北师大版九年级上册全册数学课件及复习
北师大版九年级上册数学《图形的位似》图形的相似研讨说课复习课件
3. 位似多边形上任意一对对应点到位似中心的距离之 比都等于相似比.位似多边形对应角相等,对应边成比例, 周长的比等于相似比,面积的比等于相似比的平方.
4. 作位似多边形的方法:(1)根据“对应点到位似中心的 距离之比等于相似比”作出各顶点关于位似中心的对应点;(2) 用线段顺次连接各对应点.
第四章 图形的相似
解:如图所示:
【归纳总结】画位似图形的一般步骤为:①确定位似中 心;②分别连接并延长位似中心和能代表原图的关键点;③ 根据相似比,确定能代表所作的位似图形的关键点,顺次连 接上述各点,得到放大或缩小的图形.
知识点 2 位似图形的应用 例2 已知矩形 ABCD 与矩形 AB′C′D′是位似图形,A 为 位似中心.已知矩形 ABCD 的周长为 24,BB′=4,DD′=2, 求 AB 与 AD 的长.
例1 如图,在平面直角坐标系中,每个小方格都是边长
为 1 个单位长度的正方形,已知△ AOB 与△ A1OB1 位似,位
似中心为原点 O,且相似比为 3∶2,点 A,B 都在格点上,
则点 B1 的坐标为
-2,-23
.
【思路点拨】把点 B 的横、纵坐标分别乘-23得到点 B1 的坐标.
知识点 2 在直角坐标系中画位似图形 例2 (教材 P117 例 2)在平面直角坐标系中,四边形 OABC 的顶点坐标分别是 O(0,0),A(6,0),B(3,6),C(- 3,3).以原点 O 为位似中心画一个四边形,使它与四边形 OABC 位似,且相似比是 2∶3.
画法二:将四边形 OABC 各顶点的坐标都乘-23,得 O(0, 0),A″(-4,0),B″(-2,-4),C″(2,-2);在平面直角坐 标系中描出点 A″,B″,C″,用线段顺次连接点 O,A″,B″, C″,O,则四边形 OA″B″C″也是符合要求的四边形.
九年级数学上册 第1单元复习课件 北师大版
第1章复习 ┃ 考点攻略
∴∠DCE+∠CDE=90° , ∴∠2+∠3=90° ,∠1+∠4=90° , ∴∠3=∠4. 在△FDE 与△ADE 中, ∠FDE=∠ADE, DE=DE, ∠3=∠4, ∴△FDE≌△ADE(ASA),∴DF=DA. ∵CD=DF+CF,∴CD=AD+BC.
2 1 解:圆柱的底面周长为 2πr=2×π× =4,取其一半: ×4 π 2 =2,圆柱的高为 2,根据勾股定理,得 AC2=22+22=8,所以 AC =2 2.
第1章复习 ┃ 考点攻略
方法技巧 利用勾股定理解决最短路线问题的实质是解决旋转体的问题, 也是把立体图形转化为平面图形的问题, 即将原图形的侧面展开转 化为平面图形问题——即“展曲为平”问题,特别要注意圆柱、圆 锥的侧面展开问题.这种由三维立体和二维平面的相互转化,充分 体现了新课程标准下的素质教育对学生空间想象能力、 图形识别能 力、 理解能力的要求, 是考查空间观念和严谨认真态度的很好题型.
[注意] 角的平分线是在角的内部的一条射线,所以它的逆 定理必须加上“在角的内部”这个条件.
10.三角形三条角平分线的性质 三角形的三条角平分线相交于一点,并且这一点到三条边 相等 . 的距离
第1章复习 ┃ 考点攻略
┃考点攻略┃
► 考点一
例1
线段垂直平分线的性质的应用
如图S1-1,在△ABC中,DE垂直平分AC交AB于E,
第1章复习 ┃ 知识归类 8.三线共点
一点 三角形三条边的垂直平分线相交于 相等 三角形三个顶点的距离 .
9.角平分线的性质定理及判定定理
,并且这一点到
相等 性质定理:角平分线上的点到这个角两边的距离
判定定理:在一个角的内部,且到角的两边 距离 点,在这个角的平分线上.
北师大版九年级上册数学全册教学课件
1 2
BD.
∵AC=6cm,BD=12cm,
∴AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理得
AB AO2 BO2 32 62 3 5 cm.
