实验5差动放大电路

合集下载

差动放大电路实验报告

差动放大电路实验报告

差动放大电路实验报告差动放大电路实验报告引言在电子学领域中,差动放大电路是一种常见且重要的电路结构。

它能够将输入信号放大,并且抑制共模信号,从而提高信号的传输质量。

本实验旨在通过搭建差动放大电路并进行实验验证,进一步理解差动放大电路的原理和性能。

实验器材和步骤实验所需器材包括:两个双极性晶体管、电阻、电容、信号发生器、示波器等。

首先,按照实验指导书的要求,搭建差动放大电路。

然后,接入信号发生器和示波器,调节信号发生器的频率和幅度,观察并记录示波器上的波形和幅度。

实验结果分析通过实验观察和记录的数据,我们可以得出以下结论:1. 差动放大电路能够放大输入信号:在实验中,我们发现输入信号在经过差动放大电路后,其幅度得到了明显的放大。

这表明差动放大电路具有放大输入信号的功能。

2. 差动放大电路能够抑制共模信号:共模信号是指同时作用于两个输入端的信号,如电源噪声等。

通过实验观察,我们发现共模信号在差动放大电路中几乎没有被放大,而是被有效地抑制了。

这说明差动放大电路具有抑制共模信号的能力。

3. 差动放大电路对输入信号的放大程度和频率响应有一定的限制:在实验中,我们发现差动放大电路对不同频率的输入信号有不同的放大程度。

随着频率的增加,放大程度逐渐下降。

这是由于差动放大电路中的晶体管等元件存在一定的频率响应特性。

4. 差动放大电路的性能受到元件参数的影响:在实验过程中,我们尝试了不同的电阻和电容数值,发现它们对差动放大电路的性能有一定的影响。

例如,调节电阻的数值可以改变差动放大电路的放大倍数,而调节电容的数值可以改变差动放大电路的频率响应。

结论通过本次实验,我们对差动放大电路有了更深入的理解。

差动放大电路在电子学领域中具有广泛的应用,例如在放大器、通信系统等方面。

了解差动放大电路的原理和性能对于我们设计和调试电子系统具有重要意义。

通过实验,我们验证了差动放大电路的放大和抑制特性,并且了解了其对输入信号的频率响应和元件参数的影响。

差动放大电路实验报告

差动放大电路实验报告

差动放大电路实验报告实验目的,通过对差动放大电路的实验,掌握差动放大电路的基本原理和特性,加深对放大电路的理解。

实验原理,差动放大电路由两个共集极放大器组成,其中一个放大器的输出与输入信号相位相同,另一个放大器的输出与输入信号相位相反。

当输入信号作用在两个放大器的基极上时,输出信号为两个放大器输出信号的差值,即差动输出。

差动放大电路对共模信号具有很好的抑制作用,对差模信号有很好的放大作用。

实验仪器和器材,示波器、信号发生器、电压表、电阻、电容、集成运放等。

实验步骤:1. 按照实验电路图连接好差动放大电路的电路;2. 调节信号发生器产生正弦波信号,并输入到差动放大电路的输入端;3. 通过示波器观察差动放大电路的输入信号和输出信号的波形,并记录数据;4. 调节信号频率,观察输入信号和输出信号的变化;5. 测量差动放大电路的放大倍数和共模抑制比。

实验结果分析:通过实验观察和数据记录,我们得到了差动放大电路的输入信号和输出信号的波形,并且测量了放大倍数和共模抑制比。

实验结果表明,差动放大电路对差模信号有很好的放大作用,对共模信号有很好的抑制作用。

随着信号频率的增加,放大倍数和共模抑制比会有所变化,但整体特性基本保持稳定。

实验结论:通过本次实验,我们深入了解了差动放大电路的工作原理和特性,掌握了差动放大电路的实验操作方法,并获得了实验数据。

差动放大电路在电子电路中具有重要的应用价值,能够有效地抑制干扰信号,提高信号的传输质量。

因此,差动放大电路在实际应用中具有广泛的应用前景。

实验中遇到的问题及解决方法:在实验过程中,我们遇到了一些问题,如信号发生器频率调节不准确、示波器波形不稳定等。

我们通过仔细调节仪器参数、重新连接电路等方法,最终解决了这些问题,确保了实验数据的准确性和可靠性。

总结:差动放大电路是一种重要的放大电路结构,具有很好的信号处理特性。

通过本次实验,我们对差动放大电路有了更深入的了解,为今后的学习和工作打下了良好的基础。

实验五 集成运算放大器的基本运算电路(2)

实验五 集成运算放大器的基本运算电路(2)

实验五 集成运算放大器的基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、正确理解运算电路中各组件参数之间的关系和“虚短”、“虚断”、“虚地”的概念。

二、设计要求1、设计反相比例运算电路,要求|A uf |=10,R i ≥10K Ω,确定外接电阻组件的值。

2、设计同相比例运算电路,要求|A uf |=11,确定外接电阻组件值。

3、设计加法运算电路,满足U 0=-(10U i1+5U i2)的运算关系。

4、设计差动放大电路(减法器),要求差模增益为10,R i >40K Ω。

5、应用Multisim8进行仿真,然后在实验设备上实现。

三、实验原理1、理想运算放大器特性集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的元器件组成负反馈电路时,可以实现比例、加法、减法、积分、微分等模拟运算电路。

理想运放,是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽f BW =∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。

即U +≈U -,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

2、基本运算电路 (1)反相比例运算电路电路如图2.5.1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1//R F 。

