伺 服 系 统

柔性差: 柔性差:系统全由硬件构成,使得它的各调节器参数在机电联 调整定后就固定下来了,不易改变,这对负载惯量变化不大的 位置伺服系统(如车床刀架进给控制),可获得满意的控制性 。 对 负载惯量 大的系统, 。 的数 , 在整
(负载惯量变化) – 量 化成 , 响 电
第一节 概述
1、数控机床伺服系统的概念及组成 (1)在位置控制中,根据插补运算得到的为之指令 (即一串脉冲指令或二进制数据),与位置检测装置 反馈来的机床坐标轴的实际位置进行比较,形成位置 偏差,经变换得到速度给定电压。 (2)在速度控制中,伺服驱动装置根据速度给定电 压和速度检测装置反馈的实际转速对伺服电动机进行 控制,以驱动机床部件,从而把速度量变为位置量。
提高系统 精度 环 措施 的精度;
一. 开环进给伺服系统
传动间隙补偿 在整个行程范围内测量传动机构传动间隙,取其平均值存放 在数控系统中的间隙补偿单元,当进给系统反向运动时,数控 系统自动将补偿值加到进给指令中,从而达到补偿目的。 – 螺矩误差补偿 滚珠丝杆在数控机床应用广泛,虽然滚珠丝杆精度较高,但 的 精 , 将其精度控 在一 的范围内的, 的螺 存在 一 的误差的, 用 机的运 , 补偿滚珠丝 的螺矩 误差, 高进给 精度。 测量 进给丝 螺 误差 ( ),然 用 误差补偿 补偿 补偿。 补偿 –

数控机床的伺服驱动系统

数控机床的伺服驱动系统
不同的含义。数组说明的方括号中给出的是某一维的长度;而 数组元素中的下标是该元素在数组中的位置标识。 数组是一种构造类型的数据。一维数组可以看作是由一维数 组嵌套而构成的。
上一页 下一页 返回
6.2 二维数组
6.2.3二维数组的初始化
一维数组初始化也是在类型说明时给各下标变量赋以初值。 一维数组可按行分段赋值,也可按行连续赋值。
6.2 步进电机及其驱动控制系统
4、根据结构分类 步进电机可制成轴向分相式和径向分相式,轴向分相式
又称多段式,径向分相式又称单段式。单段反应式步进电机, 是目前步进电机中使用最多的一种结构形式。还有一种反应 式步进电机是按轴向分相的,这种步进电机也称为多段反应 式步进电机。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
下一页 返回
6.2 步进电机及其驱动控制系统
6.2.1步进电机的分类
1、根据相数分类 步进电机有二、四、五、六相等几种,相数越多,步距
角越小,而且采用多相通电,可以提高步进电机的输出转矩。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
2、根据力矩产生的原理分类 分为反应式和永磁反应式(也称混合式)两类。 反应式步进电机的定子有多相磁极,其上有励磁绕组, 而转子无绕组,用软磁材料制成,由被励磁的定子绕组产生 反应力矩实现步进运行。永磁反应式步进电机的定子结构与 反应式相似,但转子用永磁材料制成或有励磁绕组、由电磁 力矩实现步进运行,这样可提高电机的输出转矩,减少定子 绕组的电流。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
1、三相三拍工作方式 在图6-2中,设A相通电,A相绕组的磁力线为保持磁阻
最小,给转子施加电磁力矩,使磁极A与相邻转子的1、3齿 对齐;接下来若B相通电,A相断电,磁极B又将距它最近的 2、4齿吸引过来与之对齐,使转子按逆时针方向旋转30°; 下一步C相通电,B相断电,