∴菱形的周长=4AB=4×3 5 =12 5 (cm).
例2 如图,在菱形ABCD中,CE⊥AB于点E, CF⊥AD于点F,求证:AE=AF.
欣赏视频,前面的图片中出现的图形是平行四边形, 和视频中菱形一致,那么什么是菱形呢?这节课让 我们一起来学习吧.
讲授新课
一 菱形的性质
思考 如果从边的角度,将平行四边形特殊化,内角 大小保持不变仅改变边的长度让它有一组邻边相等, 这个特殊的平行四边形叫什么呢?
平行四边形 邻边相等
菱
形
归纳总结
定义:有一组邻边相等的平行四边形. 菱形是特殊的平行四边形. 平行四边形不一定是菱形.
D.对角线相等
2.如图,在菱形ABCD中,AC=8,BD=6,则
△ABD的周长等于
(B)
A.18
B.16
C.15
D.14
3.根据下图填一填:
(1)已知菱形ABCD的周长是12cm,那么它的边长
是 __3_c_m__.
(2)在菱形ABCD中,∠ABC=120 °,则∠BAC=
___3_0_°__.
(3)菱形ABCD的两条对角线长分别为6cm和8cm,
1
九年级数学上(BS) 教学课件
第一章 特殊平行四边形
1.1 菱形的性质与判定
第1课时 菱形的性质
导入新课
讲授新课
当堂练习
课堂小结
1.了解菱形的概念及学其习与目平行标四边形的关系.
2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点 )
最新北师大版九年级数学上册全册教学课件
1 2
1 2
证明:∵四边形ABCD是矩形, ∴ AC=BD(矩形的对角线相等) OA=OC= AC,OB=OD= BD, ∴OA=OD。 ∵∠AOD=120°, ∴∠ODA=∠OAD= (180°-120°) = 30°。 又∵∠DAB=90°(矩形的四个角都是直角) ∴BD=2AB=2×2.5=5.
A.矩形的对角线互相平分 B. 矩形的对角线相等。
C. 有一个角是直角的四边形是矩形 D. 有一个角是直角的平行四边形叫做矩形 (2)已知矩形的一条对角线长为10cm,两条 对角线的一个交角为120°,则矩形的长和 宽分别为 _____。
生活中的矩形
生活链接
四个学生正在做投圈游戏,他们分别站在 一个矩形的四个顶点处,目标物放在对角线的 交点处,这样的队形对每个人公平吗?为什么?
问题3:矩形具有而一般平行四边形不具有的 性质是 ( ) A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分
第五环节:建构新知,发展问题
问题1: (1) 矩形的两条对角线可以把矩 形分成几个直角三角形? (2)在直角三 角形ABC中,你能找到它的一条特殊线段 吗? (3)你能发现它有什么特殊的性质 吗? (4)你能借助于矩形加以证明吗?
问题1:请同学们拿出准备好的矩形纸片,折 一折,观察并思考。
(1)矩形是不是中心对称图形? 如果是,那 么对称中心是什么? (2)矩形是不是轴对称图形?如果是,那么 对称轴有几条?
结论:矩形是轴对称图形,它有两条对称轴。
问题2:请你总结一下矩形有哪些性质? 归纳概括矩形的性质: 从边来说,矩形的对边平行且相等; 从角来说,矩形的四个角都是直角; 从对角线来说,矩形的对角线相等且互相平分; 从对称性来说,矩形既是轴对称图形,又是中心 对称图形。
九年级数学上册(北师大版)课件:第五章 单元复习 (共17张PPT)
解:如图:
12.春分时日,小彬上午9:00出去,测量了自己
的影长,出去了一段时间之后,回来时,他发现
这时的影长和上午出去时的影长一样长,则小彬
出去的时间大约是( C )小时.
A.2 B.4 C.6 D.8
初中数学
能力提升
13.如图,边长为a cm的正方体其上下底面的对 角线AC、A1C1与平面H垂直. (1)指出正方投影MNPQ的面积.
初中数学
课堂精讲
【分析】认真观察实物,可得主视图为等腰三角 形下面一个矩形;左视图与主视图一样;俯视图 为有圆心的圆. 【解答】解:如图:
类比精炼
2.补全三视图.