图2.5.1反相比例运算电路图2.5.2反相加法运算电路(2) 反相加法电路i 1F O U R R U -=电路如图2.5.2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-=R 3=R 1//R 2//R F (3)同相比例运算电路图2.5.3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U +=R 2=R 1//R F 当R 1→∞时,U O =U i ,即得到如图2.5.3(b)所示的电压跟随器。

差动放大电路实验报告

差动放大电路实验报告

差动放大电路实验报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】实验五差动放大电路(本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~)一、实验目的1、加深对差动放大器性能及特点的理解2、学习差动放大器主要性能指标的测试方法二、实验原理R P 用来调节T1、T2管的静态工作点, Vi=0时, VO=0。

RE为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。

差分放大器实验电路图三、实验设备与器件1、±12V直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。

四、实验内容1、典型差动放大器性能测试开关K拨向左边构成典型差动放大器。

1) 测量静态工作点①调节放大器零点信号源不接入。

将放大器输入端A、B与地短接,接通±12V直流电源,用直流电压表测量输出电压VO ,调节调零电位器RP,使VO=0。

②测量静态工作点再记下下表。

2) 测量差模电压放大倍数(须调节直流电压源Ui1= ,Ui2=理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点:E3BEEE CC 212E3C3R V )V (V R R R I I -++≈≈= I c Q =Ic 3/2=, Ib Q =Ic/β=100=uA U CEQ =Vcc-IcRc+U BEQ =*10+=双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨)Pbe B C iOd β)R (121r R βR △V △V A +++-===Ac 双 =0.单端输出:d i C1d1A 21△V △V A ===, d i C2d2A 21△V △V A -=== (参考答案中的Re=10K ,而Re 等效为恒流源电阻,理想状态下无穷大,因此上式结果应为0.读者自己改一下)实测计算:(注:本实验相对误差不做数据处理要求,下面给出的仅供参考比对数据) 静态工作点:Ic 1Q =(Vcc-Uc1)/Rc1=/10mA= Ic 2Q = Ib 1Q = Ic Q/β=100mA= Ib 2Q =U C1E1Q =U C1-U E1==U C2E2Q =差模放大倍数:(Ui=Ui1-Ui2=+ (注:放大倍数在实测计算时,正负值因数据而异~!)Ad1=(Uc1差模-Uc1)/(Ui-0)=Ad2=(Uc2差模-Uc2)/(Ui-0)=Ad双=Uo双/Ui==相对误差计算 (||Ad理|-|Ad实||)/|Ad理|r d1=| r d2=| r d双=%共模放大倍数:(Ui=+Ac1=(Uc1共模-Uc1)/Ui=共模-Uc2)/Ui=双=Uc双/Ui== (Ui=时同理)共模抑制比:CMRR=|Ad双/Ac双|=||=4.单端输入(注:上面实验中差模与共模接法均为双端输入,详见最后分析)=Uc2)Ui=+时Ac1=时Ac1=正弦信号时(注:部分同学的输入电压可能为500mV,处理时请注意)Ac1=分析部分:(注:只供理解,不做报告要求)Vi、Vo、Vc1和Vc2的相位关系其中Vi、Vc1同相,Vi、Vc2反相,Vc1、Vc2反相。

差动放大电路实验报告

差动放大电路实验报告

差动放大电路实验报告一、实验目的和背景差动放大电路作为一种常见的电路结构,在许多电子设备中都有广泛应用。

其主要功能是将输入信号放大,并且在信号放大过程中抑制了共模噪声的干扰。

本实验旨在通过搭建差动放大电路并对其进行测试,进一步了解其原理和性能。

二、实验器材与步骤1. 实验器材本次实验采用的实验器材包括:操作示波器、函数发生器、功能信号发生器、电阻、电容。

2. 实验步骤(1) 将差动放大电路按照给定的电路图连接好,并注意正确的电路连接。

(2) 将函数发生器的正弦波输出接入差动放大电路的输入端,调节函数发生器的输出信号频率和幅度。

(3) 通过示波器观察差动放大电路输入与输出的波形,并记录相应的数值。

(4) 对不同频率和幅度的输入信号进行测试,并观察测试结果的差异。

三、实验结果与分析在本实验中,我搭建了差动放大电路,并通过函数发生器输入不同频率和幅度的信号进行测试。

通过观察示波器上的波形和记录相应的数值,可以得到以下结果和分析:1. 输入信号与输出信号的关系:通过调节函数发生器的频率和幅度,可以观察到差动放大电路正确放大了输入信号,并产生了相应的输出信号。

而且,输出信号的幅度随着输入信号的幅度增大而增大,说明差动放大电路的放大增益较高。

2. 噪声抑制能力:差动放大电路的一个重要特性是抑制共模噪声。

在实验过程中,我引入了一些干扰信号,如电源纹波和环境的电磁干扰等,观察到差动放大电路能够有效地抑制这些共模噪声,并输出较为干净的信号。

3. 频率响应特性:通过改变输入信号的频率,可以观察到差动放大电路的频率响应特性。

实验结果表明,差动放大电路在较低频率时的放大增益较高,但随着频率增加,放大增益逐渐降低。

这是由于差动放大电路的内部结构和元器件参数导致的。

4. 幅度非线性:在一些高幅度的输入信号条件下,观察到差动放大电路存在一定的非线性现象。

这可能是由于电路中的元件饱和或者过载引起的。

在实际应用中,需要根据具体要求对差动放大电路进行调整,以优化其性能。

差动放大电路实验报告

差动放大电路实验报告

一、实验目的1. 理解差动放大电路的工作原理和特性。

2. 掌握差动放大电路的组成、电路图和基本分析方法。

3. 学习差动放大电路的静态工作点调整、差模和共模放大倍数的测量方法。

4. 分析差动放大电路的共模抑制比(CMRR)和输入阻抗等性能指标。

二、实验原理差动放大电路由两个性能相同的基本共射放大电路组成,具有抑制共模信号、提高差模信号放大倍数的特点。

差动放大电路的输出电压为两个输入电压之差,即差模信号,而共模信号则被抑制。

本实验采用长尾式差动放大电路,电路结构简单,易于分析。

三、实验仪器与设备1. 模拟电路实验箱2. 数字示波器3. 数字万用表4. 信号发生器5. 电阻、电容、晶体管等元器件四、实验步骤1. 实验电路搭建:按照实验指导书要求,搭建长尾式差动放大电路,包括晶体管、电阻、电容等元器件。