数控机床伺服系统的分类及其应用要求

数控机床伺服系统的分类及其应用要求

数控机床伺服系统的分类及其应用要求数控机床伺服系统又称为位置随动系统,简称为伺服系统。

数控机床伺服系统是把数控信息转化为机床进给运动的执行机构,在许多自动化控制领域广泛应用。

数控机床伺服系统的种类繁多、技术原理各具特色,这对其应用带来很大的困扰,本文就数控机床伺服系统的分类及其应用要求做简单介绍。

一、数控机床伺服系统的分类数控机床伺服系统按其用途和功能分为进给驱动系统和主轴驱动系统;按其控制原理和有无位置检测反馈环节分为开环系统和闭环系统;按驱动执行元件的动作原理分为电液伺服驱动系统和电气伺服驱动系统。

电气伺服驱动系统又分为直流伺服驱动系统和交流伺服驱动系统。

1.进给驱动与主轴驱动进给驱动是用于数控机床工作台或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的转矩。

主轴驱动控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。

一般地,对于进给驱动系统,主要关心它的转矩大小、调节范围的大小和调节精度的高低,以及动态响应速度的快慢。

对于主轴驱动系统,主要关心其是否具有足够的功率、宽的恒功率调节范围及速度调节范围。

2.开环控制和闭环控制数控机床伺服驱动系统按有无位置反馈分两种基本的控制结构,即开环控制和闭环控制,如图5--1所示。

由此形成位置开环控制系统和位置闭环控制系统。

闭环控制系统又可根据位置检测装置在机床上安装的位置不同,进一步分为半闭环伺服驱动控制系统和全闭环伺服驱动控制系统。

若位置检测装置安装在机床的工作台上,构成的伺服驱动控制系统为全闭环控制系统;若位置检测装置安装在机床丝杠上,构成的伺服驱动控制系统则为半闭环控制系统。

现代数控机床的伺服驱动多采用闭环控制系统。

开环控制系统常用于经济型数控或老设备的改造。

3.直流伺服驱动与交流伺服驱动70年代和80年代初,数控机床多采用直流伺服驱动。

直流大惯量伺服电机具有良好的宽调速性能,输出转矩大,过载能力强,而且,由于电机惯性与机床传动部件的惯量相当,构成闭环后易于调整。

数控机床的进给伺服系统概述

数控机床的进给伺服系统概述
M j max
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。

数控机床的伺服驱动系统

数控机床的伺服驱动系统
1
数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o

数控机床的伺服系统

数控机床的伺服系统
上一页 下一页 返回
4.2 步进电动机驱动控制系统
4.2.3 步进电动机的驱动控制
1.步进电动机的工作方式 从一相通电换接到另一相通电称为一拍,每拍转子转过一个
步距角。按A→B → C → A → …的顺序通电时,电动机的转 子便会按此顺序一步一步地旋转;反之,若按A → C → B → A→…的顺序通电,则电动机就会反向转动,这种三相依次 单相通电的方式,称为三相单三拍式运行,“单”是指每次 只有一相绕组通电,“三拍”是指一个循环内换接了三次, 即A、B、C三拍。单三拍通电方式每次只有一相控制绕组通 电吸引转子,容易使转子在平衡位置附近产生振荡,运行稳 定性较差;另外,在切换时一相控制绕组断电而另一相控制绕 组开始
4.2.2 步进电动机的工作原理与主要特 性
1.步进电动机的工作原理
上一页 下一页 返回
4.2 步进电动机驱动控制系统
步进电动机的工作原理实际上是电磁铁的作用原理。下面以 图4-2所示的一个最简单步进电动机结构为例说明步进电动机 的工作原理。其定子上分布有6个齿极,每两个相对齿极装有 一相励磁绕组,构成三相绕组。
也称为数组的长度。
下一页 返回
6.1 一维数组
对数组的定义应注意以下几点。 (1)数组的类型实际上是指数组元素的取值类型。对于同一
个数组,其所有元素的数据类型都是相同的。 (2)数组名的书写规则应符合标识符的书写规定。 (3)数组名不能与其他变量名相同。 (4)不能在方括号中用变量来表示元素的个数,但是可以用
按伺服控制方式不同,数控机床伺服系统可分为开环、闭环 和半闭环系统。开环型采用步进电动机驱动,控制方式简单, 信号单向传递,无位置反馈,所以精度不高,适用于要求不 高的经济型数控机床中。而闭环控制系统采用直流、交流伺 服电动机驱动,位置检测元件安装于机床运动部件上,