初中数学
课堂精讲
【分析】主视图、左视图、俯视图是分别从物体正 面、左面和上面看,所得到的图形;认真观察实物 图,按照三视图的要求画图即可,注意看得到的棱 长用实线表示,看不到的棱长用虚线的表示. 【解答】解:左视图与俯视图如图所示:
初中数学
课后作业
3.下面属于中心投影的是( B )
A.太阳光下的树影
B.皮影戏
C.月光下房屋的影子 D.海上日出
4.如图是某几何体的三视图,
该几何体是( B )
A.圆柱
B.圆锥
C.正三棱柱
D.正三棱锥
5.一位小朋友拿一个等边三角形木框在阳光下玩,
等边三角形木框在地面上的影子不可能是( B )
初中数学
初中数学
课前小测
3.(2015临淄区校级模拟)皮皮拿着一块正方形 纸板在阳光下做投影实验,正方形纸板在投影面 上形成的投影不可能是( D ) A.正方形 B.长方形 C.线段 D.梯形 4.(2014香洲区校级模拟)春天来了天气一天比 一天暖和,在同一地点某一物体,今天上午11点 的影子比昨天上午11点的影子___短__.(长,短) 5.(2015江阴市二模)为了测量水塔的高度,我 们取一竹竿,放在阳光下,已知2米长的竹竿投影 长为1.5米,在同一时刻测得水塔的投影长为30米 ,则水塔高为__4_0___米.
新北师大版九年级上册数学全册课件
新北师大版九年级上册数学全册课件新北师大版九年级上册数学全册课件介绍:本课件是新北师大版九年级上册数学的完整课件,旨在帮助学生更好地掌握数学知识和技能。
本课件包括各章节的重点、难点、例题、练习题和思考题等,是学生自主学习和教师教学的有力辅助工具。
第一章:锐角三角函数学习目标:1、理解锐角三角函数的定义和意义。
2、掌握正弦、余弦、正切的概念和计算方法。
3、会使用锐角三角函数解决实际问题。
重点:1、锐角三角函数的定义和计算方法。
2、使用锐角三角函数解决实际问题。
难点:1、对于锐角三角函数的理解和应用。
2、对于特殊角的三角函数值的记忆和应用。
例题:已知锐角α,求sinα、cosα、tanα的值。
分析:根据特殊角的三角函数值直接计算。
解答: sinα= ,cosα= ,tanα= 。
第二章:概率初步学习目标:1、理解概率的概念和意义。
2、掌握概率的基本计算方法。
3、会使用概率解决实际问题。
重点:1、概率的基本计算方法。
2、使用概率解决实际问题。
难点:1、对于概率的理解和应用。
2、对于概率的加法和乘法法则的理解和应用。
例题:已知一个袋子中有3个红球、2个白球、1个黄球,求取出红球的概率。
分析:根据概率的基本计算方法计算。
解答:取出红球的概率为 = 。
第三章:数据集中趋势及人口数量变化的描述学习目标:1、理解数据集中趋势的意义。
2、掌握计算数据集中趋势的方法。
3、会使用数据集中趋势描述人口数量变化。
重点:1、计算数据集中趋势的方法。
2、使用数据集中趋势描述人口数量变化。
难点:1、对于数据集中趋势的理解和应用。
2、对于人口数量变化的描述方法和技巧。
例题:已知某城市各年龄段人口数量,求该城市人口数量的平均年龄和中位数。
分析:根据平均数和中位数的计算方法计算。
解答:平均年龄为(岁),中位数为(岁)。
新北师大版四年级上册数学全册课件新北师大版四年级上册数学全册课件【内容简析】四年级数学上册是新北师大版教材,本教材根据《全日制义务教育数学课程标准(实验稿)》的精神,在总结实验教材和教学经验的基础上编写而成。
上册第一章第3课矩形的性质-北师大版九年级数学全一册课件
在EF上的点H处,折痕为FG,则A,H两点间的
距离为
.
15. 如图,在矩形ABCD中,以顶点B为圆心、边BC
长为半径作弧,交AD边于点E,连接BE,过点
C作CF⊥BE于点F. 猜想线段BF与图中现有的哪
一条线段相等?然后再加以证明.
解:猜想:BF=AE. 证明:∵四边形ABCD是矩形, ∴∠A=90°,AD//BC. ∴∠AEB=∠FBC. ∵CF⊥BE,∴∠A=∠BFC=90°. ∵BC=BE,∴△BFC≌△EAB. ∴BF=AE.
(1)证明:∵四边形 ∴△ABE≌△CDF(AAS).