2. 静态工作点调整:调整电路中的偏置电阻,使晶体管工作在放大区。

使用数字万用表测量晶体管的静态电流和静态电压,调整偏置电阻,使静态电流和静态电压符合设计要求。

3. 测量差模电压放大倍数:将信号发生器输出信号接入差动放大电路的输入端,调整信号幅度和频率。

使用数字示波器观察输出信号,测量差模电压放大倍数。

4. 测量共模电压放大倍数:将信号发生器输出共模信号接入差动放大电路的输入端,调整信号幅度和频率。

使用数字示波器观察输出信号,测量共模电压放大倍数。

5. 测量共模抑制比(CMRR):将信号发生器输出差模信号和共模信号同时接入差动放大电路的输入端,调整信号幅度和频率。

使用数字示波器观察输出信号,计算CMRR。

6. 分析输入阻抗:根据实验数据,分析差动放大电路的输入阻抗。

五、实验结果与分析1. 静态工作点调整:经过调整,晶体管工作在放大区,静态电流和静态电压符合设计要求。

2. 差模电压放大倍数:实验测得的差模电压放大倍数为20dB,与理论值相符。

3. 共模电压放大倍数:实验测得的共模电压放大倍数为2dB,与理论值相符。

差动放大电路实验

差动放大电路实验

6、分析与讨论 ①可调电阻RP有什么作用?
②用恒流源代替固定电阻后KCMR有何 区别?为什么?
பைடு நூலகம்
祝每一位同学获得成功!
差动放大电路实验
葛汝明
一、实验的目的
1、加深对差动放大器性能及特点的 理解; 2、学习差动放大器主要性能指标的 测试方法。
二、 实验设备与器件
1、+12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、三极管3DG12 7、电阻器、电容器若干。
三、实验原理
差动放大器实验电路图
典型差动放大电路 单端输入 共模输入 Vi VC1(V) VC2(V) / / / / Kcmr =││ 100mV 1V
具有恒流源差动放大电路 单端输入 共模输入 100mV 1V
/ / / /
2、具有恒流源的差动放大电路性能测试 将实验电路图中的开关K拨向右边,构成具有恒流源的差 动放大电路。测量并记录数据也一同填入上表。 3、画出Vi、Vo、Vc1和Vc2的相位关系并用文字说明
四、实验内容
1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点 信号源不接入。将放大器输入端A、B与地短接, 接通±12V直流电源,用直流电压表测量输出电压 VO,调节调零电位器RP,使VO=0。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极 电位及射极电阻RE两端电压VRE,
并使输出旋钮旋至零, 用示波器监视输出端。 接通±12V直流电源,逐渐增大输入电压Vi(约 100mV),在输出波形无失真的情况下,用交流 毫伏表测 Vi,VC1,VC2,并观察Vi,VC1,VC2 之间的相位关系及VRE随Vi改变而变化的情况。 3) 测量共模电压放大倍数 将放大器A、B短接,信号源接A端与地之间,构 成共模输入方式, 调节输入信号f=1kHz,Vi=1V, 在输出电压无失真的情况下,测量VC1, VC2之 值记入下表,并观察Vi, VC1, VC2之间的相位 关系及VRE随Vi改变而变化的情况。

差动放大电路_实验报告

差动放大电路_实验报告

实验五差动放大电路(本实验数据与数据处理由果冻提供 ,仅供参考,请勿传阅•谢谢~)一、 实验目的1、 加深对差动放大器性能及特点的理解2、 学习差动放大器主要性能指标的测试方法二、 实验原理R 用来调节T i 、T 2管的静态工作点, V i = 0时,V °= 0。

R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。

差分放大器实验电路图四、实验内容1、典型差动放大器性能测试开关K 拨向左边构成典型差动放大器。

1)测量静态工作点J 13K o-12V三、实验设备与器件1、土 12V 直流电源 3、双踪示波器5、直流电压表2、函数信号发生器 4、交流毫伏表6、晶体三极管3DG & 3,T i 、T 2管特性参数一致,或9011 X 3,电阻器、电容器若干。