数控加工技术-第五章 数控机床的伺服系统

数控加工技术-第五章 数控机床的伺服系统

《数控加工技术》
2. 步进电动机的工作原理 反应式步进电动机又叫可变磁阻式 (Variable Reluctance) 步进电动机, 简称 VR 电动机。 (1) 反应式步进电动机的结构
图 5-5 径向式三相反应式电动机的结构原理 1—绕组 2—定子铁心 3—转子铁心 4—A 相
图 5-6 三相轴向分相式反应式步进电动机的结构原理 1—外壳 2—C 段绕组 3—C 段定子 4—转轴 5—C 段检转子 6—空气隙
《数控加工技术》
1. 步进电动机的分类 步进电动机的种类繁多, 步进电动机按运动方式可分为旋转运动、 直线运动、 平面运 动和滚切运动式步进电动机; 按工作原理可分为反应式 (磁阻式)、 电磁式、 永磁式、 永磁 感应子式步进电动机; 按使用场合可分为功率步进电动机和控制步进电动机; 按结构可分为单 段式 (径向式)、 多段式 (轴向式)、 印刷绕组式步进电动机; 按相数可分为三相、 四相、五 相步进电动机等; 按使用频率可分为高频步进电动机和低频步进电动机。 不同类型的步进电 动机, 其工作原理、 驱动装置也不完全一样。
普通高等教育3D版机械类规划教材
数 控 加 工 技 术(3D版)
2020.8
《数控加工技术》
第五章 数控机床的伺服系统
§5-1 数控机床的伺服系统概述 §5-2 伺服系统的驱动元件 §5-3 伺服系统的位置检测装置
《数控加工技术》 5.1 数控机床的伺服系统概述
5.1.1 伺服系统的组成及工作原理
《数控加工技术》
3) 三相六拍工作方式。 若定子绕组的通电顺序是A→AB→B→BC→C→CA→A→……, 这 种通电方式是单、 双相轮流通电。
《数控加工技术》
5.1.3 数控伺服系统的分类