如图,矩形ABCD的对角线AC,BD相交于点O,则图中有 知识点2 矩形的四个角都是直角
ABCD是矩形,∴AB=CD, ∴∠AEB=∠FBC.
∵AB=AO,∴OA=OB=AB.
个直角三角形,有
个等腰三角形,有
对全等三角形.
AB∥CD. 知识点2 矩形的四个角都是直角
三级拓展延伸练
16. 已知:在矩形ABCD中,BD是对角线,AE⊥BD 矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质.
∠A=90°(答案不唯一,四个角中任意一个角是直角即可)
于点E,CF⊥BD于点F. ∴∠ABD=60°.
(3)矩形是轴对称图形,有2条对称轴.
二级能力提升练 13. 如图,矩形ABCD的对角线AC与BD相交于点O,
AC=10,P,Q分别为AO,AD的中点,则PQ的 长度为 2.5 .
14. 如图①,在矩形纸片ABCD中,AB=5,BC=3,
先按图②操作:将矩形纸片ABCD沿过点A的直
线折叠,使点D落在边AB上的点E处,折痕为AF;
上册第四章第13课图形的相似单元复习-北师大版九年级数学全一册课件
解:由题意可得,△DEF∽△DCA,
∵DE=0.5米,EF=0.25米,DG=1.5米, DC=20米,
解得AC=10. ∴AB=AC+BC=10+1.5=11.5(米). 答:旗杆的高度为11.5米.
15. 如图,花丛中一根灯杆AB上有一盏路灯A,灯 光下,小明在点D处的影长DE=3米,沿BD方向 走到点G,DG=5米,这时小明的影长GH=4米, 如果小明的身高为1.7米,求路灯A离地面的高 度.
cm/s,它们同时出发,当有一点到达所在线段的 (2,2) D.
如图,在△ABC中,DE∥BC,
DE=4,则BC的长是( )
第13课 图形的相似单元复习
端点时,就停止运动. 设运动时间为t s. 如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在点D处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长
10. 在平面直角坐标系中,已知点E(-4,2),F(-2,
-2),以原点O为位似中心,相似比为
,把
△EFO缩小,则点E的对应点E′的坐标是( D )
A. (-2,1)
B. (-8,4)
C. (-8,4)或(8,-4)
D. (-2,1)或(2,-1)
11. 在Rt△ABC中,AD是斜边BC上的高,BD=4,CD=9, 则AD= 6 .
CB向点B方向运动,如果点P的速度是4 cm/s,点Q的速度是2 cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.
向运动,动点Q从点C出发,沿线段CB向点B方向 第13课 图形的相似单元复习
已知△ABC∽△A′B′C′,且
则S△ABC:S△A′B′C′为( )
如图,在△ABC中,DE∥BC,
北师大版九年级上册数学《探索三角形相似的条件》图形的相似培优说课教学复习课件拔高
解:∵在△ ABC 和△ ADE 中,AADB=DBCE=AACE, ∴△ABC∽△ADE,∴∠BAC=∠DAE, ∴∠BAC-∠DAC=∠DAE-∠DAC, ∴∠CAE=∠BAD=20°.
巩固训练
1. △ ABC 和△ DEF 满足下列条件,其中能使△ ABC 与△ DEF 相似
的是( C )
△ DEF 三边长分别为 DE=3.6 cm,EF=4.2 cm,FD=3 cm.△ ABC 与
△ DEF 是否相似?为什么?
解:△ ABC∽△DEF.理由如下:∵DABE =33.6=56,BECF=
3.5 4.2
=
5 6
,
CA FD
=
2.5 3
=
5 6
,
∴
AB DE
=
BC EF
=
CA FD
=
5 6
【归纳总结】三边成比例的两个三角形相似,当已知三 角形的边长或与三边有关的比例式时,可考虑根据三边成比 例来说明两个三角形相似.
知识点 2 相似三角形的应用 例2 如图,在△ ABC 和△ ADE 中,AADB=DBCE=AACE,∠BAD =20°,求∠CAE 的度数.
【思路点拨】由AADB=DBCE=AACE得△ ABC∽△ADE,由相 似三角形的对应角相等求得答案.
2. 理解黄金矩形,并能解决与之有关的问题.(难点)
课前预习
(一)知识探究 一般地,点 C 把线段 AB 分成两条线段 AC 和 BC(如图), 如果 AACB=BACC ,那么称线段 AB 被点 C 黄金分割,点 C 叫 做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.