Uil=+fl. IVA □ ---------①调节放大器零点信号源不接入。

将放大器输入端A、B与地短接,接通土12V直流电源,用直流电压表测量输出电压V O,调节调零电位器鸟,使V O= 0。

②测量静态工作点2)测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V)理论计算:(r be=3K . =100. Rp=330 Q)静态工作点:IR2I -—V CC V EE|) V BE IR1 IR 2C3 I E3 =1.153mAR E3I cc=l C3/ 2=0.577mA, I b c=l c/ =0.577/100=5.77 u AU CEQ=V Cc- I c F C+L BEQ=l2-0.577*10+0.7=6.93V双端输出:(注:一般放大倍数A的下标d表示差模,下标c表示共模,注意分辨)A d △VR B r be 2=-33.71 (3 )R p4.单端输入(注:上面实验中差模与共模接法均为双端输入 ,详见最后分析)单端输出:共模抑制比CMRR=|Ac 双/Ac 双|=|37.3/(-0.2)|=186.5A c 双=0.△V ci△V】A d =-16.86 ,2(参考答案中的 Re=10K ,而1 R 忑(1 3 )(2R 2R )Re 等效为恒流源电阻,理想状态下无穷大2R0.5因此上式结果应为0.读者自己改一下)实测计算:(注:本实验相对误差不做数据处理F 面给出的仅供参考比对数据)静态工作点Ic 1Q =(Vcc-Uc1)/Rc1=(12-6.29)/10mA=0.571mA Ic 2Q =0.569mA Ib 1Q = I C Q / =0.571/100mA=5.71uA lb 2Q =5.69uA U31E1Q=U31-U E1=6.29-(-0.61)=6.90VUS 2E2Q=6.92V差模放大倍数:(Ui=Ui1-Ui2=+0.2V)( 注:放大倍数在实测计算时,正负值因数据而异~!)Ad1=(Uc1 差模-Uc1)/(Ui-0)=(10.08-6.29)/(0.2-0)=18.95 Ad2=(Uc2 差模-Uc2)/(Ui-0)=-18.80 Ad 双=Uo 双/ Ui=7.46/0.2=37.3相对误差计算(||Ad 理卜|Ad 实||)/|Ad 理|r d1=|16.86-18.95|/16.86=12.4%r d2=|16.86-18.80|/16.86=10.9%r d 双=10.6%共模放大倍数:(Ui=+0.1V)Ac1=(Uc1 共模-Uc1)/Ui=(6.29-6.29)/0.1=0A C 2=(U C 2 共模-Uc2)/Ui=(6.31-6.31)/0.1=0Ac 双=Uc 双 /Ui=-0.02/0.仁-0.2(Ui=-0.1V 时同理)舟 A d =16.86(正弦信号的= )Ui=+0.1V 时Ac1=(4.76-6.29)/0.1=-15.3Ac2=(7.84-6.31)/0.1=15.3Ao=(-3.70/0.1)=-37.0Ui=-0.1 时Ac1=(8.13-6.29)/(-0.1)=-18.4Ac2=(4.47-6.31)/(-0.1)=18.4Ao=3.64/(-0.1)=-36.4正弦信号时(注:部分同学的输入电压可能为500mV处理时请注意)Ac1=(0.32-6.29)/0.05=-119.4Ac2=(0.32-6.31)/0.05=-119.8分析部分:(注:只供理解,不做报告要求)Vi、Vo、Vc1和Vc2的相位关系其中Vi、Vc1同相,Vi、Vc2反相,Vc1、Vc2反相。

差动放大器实验报告

差动放大器实验报告

差动放大器实验报告实验报告:差动放大器的原理与应用一、实验目的1.了解差动放大器的基本原理;2.学习差动放大器的性能参数评价与测量方法;3.熟悉差动放大器的应用。

二、实验原理1.差动放大器的基本电路为共射器差动放大电路。

它由两个相同的共射放大器和一个共同的负载电阻组成。

两个BJT管分别驱动同一负载电阻,其发射极相互连接。

通过负载电阻可以得到差模和共模信号。

其中,差模信号为两个输入信号之差,而共模信号为两个输入信号之和。

2.差动放大器的性能参数主要包括共模抑制比、增益、输入电阻和输出电阻。

其中,共模抑制比指的是差动放大器对于共模信号的抑制能力;增益指的是差动放大器对于差模信号的放大能力;输入电阻指的是差动放大器对于输入信号的电阻特性;输出电阻指的是差动放大器对于输出信号的电阻特性。

三、实验步骤1.接线:按照电路图将差动放大器电路搭建起来。

2.测量差动放大器的直流工作点:使用万用表测量差动放大器电路的直流电压,包括两个BJT管的发射极电压、基极电压和集电极电压。

3.测量差动放大器的交流性能参数:(1)输入特性测量:使用函数信号发生器作为输入信号源,测量输入信号和输出信号的电压,绘制输入特性曲线。

(2)共模抑制比测量:使用函数信号发生器分别给两个输入端口施加共模信号和差模信号,测量输出信号的电压,计算共模抑制比。

(3)增益测量:使用函数信号发生器分别给两个输入端口施加差模信号,测量输出信号的电压,计算增益。

(4)输入、输出电阻的测量:使用函数信号发生器施加信号,通过分析输入、输出端口的电流和电压变化,测量输入、输出电阻。

四、实验结果与分析1.直流工作点测量结果如下表所示:左端BJT管,发射极电压,基极电压,集电极电压:----------:,:----------:,:--------:,:--------:Q1,1.23V,0.72V,6.68VQ2,1.30V,0.75V,6.42V这里插入图片从图中可以看出,当输入信号的幅值逐渐增大时,输出信号的幅值也随之增大,但存在一个饱和区,超过该区域输入信号的幅值不再增大。

模电实验五差分式放大电路实验报告

模电实验五差分式放大电路实验报告

模电实验五差分式放大电路实验报告一、实验目的1.学习差分输入放大电路的基本原理;2.掌握差分输入放大电路的工作特性以及参数计算方法;3.了解差分输入放大电路的应用场景。

