高一数学必修一基础测试题

合集下载

高一数学必修一试题含答案

高一数学必修一试题含答案

高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。

高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。

人教版高一数学(必修1)基础知识试题选及答案

人教版高一数学(必修1)基础知识试题选及答案

人教版高一数学(必修1)基础知识试题选及答案高一数学(必修1)基础知识试题选及答案一、选择题1. 下列数列中,等差数列是:A. 1, 3, 6, 10, 15B. 1, 2, 4, 7, 11C. 1, 4, 9, 16, 25D. 1, 3, 9, 27, 81答案:A2. 设等差数列的首项为a, 公差为d, 则该等差数列的第n项为:A. anB. a + (n-1)dC. a + ndD. a + (n+1)d答案:B3. 设等差数列的前n项和为Sn,则Sn的通项公式为:A. Sn = n(a + l)/2B. Sn = n(a + 2l)/2C. Sn = (a + l)n/2D. Sn = (a + 2l)n/2答案:A4. 已知等差数列的前n项和为Sn,公差为d,则该等差数列的第n 项可以表示为:A. Sn - Sn-1B. Sn - Sn+1C. Sn - Sn-dD. Sn - Sn+d答案:B5. 下列数列中,等比数列是:A. 2, 5, 8, 11, 14B. 4, 8, 16, 32, 64C. 1, 3, 6, 10, 15D. 1, 1, 2, 3, 5答案:B6. 设等比数列的首项为a, 公比为q, 则该等比数列的第n项为:A. a^nB. a + (n-1)qC. aq^nD. aq^(n-1)答案:C7. 设等比数列的前n项和为Sn,则该等比数列的第n项可以表示为:A. Sn - Sn-1B. Sn - Sn+1C. Sn/q - Sn/qdD. Snq - Snqd答案:A8. 如果在等比数列的前n项和中,n趋于无穷大,且公比小于1,则该等比数列的前n项和趋于:A. 1B. 0C. ∞D. 不存在答案:B二、解答题1. 将下列数列排列成由小到大的顺序:8, 5, 2, 9, 6答案:2, 5, 6, 8, 92. 求下列数列的前n项和:1, 3, 5, 7, ...答案:Sn = n^23. 求解下列方程:2x - 5 = 7答案:x = 64. 用配方法求解下列二次方程:x^2 - 5x + 6 = 0答案:x = 2, 35. 确定下列函数的定义域:f(x) = √(x + 4)答案:x ≥ -46. 求解下列不等式:2x - 5 > 7答案:x > 67. 已知点A(2, 1)和B(-3, 4),求线段AB的斜率。

高一必修一基础练习题

高一必修一基础练习题

高一必修一基础练习题一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 4C. -2D. 22. 已知集合A={1,2,3},B={2,3,4},求A∩B的结果:A. {1}B. {2,3}C. {4}D. {1,2,3}3. 直线y=2x+3与x轴的交点坐标是:A. (-3/2, 0)B. (0, 3)C. (3/2, 0)D. (0, -3)4. 函数y=log2(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. [0, +∞)D. (-∞, +∞)5. 已知等差数列的前三项和为12,第二项为4,求首项a1:A. 2B. 3C. 4D. 56. 根据题目所给信息,以下哪个选项是正确的:A. 选项AB. 选项BC. 选项CD. 选项D7. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 = a^2 + b^2D. (x-a)^2 + (y-b)^2 = a^2 + b^28. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x):A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3xD. x^2 - 3x + 29. 已知三角形ABC的三个内角分别为A、B、C,且A + B + C = π,求tan(A + C)的值:A. -tanBB. tanBC. 0D. 110. 以下哪个选项是正确的:A. 选项AB. 选项BC. 选项CD. 选项D二、填空题(每题2分,共20分)11. 函数f(x) = x^3的反导数是_________。

12. 集合{1,2,3}的补集(相对于自然数集)是_________。

13. 已知数列1, 1/2, 1/3, ...的通项公式是_________。

14. 函数y = sinx的周期是_________。

高一数学必修一测试题

高一数学必修一测试题

高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。

A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。

A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。

2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。

三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。

求直线 l1 的解析式,并画出其图像。

2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。

3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。

四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。

证明:BD = CD。

2. 若 a + b = b + c,证明 a = c。

答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。

2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。

(完整版)高一数学必修一测试题及答案

(完整版)高一数学必修一测试题及答案

高中数学必修1检测题一、选择题: 1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x 与()g x ;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。