第7章 数控机床的进给伺服系统PPT课件

第7章 数控机床的进给伺服系统PPT课件
起动频率fq 的选择 先计算电机轴上的等效负载转动惯量:
式中 J1、J2——齿轮的转动惯量(N·m·s2);J3——丝杠的转动惯量 d ——冲当量(mm/脉冲)。
然后进行负载启动频率fqF 的估算; 式中 fq——空载启动频率(Hz),T——由矩频特性决定的力矩(Nm)
J——电机转子转动惯量(N·m·s2)。 依照机床要求的启动频率fqF ,可选择fq
第七章 数控机床的进给伺服系统
7-1 概述 7-2 步进电动机及其驱动系统 7-3 直流伺服电动机及其速度控制 7-4 交流伺服电动机及其速度控制 7-5 主轴驱动 7-6 位置控制
§ 7-1 概述
立式铣床
加工中心 刀库刀具定位电机 机械手旋转定位电机
带制动器伺服电机 主轴电机
伺服电机
伺服驱动系统(Servo System)
称做空载运行频率fmax。它也是步进电动机的重要性能指标,对于提高 生产率和系统的快速性具有重要意义。
fmax 应能满足机床工作台最高运行速度。
6. 运行矩频特性 运行矩频特性T=f(F)是描述步进电动
机连续稳定运行时,输出转矩T与连续运行 T 频率之间的关系。它是衡量步进电动机运转 时承载能力的动态性能指标。
f
三、步进电动机驱动电源 1. 作用 发出一定功率的电脉冲信号,使定子励磁绕组顺序通电。 2. 基本要求 (1)电源的基本参数与电动机相适应; (2)满足步进电动机起动频率和运行频率的要求; (3)抗干扰能力强,工作可靠; (4)成本低,效率高,安装维修方便。
1.步距角 步进电动机每步的转角称为步距角,计算公式:
θ= 360 (°) Z mK
式中 m—步进电动机相数 Z—转子齿数 K—控制方式系数, K=拍数p/相数m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正转 反转
CBA A
AB B BC
001
011 010 110
01H
03H 02H 06H
TAB0 DB 01H
TAB1 DB 03H TAB2 DB 02H TAB3 DB 06H
C
CA
100
101
04H
05H
TAB4 DB 04H
TAB5 DB 05H
§6-2 直流、交流伺服驱动 (闭环控制系统) 闭环控制的伺服系统执行元件为直流、交流 伺服电机。 一 直流伺服电机 直流伺服电机具有良好的调速性能,在以往 的数控机床上得到广泛使用。直流伺服电机 分为有刷和无刷两种基本类型。有刷直流伺 服电机通常采用永久磁铁做定子。而无刷电 机转子为永久磁铁,定子为电枢。
三 伺服系统的分类
1 按控制方式划分:开环控制系统;半闭控 制环系统;闭环控制系统。 2 按系统中执行元件电动机的类型划分(1) 步进驱动系统— 执行元件为步进电机(2) 直流伺服驱动系统—执行元件为直流伺服 电机。 (3)交流伺服驱动系统—执行元件为交流 伺服电机。
§6-2 步进电机及开环控制系统
1. 永磁同步型AC伺服电机
永磁同步型AC伺服电机,转子用 永磁材料制成,定子装有三相对称 绕组,通入三相对称、相位相差 120º 的交流电,可产生旋转磁场。
多极永磁同步型AC伺服电机结构如下图示 转子转速 n=n1=60f/p p磁极对数,f电源频率。
2 AC伺服电机SPWM调速
永磁同步型AC伺服电机的转速与电源频率存 在严格的关系。因此,用变频调速驱动装置, 非常适宜。为获得宽的调速范围,该驱动电 源不仅要求电压和电流可调,而且频率也必 须可以连续可调。 因此调速的关键部件之一就是变频器,变频 器分为:交— 直—交型;交—交型。数控机 床常用前者,而且其逆变器多采用脉宽调制 PWM逆变器。
四 步进电机特性与选用
1 步进电机的优点 2 主要技术特性 (1)步距角及其误差(不大于10´) θs =360/mPN P —运行节拍与相数的比例, N—转子齿数 m—相数
(2)矩角特性与最大静转矩
(3)启动频率
(4)连续运行频率 (5)矩频特性
3.选用