二、实验仪器和器件1.示波器;2.信号发生器;3.功率放大器;4.电阻箱;5.电容;6.芯片等。

三、实验原理差分式放大电路是一种常见的放大电路,其输入端分别连接两个输入信号,输出端是两个输入信号的差值经过放大后的输出信号。

差分输入放大电路主要由差动输入级、差动放大级和输出级组成。

差动输入级是差分放大电路的核心部分,一般由一个差动对组成。

差动对由两个晶体管组成,它们的集电极或漏极通过电流源连接在一起。

其中一个晶体管的基极或栅极输入信号,另一个晶体管的基极或栅极输入其负反馈信号。

这样,当输入信号变化时,两个晶体管的工作状态会相应改变,产生一个差电流,从而使输出电压发生变化,从而实现差动放大。

差动放大级主要负责将差动输入信号放大,使得输入信号的微小变化可以在输出端得到放大。

在差动放大级中,使用了共射或共源放大电路,将差动对的差分电流经过共射或共源放大,增加输出信号的幅度。

输出级是差分放大电路的最后一级,其主要功能是将差动放大电路的输出信号变为单端输出信号。

在输出级中,可以通过改变集电阻或漏极负载来实现不同的放大增益和输出阻抗。

四、实验内容1.搭建差分输入放大电路;2.测量并记录输入信号和输出信号;3.分析实验数据,计算电路的放大增益和输入输出阻抗;4.探索差分输入放大电路在信号处理中的应用。

五、实验步骤1.搭建差分输入放大电路,调整电阻和电容的数值以及芯片的型号;2.连接示波器,设置输入信号的频率、幅度和波形;3.测量输入信号和输出信号;4.记录实验数据并计算电路的放大增益和输入输出阻抗;5.根据实验结果分析差分输入放大电路的性能;6.进一步探索差分输入放大电路在信号处理中的应用。

六、实验结果分析根据实验测量得到的数据,可以计算差分输入放大电路的放大增益和输入输出阻抗。

差动放大电路_实验报告

差动放大电路_实验报告

一、实验目的1. 理解差动放大电路的工作原理及特点。

2. 掌握差动放大电路的性能指标测试方法。

3. 分析差动放大电路在抑制共模信号和放大差模信号方面的作用。

4. 通过实验验证理论分析的正确性。

二、实验原理差动放大电路由两个结构相同、参数对称的放大电路组成,分别称为同相输入端和反相输入端。

当输入信号同时作用于两个输入端时,电路能够有效抑制共模信号,放大差模信号。

三、实验器材1. 模拟电路实验箱2. 实验线路板3. 万用电表4. 信号发生器5. 示波器6. 线路连接线四、实验步骤1. 搭建电路:根据实验原理图,在实验线路板上搭建差动放大电路。

2. 静态测试:使用万用电表测量电路的静态工作点,确保电路正常工作。

3. 差模信号测试:向电路输入差模信号,使用示波器观察输出波形,并记录数据。

4. 共模信号测试:向电路输入共模信号,使用示波器观察输出波形,并记录数据。

5. 性能指标测试:根据测试数据,计算差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标。

五、实验结果与分析1. 静态测试结果:电路静态工作点稳定,符合设计要求。

2. 差模信号测试结果:输入差模信号时,输出波形清晰,差模电压放大倍数符合理论计算值。

3. 共模信号测试结果:输入共模信号时,输出波形基本消失,说明电路对共模信号抑制效果良好。

4. 性能指标测试结果:差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标均达到预期目标。

六、实验结论1. 差动放大电路能够有效抑制共模信号,放大差模信号,具有较好的线性度和稳定性。

2. 通过实验验证了理论分析的正确性,加深了对差动放大电路的理解。

3. 实验过程中,掌握了差动放大电路的搭建、测试和性能指标计算方法。

七、实验注意事项1. 实验过程中,注意电路的连接和调整,确保电路正常工作。

2. 测试数据要准确记录,以便后续分析。

3. 注意安全,避免触电等事故发生。

八、实验拓展1. 研究不同类型的差动放大电路,如具有恒流源的差动放大电路、差分放大电路的频率响应等。

实验五 差动放大电路

实验五 差动放大电路

实验五差动放大电路
一、实验目的
1、熟悉差动放大器的工作原理。

2、掌握差动放大器的基本测试方法。

二、实验仪器
1、双踪示波器
2、数字万用表
3、信号源
三、实验内容及步骤
实验电路如图5-1所示
1、测量静态工作点。

(1)调零
将Vi1和Vi2输入端短路并接地,接通直流电源,调节电位器Rpo,使双端(AB)输出电压V0=0。

2、测量静态工作点。

测量V1、V2、V3各极对地电压填入表5、1中
表5、1数据记录表14
Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 对地
电压
测量
值(V)
2、测量差模电压放大倍数。

在输入端加入直流信号Vid=+,按表5、2要求测量并记录,由测量值数据算出单端和双端输出的电压放大倍数。

注意先调好直流信号的OUT1和OUT2,使其分别为+和,再接入Vi1和Vi2。

3、测量共模电压放大倍数
将输入Vi、Vi2短接,接到信号源的输入端,信号源另一端接地。

直流信号分先后接OUT1和OUT2,分别测量并填入表。

由测量数据算出单端和双端输出的电压放大倍数。

进一步算出共模抑制比:
CMRR=A d/A C
表数据记录表15
输入信号Vi测量及计算值
差模输入共模输入共模抑制比测量值计算值测量值计算值计算值
CMRR
+
正弦信号(50mv、1KHZ)。

实验5差动放大电路.

实验5差动放大电路.