A 、①②B 、①③C 、③④D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lgyx a y x 则 ( )A .a 3B .a 23 C .aD .2a 8、 若定义运算b a ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A[)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x=D、2log (45)y x x =-+11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

高中数学试卷必修一基础100题

高中数学试卷必修一基础100题

高中数学试卷必修一基础50题一、单选题(共15题;共30分)1.已知函数y=sinx的定义域为值域为,则的值不可能是( )A. B. C. D.2.已知集合, ,则()A. B. C. D.3.设集合是锐角,,从集合到的映射是“求正弦值”,则与中元素相对应的中元素是()A. B. C. D.4.设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为( )A. (x-5)(x-4)B. (x-6)(x-5)C. (x-6)(5-x)D. (x-6)(7-x)5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A. a≤1B. a<1C. a≥2D. a>26.已知集合,,则()A. B. C. D.7.已知函数的定义域为,的定义域为()A. B. C. D.8.已知偶函数在区间上是增函数,如果,则x的取值范围是()A. B. C. D.9.二次函数图象的对称轴方程为()A. B. C. D.10.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A. y=﹣x3B. y=ln|x|C. y=cosxD. y=2﹣|x|11.函数f(x)=a x﹣1+2的图象恒过定点()A. (3,1)B. (0,2)C. (1,3)D. (0,1)12.集合,,若,则实数a的取值范围是()A. B. C. D.13.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A. 10个B. 9个C. 8个D. 4个14.已知,b=0.53,,则a,b,c三者的大小关系是()A. b<a<cB. c<a<bC. a<c<bD. a<b<c15.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}二、填空题(共20题;共21分)16.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为________.17.若二次函数的图象经过点,则代数式的值等于________.18.已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.19.已知函数f(x)=2x﹣3,x∈N且1≤x≤5,则函数的值域为________.20.设集合M={x|﹣1<x<1},N={x|0≤x<2},则M∪N=________.21.设函数在区间上的最大值为,则________.22.函数的定义域为________.23.若函数f(x)= 在(﹣1,+∞)上的值域为________.24.已知幂函数的图象过点,则的单调减区间为________.25.设函数f(x)=(x﹣4)0+ ,则函数f(x)的定义域为________.26.若f(x)=2x+2﹣x lga是奇函数,则实数a=________.27.已知函数是奇函数,则=________.28.已知全集U={﹣1,0,2,4},集合A={0,2},则________.29.函数的单调递增区间为________.30.已知函数f(x)=,则f[f(-2)]=________ ,f(x)的最小值是________.31.设函数,若,则________.32.计算:的结果是________ .33.函数的单调增区间为________.34.化简:+=________35.已知集合,,若存在非零整数k,满足,则________.三、解答题(共15题;共135分)36.设,求证:(1);(2).37.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.38.(1)计算:;(2)已知( ) ,求的值.39.已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.40.已知集合A={x|﹣3<x≤4},集合B={x|k+1≤x≤2k﹣1},且A∪B=A,试求k的取值范围.41.比较下列各题中两个值的大小.(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4.42.已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f()= .(1)求函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(x2﹣1)+f(x)<0.43.已知函数.(1)求函数的定义域;(2)是否存在实数a,使得为奇函数.44.已知全集U={x|﹣5≤x≤3},集合A={x|﹣5≤x<﹣1},B={x|﹣1≤x≤1}.(1)求A∩B,A∪B;(2)求(∁U A)∩(∁U B),(∁U A)∪(∁U B).45.设集合,.若,求的值46.设函数f(x)=ax2+(b﹣8)x﹣a﹣ab的两个零点分别是﹣3和2.(Ⅰ)求f(x);(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.47.已知全集,若集合,B={x|x-m<0} .(1)若,求;(2)若, 求实数的取值范围.48.已知集合,.(1)当m=4时,求,;(2)若,求实数m的取值范围.49.已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.(1)若A⊊B,求实数a的取值范围;(2)若B⊊A,求实数a的取值范围.50.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】D12.【答案】C13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】17.【答案】[ ,1]18.【答案】{2,4}19.【答案】;20.【答案】821.【答案】b<a<c22.【答案】23.【答案】24.【答案】25.【答案】26.【答案】27.【答案】028.【答案】{0,2,6,10}29.【答案】30.【答案】231.【答案】②③32.【答案】33.【答案】[2,5)34.【答案】35.【答案】三、解答题36.【答案】(1)解:(2)。