(二)预习反馈
例题精讲
知识点 1 黄金分割的理解
新北师大九年级数学上册全册ppt课件
活动: 观察下列图片, 找出你所熟悉的图形.首发 打造中学高效课堂首选课件
讲授新课
一 菱形的概念及其与平行四边形的关系
问题1: 观察上图中的这些平行四边形,你能发现它们有什么
样的共同特征?
平行四边形
菱形
菱形:有一组邻边相等的平行四边形叫做菱形.
2.菱形具有而平行四边形不一定具有的性质是( B ) A.内角和为360° B.对角线互相垂直 C.对边平行 D.对角线互相平分首发 打造中学高效课堂首选课件
典例精析
例1:已知菱形ABCD中,对角线AC、BD相交于点
O,AB=5cm,BD=8cm.
4cm 则:(1)BO=____________; (2)AC=_____________. 6cm
AOCD首发 打造中学高效课堂首选课件
证明菱形的性质 求证:菱形的四条边相等,对角线互相垂直. 已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交 于点O. B 求证:(1)AB = BC = CD =AD; (2)AC⊥BD. 证明:(1)∵四边形ABCD是菱形,
A
O C D
B A D
O
C
归纳 菱形中已知边长或对角线,求相关长度问题,一般利
用菱形的对角线垂直平分,再结合勾股定理解题.首发 打造中学高效课堂首选课件
典例精析
例2:如图,在菱形ABCD中,对角线AC与BD相交于点O, ∠BAD=60°,BD =6,求菱形的边长AB和对角线AC的长. 解:∵四边形ABCD是菱形, ∴AC⊥BD(菱形的对角线互相垂直) 1 OB=OD= 1 BD = ×6=3(菱形的对角线互相平分) 2 2 在等腰三角形ABC中, B ∵∠BAD=60°, O ∴△ABD是等边三角形. A C ∴AB = BD = 6. D首发 打造中学高效课堂首选课件
北师大版九年级数学上册第一章 特殊平行四边形复习课件(共64张PPT)
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
2020北师大版九年级数学上册全册完整课件
第一章 特殊平行四边形
2020北师大版九年级数学上册全册 完整课件
1 菱形的性质与判定
2020北师大版九年级数学上册全册课件目录
0002页 0020页 0038页 0096页 0117页 0155页 0184页 0266页 0279页 0295页 0363页 0415页 0453页 0482页 0633页 0635页 0686页
第一章 特殊平行四边形 2 矩形的性质与判定 回顾与思考 第二章 一元二次方程 2 用配方法求解一元二次方程 4 用分解因式法求解一元二次方程 6 应用一元二次方程 复习题 1 用树状图或表格求概率 回顾与思考 第四章 图形的相似 2 平行线分线段成比例 4 探索三角形相似的条件 6 利用相似三角形测高 8 图形的位似 复习题 1 投影
北师大版九年级上册数学 知识点复习课件(共46张PPT)
知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
北师大版九年级上册数学《相似三角形的性质》图形的相似说课教学复习课件
即
=
=
( 相似三角形的面积比等于相似比的平方 ),
.
∴EC2 = 2,∴EC =
( 负值舍去 ).
∴BE = BC – EC = 2 –
即 △ABC 平移的距离为 2 –
,
.
C
F
4.7.2 相似三角形的周长比、面积比的性质
温馨提示
相似多边形周长的比等于相似比,面积比等于相似比的平方.
4.7.2 相似三角形的周长比、面积比的性质
△A′B′C′,CD 和 C′D′ 分别是它们的立柱.
(2) 如果 CD = 1.5 cm,那么模型房的房梁立柱有多高?
解:(2) 由 CD:C′D′ = 1:2,得 C′D′ = 2CD = 3 cm,即模型房的房梁立柱
高 3 cm.
4.7.1 相似三角形中对应线段的性质
如图,已知△ABC∽△A′B′C′, △ABC 与△A′B′C′ 相似比为 k ( k > 0 ),
∴AD : A′D′ = k.
∴AF : A′F′ = k.
A
符号语言:
∵△ABC∽△A′B′C′,
且∠BAE =∠EAC,∠B′A′E′ =∠E′A′C′,
∴AE : A′E′ = k.
B
A′
D
B′ D′ E′ F′
E F
C′
C
4.7.1 相似三角形中对应线段的性质
温馨提示
这些结论以后在解决问题过程中能作为定理直接用.