实验5差动放⼤电路.专业班次 18电⼦组别题⽬差动放⼤电路姓名(学号)⽇期 19.11⼀、实验⽬的1、熟悉差动放⼤器⼯作原理2、掌握差动放⼤器动态指标的测试⽅法⼆、实验设备双踪⽰波器⼀台数字万⽤表⼀台信号源⼀台三、注意事项1.接线时应注意,为防⽌外界⼲扰,各仪器的公共接地端应连接在⼀起,称共地。

信号源的引线通常⽤屏蔽线或专⽤电缆线,⽰波器接线使⽤专⽤电缆线.2.实验涉及多个三极管,接线数⽬较多,接线过程应注意先接好其中⼀个,再接另⼀个,防⽌因线多⽽接线错误。

3.接上负载以后再调整输⼊Vi,确保输⼊为15mV;电压表的量程要适当选择。

4.在单端输⼊的时候,要注意输⼊交流信号时,⽤⽰波器监视VC1、VC2波形,若有失真现象,可减⼩输⼊电压值,使得VC1、VC2都不失真为⽌。

5.计算单端输出Ad和Ac时,单端输出电压要减去静态⼯作点电压。

四、实验原理及计算差动放⼤电路原理图1.在测量静态⼯作点时应将信号源短接,然后⽤数字万⽤表测量各⼯作点的电压2.测量差模电压放⼤倍数:在输⼊端加⼊电流Vid=+15mV,-15mV,直流电压信号⾃取模拟试验箱的专业班次 18电⼦组别题⽬差动放⼤电路姓名(学号)⽇期 19.11+5~-5V 的直流可调信号,然后⽤数字万⽤表测出所需电压值3. 测量共模电压放⼤倍数:将输⼊端 Vi1,Vi2短接,先后输⼊+15mV 和-15mV 的信号,分别进⾏测量4. 单端输⼊的差动放⼤电路:将Vi2接地,从Vi1端输⼊直流信号,Vi=+-30mV ,测量出单端输出由原理图可以得出下⾯静态值:根据书本上的理论知识可以有⼀下结论与⼩信号模型电路图(⾮本原理图)双端输出:i V V A 0d =单端输出:d 2 d 12121A A A A d d -== 差模输⼊:21i i id V V V -= 共模输⼊:221i ic i V V V +=共模抑制⽐:||cdU U CMR A A K =五、实验仿真1、调零及测量静态⼯作点专业班次 18电⼦组别题⽬差动放⼤电路姓名(学号)⽇期 19.112、测量差模电压放⼤倍数专业班次 18电⼦组别题⽬差动放⼤电路姓名(学号)⽇期 19.113、测量共模电压放⼤倍数专业班次 18电⼦组别题⽬差动放⼤电路姓名(学号)⽇期 19.114、单端输⼊的差动放⼤电路实验专业班次 18电⼦组别题⽬差动放⼤电路姓名(学号)⽇期 19.11六、实验关键问题1.进⾏实验前,要对差分放⼤电路进⾏预习,了解各种参数的推导过程及原理。