机械特性和调速特性
二 直流伺服电机驱动装置
1 可控硅调速电路(SCR) 采用三相全控桥式整流电路 ,通过对 12个晶闸管触发角的控制,达到控制 电机电枢电压的目的。
2 脉宽调制PWM 调速电路
UAB=[USt1-(T-t1) US]/T=(2t1/T -1) US=(2 а -1) US а = 0.5 UAB=0 电机不转 а > 0.5 UAB>0 电机正转 а < 0.5 UAB<0 电机反转
2 伺服系统的基本要求
1 ) 精度高 伺服系统精度取决于机械传 动精度和伺服系统最小分辨率精度。 2)响应快速 响应速度提高,可以减小跟 随误差,一般在200 ms以内。 3) 稳定性好 稳定性直接影响数控加工 精度和表面粗糙度。 4)调速范围宽 R=nmax/nmin 进给伺服与 主轴范围不一样 5 ) 低速大转矩
3直流驱动系统的双闭环控制系统
×
速度调节
×
电流调节
功率放大
M
电流反馈 速度反馈
TG
三. 交流伺服电动机
直流伺服电机存在机械整流子、电刷维护 困难,造价高,寿命短、应用环境受限制 的缺点。而交流伺服电机结构简单,耐用 可靠,动态响应好,驱动调速技术日益成 熟。 用三相交流电驱动的伺服电机叫AC伺服电 机。AC伺服电机按工作原理划分为:永磁 同步型;异步感应型。
三 步进电机进给控制
1 转向控制 2 速度大小控制 控制步进电机相邻两种励 磁状态之间的时间,就可以实现步进电机速 度控制。V=60δf 式中f —输入到步进电机 的脉冲频率Hz,δ—脉冲当量mm/脉冲,V 单 位 mm/min 3 自动升降速控制
当要求步进电机启动到大于突跳频率的工作 频率时,变化速度必须逐渐上升;同样,从 最高工作频率或高干突跳频率的工作频率停 止时,变化速度必须逐渐下降。
一 步进电机结构特点及种类 步进电机又称为脉冲电机—它的输入既不 是交流电,也不是直流电,而是电脉冲。 其主要特点:步进电机输出的角位移与输 入的脉冲个数成正比,转速与脉冲频率成 正比。 分类:根据其结构和材料大体分为可变磁 阻式(反应式)、永磁式和混合式(永磁 感应式)三种基本类型。按输出扭矩分: 伺服式(功率较小),功率式(功率较大)。
(1)选定类型 m 360 (2)确定脉冲当量δ i L L (3)计算齿轮传动比 (L为丝杠螺距、m一转的脉冲数) (4)确定高速运行的输出扭矩(大于负载 转矩,并留余量) (5)确定电机启动频率
计算机三相六拍环形分配表 (查表法)
步序 导电相 工作状态 数值(16进制) 程序的数据表
1. 直流伺服电机的工作原理 直流伺服电机基本结构和工作原理与一般的 直流电机相同,所不同的是为了满足快速响 应的要求,从结构上做得细长一些。
直流伺服电机工作原理图
2. 直流电机的输出特性
直流电机的电枢电路: Ιа×Rа +Eа =Uа Ea Ua M Eа=Ke×Ф×n Ia T-Tf=J×dn/dt 当电机稳定运行时 T=Tf T=KT×Ф×Ιа = KT×Ф×(Uа –Eа )/Rа = KT×Ф×(Uа –Ke×Ф×n)/ Rа
第六章 数控机床的伺服系统
重点: 1伺服系统的要求、分类、组成 2 常用伺服电机工作原理及其驱动装置特点 3 常用位置检测元件工作原理及特点
§6-1
概述
一 伺服系统概念 1 概念 数控机床的伺服系统是指以机床移 动部件位移和速度为控制对象的自动控制系 统。 数控机床伺服系统包括进给伺服驱动系统; 主轴伺服驱动系统。 伺服系统的组成 伺服系统由伺服电机、伺服驱动装置、机械 传动装置、位置检测装置等组成。
3 电气控制伺服系统
从控制的角度来说,一般电气伺服系统结构为 三闭环控制。
给定
位置PID
速度PID
电流PID
伺服电机
速度反馈 位置反馈
二 对伺服电机的要求
1)在调速范围内,具有平稳的运行速度 2)具有较大较长时间的过载能力 3)具有较大的启动加速度 4)能够承受频繁启动、制动和反转
二 步进电机结构及工作原理
1. 结构与原理 左图为径向分 相式三相步进 电机。
步进电机定子齿距分布
步进电机工作原理
工作原理:以三相反应式为例
ቤተ መጻሕፍቲ ባይዱ
2 运行节拍与通电方式 在一个完整的通 断电循环中,绕组通电状态的不同组合数 称为运行拍数。每拍转子转过一个步距角。 通电方式: A—B—C—A;AB—BC— CA—AB;A—AB—B—BC—C—CA—A 3 径向分相式与轴向分相式 4 步距角 θs =360/mPN P —运行节拍与相数的比例, N—转子齿数 m—相数 。
相关文档
最新文档