如果是四边形呢?
你能通过类比得出
四边形的结论吗?
4.7.2 相似三角形的周长比、面积比的性质
例2
如图,四边形 ABCD ∽四边形 A′B′C′D′,相似比为 k ( k > 0 ).
上册第六章第1课反比例函数的概念-北师大版九年级数学全一册课件
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
解:(1)由题意得,v= 125-40=85 (m/min).
(t>0).
(2)小明星期二步行上学用了25 min,星期三骑 自行车上学用了8 min,那么他星期三上学时 的平均速度比星期二快多少?
(2)当t=25时,v=
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
(1)求y与x的函数关系式;
下列y是x的反比例函数吗?如果是,请写出对应的k值.
不是 自变量x的取值范围是
.
(1)求变量 v 和 t 之间的函数表达式;
若
是反比例函数,求m的值.
(1)求变量 v 和 t 之间的函数表达式;
即一共需要支付的工人工资是750元.
17. 小明家离学校1 000 m,每天他往返于两地之间,
(2)当x=4时,求y的值.
有时步行,有时骑车. 假设小明每天上学时的 15×5×10=750(元)
这个函数是反比例函数吗?如果是,指出比例系数,如果不是,请说明理由.
解:(1)由题意得,v=
(t>0).
(例2)已知函数y=(2m2+m-1)
是反比例函数,求 m 的值.
这个函数是反比例函数吗?如果是,指出比例系数,如果不是,请说明理由.
t= =10. 15×5×10=750(元) (2)当x=4时,求y的值.
在面积为定值的一组菱形中,当菱形的一条对角线长为4 cm时,它的另一条对角线长为12 cm.
m,高为y m的圆柱形状的水桶的体积为10 m3;③
用铁丝做一个圆,铁丝的长为x cm,做成圆的半径
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
∟
两组对边 分别平行
平行 四边形
一个角 是直角
矩形
一、矩形与平形四边形之间的关系
平行四边形 矩形
即:矩形是一种特殊的平行四边形
矩形有哪些性质?
具有平行四边形的所有性质
边:矩形的对边平行且相等
角:矩形对角相等;邻角互补 对角线:矩形对角线互相平分
∵四边形ABCD是平行四边形 又∵Aห้องสมุดไป่ตู้⊥BD ∴四边形ABCD是菱形
议一议
已知线段AC,你能用尺规作图的方法做一 个菱形ABCD,使AC为菱形的一条对角线吗?
D
A
B
C
议一议
以下是小刚的作法
你是怎么做的?你认为小刚的作法正确吗?与 同伴交流.
请尝试证明下面的定理
四条边相等的四边形是菱形 已知:如图1-5,四边形ABCD中,AB=BC=CD=DA. 求证: 四边形ABCD是菱形 证明:∵AB=CD,AD=BC ∴四边形ABCD是平行四边形 又∵AB=BC
课堂小结
1. 通过本节课的学习你有哪些收获?在今后的 学习过程中应该怎么做?
矩形的性质与判定
回忆
四边形 两组对边 分别平行 平行 四边形
平行四边形的性质有: 边: 对边平行且相等
角:对角相等;邻角互补 对角线:对角线互相平分
平行四边形是中心对称图形.
四边形
有一个角是直角的平行四边 矩形的定义: 形叫做矩形.
试一试
对角线互相垂直的平行四边形是菱形吗? 已知:如图1-3,在□ABCD中,对角线AC与 BD交于点O,AC⊥BD. 求证: □ABCD是菱形
证明:∵四边形ABCD是平行四边形 ∴OA=OC 又∵AC⊥BD ∴BD是线段AC的垂直平分线 ∴BA=BC ∴四边形ABCD是菱形(菱形定义)
定理
对角线互相垂直的平行四边形是菱形
矩形还有哪些特殊性质?
A
D
矩形的特殊性质:
B C
猜想1、矩形的四个角都是直角. 性质
性质2: 矩形的对角线相等.
已知:如图,矩形ABCD.
求证:AC=BD.
证明: ∵四边形ABCD是矩形, ∴ ∠ABC= ∠DCB,AB=CD. 在△ABC和△DCB中, AB=DC ∵ ∠ABC= ∠DCB BC=CB ∴ △ ABC≌△DCB(SAS) ∴ AC=BD.