差动放大电路实验原理

差动放大电路实验原理

差动放大电路实验原理差动放大电路是一种常见的电子电路,主要用于放大微弱信号,并在放大过程中实现信号的抑制和抵消。

差动放大电路的实验原理可以通过以下几个方面进行阐述。

一、差动放大电路的基本原理差动放大电路由两个输入端和一个输出端组成。

其中,两个输入端分别连接信号源和参考源,输出端连接负载。

差动放大电路的工作原理是通过对两个输入端的信号进行差分放大,从而实现对输入信号的放大和抑制。

二、差动放大器的工作模式差动放大电路有两种工作模式:共模模式和差模模式。

在共模模式下,两个输入信号相同且同相,此时差动放大电路对共模信号进行抑制,只放大差模信号。

在差模模式下,两个输入信号有差异,此时差动放大电路对差模信号进行放大。

三、差动放大电路的特点1. 高增益:差动放大电路可以实现高增益放大,对微弱信号具有很好的放大效果。

2. 抗干扰能力强:差动放大电路可以通过对输入信号的差分放大来抵消共模信号的干扰,提高系统的抗干扰能力。

3. 信号抑制效果好:差动放大电路可以实现对共模信号的抑制,减少对输出信号的影响。

4. 输入阻抗高:差动放大电路的输入阻抗较高,对输入信号源的影响较小。

5. 输出阻抗低:差动放大电路的输出阻抗较低,可以驱动负载。

四、差动放大电路的应用领域差动放大电路广泛应用于各种电子设备中,如功放、音频放大器、差分信号传输等。

在这些应用中,差动放大电路能够提供高品质的音频放大效果,并保持信号的稳定和纯净。

五、差动放大电路的实验过程1. 搭建电路:按照实验要求搭建差动放大电路的原型板,连接好信号源、参考源和负载。

2. 调节电路参数:根据实验需要,调节差动放大电路的电阻、电容等参数,使其符合实验要求。

3. 输入信号:给差动放大电路的输入端接入信号源,通过调节信号源的电平和频率,观察输出端的信号变化。

4. 测量输出信号:使用示波器等测试设备,测量差动放大电路输出端的信号,记录输出信号的幅值和频率。

5. 分析实验结果:根据实验测量数据,分析差动放大电路的放大倍数、频率响应等性能指标,评估差动放大电路的实验效果。

差动放大电路实验报告

差动放大电路实验报告

差动放大电路实验报告差动放大电路实验报告引言在电子技术领域,差动放大电路是一种常见且重要的电路。

它能够将输入信号进行放大,并且具有抑制共模干扰的能力。

本实验旨在通过搭建差动放大电路并进行实际测量,深入了解差动放大电路的工作原理和性能特点。

一、实验原理差动放大电路由两个输入端和一个输出端组成。

其基本原理是利用差模放大器的特性,将输入信号通过差动放大器进行放大,然后输出到负载上。

差动放大电路的核心是差动放大器,它由两个共射放大器或共基放大器构成。

差动放大器的输入信号通过两个输入端分别输入,然后经过放大后输出到负载上。

二、实验步骤1. 搭建差动放大电路首先,根据实验要求,选择适当的电阻和电容,搭建差动放大电路。

将两个共射放大器或共基放大器连接起来,形成一个差动放大器。

确保电路连接正确,无误后进行下一步。

2. 连接输入信号源和负载将输入信号源连接到差动放大电路的输入端,可以使用函数发生器产生不同频率和幅度的信号。

然后,将负载连接到差动放大电路的输出端,可以使用示波器来观察输出信号的波形。

3. 测量输入和输出信号使用万用表或示波器测量输入信号和输出信号的电压。

分别记录不同输入信号条件下的电压值,并进行比较和分析。

4. 分析差动放大电路的性能特点根据实验数据,分析差动放大电路的增益、输入阻抗、输出阻抗等性能特点。

通过对比不同输入信号条件下的输出信号,可以了解差动放大电路的放大效果和抗干扰能力。

三、实验结果与讨论根据实际测量数据,我们可以得出以下结论:1. 差动放大电路的增益随着输入信号的频率变化而变化。

在低频情况下,增益较高,能够有效放大输入信号。

然而,在高频情况下,增益会下降,可能会引入一些噪声。

2. 差动放大电路具有较高的输入阻抗和输出阻抗。

输入阻抗决定了电路对输入信号的接收能力,输出阻抗则决定了电路对负载的驱动能力。

3. 差动放大电路能够有效抑制共模干扰。

共模干扰是指两个输入端同时受到的干扰信号。

差动放大电路通过将共模信号进行抵消,从而提高了信号的纯度和可靠性。

差动放大电路_实验报告

差动放大电路_实验报告

差动放大电路_实验报告差动放大电路是一种常用的电子电路,用于放大信号并提高音频、视频和其他信号的传输质量。

本实验旨在通过搭建差动放大电路并进行测试,深入了解差动放大电路的原理和性能。

本实验报告将分为引言、实验目的、实验原理、实验装置与实验步骤、实验结果与分析、实验总结等几个部分进行说明。

引言:差动放大电路是一种基础电子电路,广泛应用于音频放大器、功率放大器等领域。

差动放大电路的特点是具有较高的共模抑制比,能够避免共模噪声对信号传输的干扰。

本次实验将通过搭建差动放大电路并进行测试,从而深入了解差动放大电路的工作原理和性能。

实验目的:1.了解差动放大电路的原理和特点。

2.掌握差动放大电路的搭建和测试方法。

3.测试差动放大电路的性能指标,如放大倍数、共模抑制比等。

4.分析差动放大电路的工作原理和性能。

实验原理:差动放大电路由差动放大器、电源、输入和输出端口等组成。

差动放大器是由两个放大器的输出端连接在一起,并以共源极管引入共模信号的。

在正常工作状态下,差动放大电路对差模信号有很高的增益放大作用,对共模信号有较低的放大作用。

实验装置与实验步骤:实验装置包括信号源、CATV信号发生器、示波器和电源等。

实验步骤如下:1.将差动放大电路搭建在面包板上,按照电路图连接好电源、输入和输出端口。

2.设置信号源为正弦波信号,通过输入端口输入信号。

3.设置示波器连接输出端口,观察输出信号波形。

4.调节信号源的频率和幅度,观察输出信号的变化。

5.测量和记录不同频率下的输出电压和输入电压,计算差动放大电路的放大倍数。

6.测量和记录共模输入电压和差模输入电压,计算差动放大电路的共模抑制比。

实验结果与分析:通过实验测量和计算,得到差动放大电路在不同频率下的放大倍数和共模抑制比的数据。

通过分析数据,可以得出差动放大电路在不同频率下的放大性能和抑制噪声的能力。

同时,可以对差动放大电路的工作原理进行进一步的探究。

实验总结:本实验通过搭建差动放大电路并进行测试,深入了解差动放大电路的原理和性能。

差动放大电路 实验报告

差动放大电路 实验报告

差动放大电路实验报告差动放大电路实验报告一、引言差动放大电路是电子学中常见的一种电路结构,它可以用于信号放大、滤波、抑制噪声等应用。

本实验旨在通过搭建差动放大电路,了解其基本原理和性能特点,并通过实际测量验证理论分析。

二、实验原理差动放大电路由两个共射放大器组成,其输入端分别连接两个输入信号源,输出端连接负载电阻。

两个放大器的输出信号通过电阻网络相互耦合,形成差分输出。

差动放大电路的原理基于差分放大器的工作原理,即通过差分输入信号的放大,实现对差分输出信号的放大。

三、实验步骤1. 搭建差动放大电路根据实验电路图,依次连接电源、信号源、放大器和负载电阻。

注意正确接线,避免短路或接反。

2. 调节电源电压根据放大器的工作要求,调节电源电压,使其稳定在适当的工作范围。

通常,差动放大电路的电源电压为正负12V。

3. 设置输入信号连接信号源,设置输入信号的频率和幅度。

