LTE重要知识点总结

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LTE总结

1.系统帧号(system frame number)

SFN位长为10bit,也就是取值从0-1023循环。在PBCH的MIB广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。

PBCH的40ms窗口手机可以通过盲检确定。

2.codeword-layer-rank-antenna port

codeword 是经过信道编码和速率适配以后的数据码流。在MIMO系统中,可以同时发送多个码流,所以可以有1,2甚至更多的codewords。但是在现在LTE系统中,一个TTI最多只能同时接收与发送2个TB,所以最多2个codewords;

layer和信道矩阵的“秩”(rank)是一一对应的,信道矩阵的秩是由收发天线数量的最小值决定的。例如4发2收天线,那么layer/rank = 2;4发4收天线,layer/rank=4;codeword的数量和layer的数量可能不相等,所以需要一个layer mapper把codeword流转换到layer上(串并转换);一根天线对应一个layer,经过layer mapper的数据再经过precoding矩阵对应到不同的antenna port发送。

3.层映射(layer mapping)和预编码(precoding)

层映射(layer mapping)和预编码(precoding)共同组成了LTE的MIMO部分。其中层映射是把码字(codeword)映射到层(layer),预编码是把数据由层映射到天线端口,所以预编码又可以看做是天线端口映射。

码字可以有1路也可以有两路,层可以有1,2,3,4层,天线端口可以有1个,2个和4个。当层数是3的时候,映射到4个天线端口,不存在3个天线端口的情况。

LTE中的预编码指代的是一个广义的precoding,泛指所有在OFDM之前层映射之后所进行的将层映射到天线端口的操作,既包含传统的precoding(也就是空分复用,层数)1,可以是基于码本和非码本)也包含传统意义上的发送分集(SFBC、空时码之类的)。单就协议而言,precoding包含transmit diversity和spatial multiplexing in an LTE sense,然后spatial multiplexing in LTE 包含CDD(cyclic delay diversity)和precoding(这个precoding是狭义的precoding,就是给发送向量乘一个预编码矩阵的操作)。从原理上来讲,CDD是属于分集的(因为最后一个词是diversity),但是在LTE里边没有单纯的CDD,而是将大时延CDD与狭义precoding相结合使用,所以也把CDD包含在spatial multiplexing的畴里,这一点就和广义precoding一样容易引起歧义。

另一个概念是天线端口的概念,他与传统意义上的天线是不一样的。个人对天线端口的理解就是一种导频(图谱)。引用一篇参考文献里的表述如下“antenna port defined by the presence of an antenna port specific reference signal”。而天线就是实际的天线。LTE最大支持基站4根天线,6个天线端口(p={0,1,2,3,4,5}),其中p={0,1,2,3}表示的是小区专用导频(cell-specific),分别对应4根发送天线,一般情况下,每个天线使用其中的一个导频图谱,也就是一个天线端口(我理解这也是为什么把导频叫做天线端口的原因~)。p=4时表示的是MBSFN参考信号,与MBSFN传输相关联,具体MBSFN是什么我也不知道...p=5表示的是用户终端专用导频,(UE-specific),是用来做beamforming专用的。

码字个数最多为2(由接收器的天线数决定),对应的是一个TTI中产生的传输块的个数。由于码字数量和发送天线数量不一致,需要将码字流映射到不同的发送天线上,因此需要使用层与预编码。层映射与预编码实际上是“映射码字到发送天线”过程的两个的子过程。对于LTE而言,已定义的配置包括1x1,2 x 2,3 x 2 和 4 x 2几种收发形式,层是针对码字而言的,它可以准确的说明TB流所占的的天线资源,如在2×2的分集中,一个TB流下发,该TB流被映射到两层,在2×2的复用中,两个TB流,那么每个TB流的层数为1,对于3×2的系统中,两个TB流下发,如果TB1的层数目为1,TB2的层数目为2,则说明了各个TB流的情况。层是针对TB流而言的,预编码是针对天线口而言的。

4.LTE小区搜索过程

UE使用小区搜索过程识别并获得小区下行同步,从而可以读取小区广播信息。此过程在初始接入和切换中都会用到。

为了简化小区搜索过程,同步信道总是占用可用频谱的中间63个子载波。不论小区分配了多少带宽,UE只需处理这63个子载波。

UE通过获取三个物理信号完成小区搜索。这三个信号是P-SCH信号、S-SCH信号和下行参考信号(导频)。

一个同步信道由一个P-SCH信号和一个S-SCH信号组成。同步信道每个帧发送两次。

规定义了3个P-SCH信号,使用长度为62的频域Zadoff-Chu序列。每个P-SCH信号与物理层小区标识组的一个物理层小区标识对应。S-SCH信号有168种组合,与168个物理层小区标识组对应。故在获得了P-SCH和S-SCH信号后UE可以确定当前小区标识(小区ID)。

下行参考信号用于更精确的时间同步和频率同步。

完成小区搜索后UE可获得时间/频率同步,小区ID识别,CP长度检测.

5.MAC PDU(DL-SCH和UL-SCH,除了透明MAC和随机接入响应)MAC PDU具有一个头部,零个或多个SDU,零个或多个控制单元,可能还有填充位。MAC头部与MACSDU都是可变长度的。

一个MAC PDU头部,MAC PDU头部可能有一个或多个子头部(subheader),每一个对应一个SDU、控制信息单元(control element)或者填充位。

一个普通MAC PDU子头部由六个域(R/R/E/LCID/F/L)组成,但是对于最后一个子头部、固定长度的MAC控制信息单元以及填充位对应的子头部,它们只包含四个域

(R/R/E/LCID)

图3.3.2-1: R/R/E/LCID/F/L MAC 子头部

相关文档
最新文档