做一做
请同学们用菱形纸片折 一折,回答下列问题:
(1)菱形是轴对称图形吗?如果是,它有几 条对称轴?对称轴之间有什么位置关系?
答:菱形是轴对称图形; 有四条对称轴; 两条对角线,两条中位线
结
论
• 菱形是轴对称图形,有两条对称轴,是菱形领条对角
线所在的直线。两条对称轴互相垂直。
• 菱形的邻边相等,对边相等,四条边都相等。
北师大版九年级上册 数 学 全册优质课件
菱形的性质与判定(一)
图片中有你熟悉的图形吗?
与左图相比较,这种平行四 边形特殊在哪里?你能给菱形 下定义吗?
有一组邻边相等的平行四边形叫做菱形。
想一想
菱形是特殊的平行四边形, 它具有一般平行四边形的所有性质。你 能列举一些这样的性质吗? 菱形的对边平行且相等,对角相等,对角 线互相平分。中心对称图形。
已知:如图1-1,在菱形ABCD中, AB=AD, 对角线AC与BD相交于点O求证: (1)AB=BC=CD=AD; (2)AC⊥BD.
证明: (1)∵四边形ABCD是菱形, ∴AB = CD,AD= BC(菱形的对边相等). 又∵AB=AD ∴AB=BC=CD=AD
(2)∵AB=AD ∴△ABD是等腰三角形 又∵四边形ABCD是菱形 ∴OB=OD(菱形的对角线互相平分) 在等腰三角形ABD中, ∵OB=OD ∴AO⊥BD 即AC⊥BD
菱形是特殊的平行四边形,它除具有平行四边形 的所有性质外,还有平行四边形所没有的特殊 性质:
定理 菱形的四条边都相等。
定理
菱形的两条对角线互相垂直。
例1
如图1-2,在菱形ABCD中,对角 线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形的 边长AB和对角线AC的长。
随堂练习
如图,在菱形ABCD中,对角 线AC与BD 相交于点O. 已知 AB=5cm,AO=4cm ,求 BD的 长.
∴四边形ABCD是菱形(菱形定义)
定理
四条边相等的四边形是菱形
∵AB=BC=CD=DA
∴四边形ABCD是菱形
做一做
你能用折纸等办法得到一个菱形吗?动手试一试.
先将一张长方形的纸对折,再对折,然后沿图中 的虚线剪下,将纸展开,就得到了一个菱形.
想一想这样做的道理!
证明:在△AOB中, ∵ AB= √5,OA=2,OB=1 ∴AB2=OA2+OB2 ∴△AOB是直角三角形,∠AOB是直角. ∴AC⊥BD ∴□ABCD是菱形 (对角线垂直的平行四边形是菱形)
小明的想法
平行四边形的不少性质定理与判定定理都是互逆 命题.受此启发,我猜想:四边相等的四边形是菱形,对
角线垂直的平行四边形是菱形.
小颖的想法
我觉得,对角线互相垂直的平行四 边形有可能是菱形.但“四边相等的平 行四边形是菱形”嘛……实际上与“邻 边相等的平行四边形是菱形”一样. 你是怎么想的?你认为小明的想法 如何?与同伴交流一下.
课堂小结
1、菱形的定义:一组邻边相等的平行四边形 是菱形。
2、菱形的性质:①菱形是轴对称图形,对称轴 是两条对角线所在的直线;②菱形的四条边都 相等;③菱形的对角线互相垂直平分。 3、菱形具有平行四边形的所有,应用菱形的 性质可以进行计算和推理。
菱形的性质与判定(二)
温故知新
1.菱形的定义? 有一组邻边相等的平行四边形叫做菱形 2.如图,已知四边形ABCD是一个平行四边形,则只需 AB=BC 补充 就可以判定它是一个菱形 . 3.如图,已知菱形ABCD的对角线AC、BD相交于点O,并 且AC=6cm,BD=8cm,则菱形ABCD的周长为 cm.
20
展示交流
思考与动手: 1.在一张纸上用尺规作图做出边长为10cm的 菱形; 2.想办法用一张长方形纸剪折出一个菱形; 3.利用长方形纸你还能想到哪些制作菱形的 方法. 请向同学们展示你的作品,全班交流.
探索新知
根据菱形的定义,邻边相等的平行 四边形是菱形.除此之外,你认为还有什 么条件可以判断一个平行四边形是菱形? 先想一想,再与同伴交流.