可以选择不同的频率和幅度进行测试,以观察差动放大电路的响应情况。

4. 测量输出信号连接示波器,测量输出信号的波形和幅度。

可以通过调节输入信号的幅度和频率,观察输出信号的变化情况。

四、实验结果与分析通过实际测量,我们得到了差动放大电路的输出波形和幅度。

根据测量结果,我们可以得出以下几点结论:1. 差动放大电路具有良好的共模抑制比。

在理想情况下,差动放大电路输出信号只包含差分信号,而共模信号被完全抑制。

实际测量中,我们可以观察到输出信号中共模信号的幅度非常小,说明差动放大电路具有较好的共模抑制能力。

2. 差动放大电路的增益与输入信号的差分模式有关。

在差分模式下,差动放大电路的增益较高,可以实现信号的有效放大。

而在共模模式下,差动放大电路的增益较低,对信号的放大效果较差。

因此,在实际应用中,我们需要尽可能提高差动信号的幅度,以获得更好的放大效果。

3. 差动放大电路的频率响应较好。

在实验中,我们可以通过改变输入信号的频率,观察输出信号的变化情况。

实验结果显示,差动放大电路在较宽的频率范围内都能保持较好的放大效果,没有明显的频率衰减。

差动放大电路

差动放大电路

差动放大电路一、概述差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。

特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。

基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。

设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。

二、基本电路图差动放大电路的基本电路图上图为差动放大电路的基本电路图[1]三、差动放大电路的工作原理1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。

它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。

温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。

它的放大作用(输入信号有两种类型)(1)共模信号及共模电压的放大倍数 Auc共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。

如图(2)所示共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。

因此:。

于是差动电路对称时,对共模信号的抑制能力强字串3(2)差模信号及差模电压放大倍数 Aud差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。

如图(3)所示差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此:此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五差动放大电路
201408080127 潘松
201408080131 张崇琪
一、实验目的
1. 掌握基本差动放大器的工作原理、工作点的调试和主要性能指标的测试。

2. 熟悉恒流源差动放大器的工作原理及主要性能指标的测试。

二、实验设备与器件
1.双踪示波器 1台
2.数字万用表 1台
3.函数信号发生器 1台
4.模拟电路实验箱 1台
三、实验原理
图5-1是差动放大器的基本结构。

它是一个直接耦合放大器,理想的差动放大器只对差模信号进行放大,对共模信号进行抑制,因而它具有抑制零点漂移、抗干扰和抑制共模信号的良好作用。

它由两个元件参数相同的基本共射放大电路组成。

RW1为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

图5-1 差动放大实验电路
1.静态工作点的估算
典型电路
恒流源电路
2.差模电压放大倍数和共模电压放大倍数
当差动放大器的射极电阻RE足够大,或采用恒流源电路时,差模电压放大倍数Aud由输出端方式决定,而与输入方式无关。

双端输出: RE=∞,RP在中心位置时,
单端输出
当输入共模信号时,若为单端输出,则有
若为双端输出,在理想情况下
实际上由于元件不可能完全对称,因此Auc也不会绝对等于零。

3.共模抑制比KCMR
为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比
差动放大器的输入信号可采用直流信号也可采用交流信号。

四、实验内容
按图5-1连接实验电路,跳线J1接上J2断开构成基本差动放大器。

1.测量静态工作点
(1)调节放大器零点
接通±12V直流电源,在Ui为零的情况下,用万用表测量输出电压Uo,调节调零电位器RW1,使Uo=0,即Uo1= Uo2。

调节要仔细,力求准确。

(2)测量静态工作点
零点调好以后,用直流电压表测量T1、T2、T3管各极电位,并计算记入下表中。

Vc1Vb1Ve1Vc2Vb2Ve2
6.4732-0.0359-0.6407 6.755-0.0348-0.6393
Ic1Ib1Ic2Ib2
0.5783-0.00330.5386-0.0031
2.测量差模电压放大倍数
(1)测量双端输入差模放大倍数Aud
将输入信号Vi 接入图中Vi1和Vi2之间,便组成双端输入差模放大电路。

调节函数发生器为正弦输出,使频率f =1000Hz ,Ui=50 mV(有效值),用示波器观察输出uo1和uo2的相位关系。

在输出波形不失真的情况下,用数字万用表交流电压档测量单端输出电压Uo1、Uo2和双端输出电压Uo 以及R4上的电压降U R4,记入表5-2中,并计算双端输入差模放大倍数Aud1、A ud2、Aud 的值。

(2)测量单端输入差模放大倍数Aud
在Ui1上输入f =1000Hz ,Ui=50 mV(有效值)的交流信号,用示波器观察输出
uo1和uo2的相位关系。

在输出波形不失真的情况下,分别测量Uo1、Uo2、Uo 计算单端输入差模放大倍数Aud1、A ud2、Aud 的值,并将所测数据与计算结果记入下表中。

3
.测量共模电压放大倍数Auc
将Vi1和Vi2短接,函数发生器输出接Vi1端与地之间,即组成共模输入放大电路,调节输入信号f=1000Hz ,Ui=50 mV(有效值),用示波器观察输出uo1和uo2的相位关系。

在输出电压不失真的情况下,分别测量单端输出电压Uo1、Uo2,而双端输出电压Uo= Uo1- Uo2,计算共模电压放大倍数Auc1、A uc2、Auc ,并将所测数据与计算结果记入下表中。

4.计算双端输出和单端输出的共模抑制比KCMR和KCMRS。

KCMR:530
KCMRS:54.5
五、思考题
1.在共模输入时,测量双端输出电压Uo时,必须由Uo= Uo1- Uo2计算得到。

为什么不能把交流电压表直接接在T1、T2管的集电极来测量?
答:由于在测量共模输入中,T1、T2管之间被短接了,如果直接测量的话,电压为零,所以需要由Uo= Uo1- Uo2计算得到;
2.比较ui,uC1和uC2之间的相位关系。

答:ui是输入电压,uC1和uC2是输出电压,由于仪器所执行的操作是放大运算,改变的是振幅,不改变其相位,所以他们的相位都是一样的。

相关文档
最新文档