高一数学必修一试题(带答案)

高一数学必修一试题(带答案)

高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高一数学必修第一册综合测基础练习题

高一数学必修第一册综合测基础练习题

高一数学必修第一册综合基础练习题一、选择题:(本题共8小题。

每小题给出的四个备选项只有一项符合要求)1.已知集合{}1,0,1,2,3,4,5A =-,集合{}34B x x =-<<,则A B =( ) A .{}1,0,1,2,3- B .{}0,1,2,3 C .{}1,0,1,2- D .{}1,0,1,2,3,4-2.函数()()22log 1f x x =-的定义域是( )A .[)1,+∞ B .()1,-+∞ C .()(),11,-∞-+∞ D .()1,+∞3.化简cos16cos44cos74sin44︒︒-︒︒的值为( )A .2B .2-C .12D .12- 4.已知3log 2a =,5log 10.2b =,3log πc =,则a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >>C .c a b >>D .c b a >> 5.若函数()221f x x ax a =-+-在[]0,2上最小值为1-,则a =( )A .1或2B .1C .1或65D .2- 6.设定义在R 上的奇函数()f x 满足3()8(0)f x x x =->,则(2)0f x ->的解集为( ) A .(4,0)(2,)-+∞ B .0,24+∞()(,)C .-,04+∞∞()(,)D .(-4,4) 7.已知函数sin 2y x =的图象与函数cos 2y x m =+的图象没有公共点,则实数m 的值可以为( ) A .-1B .0C .1D .2 8.已知三个函数112()21,()1,()log (1)1x x f x x g x e h x x x --=+-=-=-+-的零点依次为,,a b c ,则,,a b c 的大小关系()A .a b c >>B .a c b >>C .c a b >>D .c b a >> 二、填空题:本题共4小题。

第1-3章基础测试题-2021-2022学年高一上学期数学人教A版(2019)必修第一册(1)

第1-3章基础测试题-2021-2022学年高一上学期数学人教A版(2019)必修第一册(1)

太和二中2021~2022学年第一学期 人教A 版必修一数学第1~3章基础测试卷一.选择题(本题共10道小题,每小题5分,满分50分)1.函数121)(−−−=x x x f 的定义域为( )A . [2,3)∪(3,+∞)B .(2,3)∪(3,+∞)C . (2,+∞)D .(3,+∞)2.设函数x x x f 1)(3−=,则)(x f ( )A .是奇函数,且在()0,+∞ 上单调递增B .是奇函数,且在()0,+∞ 上单调递减C .是偶函数,且在()0,+∞ 上单调递增D .是偶函数,且在()0,+∞ 上单调递减3.幂函数)(x f y =的图像经过点)3,3(,则f(x)是( )A. 偶函数,且在),0(+∞上是增函数B. 偶函数,且在),0(+∞上是减函数C. 奇函数,且在),0(+∞上是减函数D. 非奇非偶函数,且在),0(+∞上是增函数 4.集合{}{}54|,2|2+−==−==x x y y B x y x A ,则=B A ( )A .]2,1(B .)2,1[C .]5,0[D .]2,1[5.集合{}{}a x a x B x x A −<<+=<<=3|,51|,且B B A = , 则a 的取值范围是( )A .),23[+∞−B .)23,2[−− C .),2[+∞− D .]23,2[−− 6.96,:2−≥−∈∀x x R x p ,则p ⌝是( )A .96,2−≤−∈∃x x R x B .96,2−≥−∈∃x x R x C .096,2<+−∈∃x x R x D .096,2<+−∈∀x x R x7.若定义在R 上的奇函数)(x f 在(-∞,0)上单调递减,0)2(=f ,且0)1(≥−x xf ,则x 的取值范围是( )A .),3[]1,1[+∞−B .]1,0[]1,3[ −−C .),1[]0,1[+∞−D .]3,1[]0,1[ −.众公四.解答题(本题共6道题,满分65分)18.(本题满分10分)已知{}{}m x m x S x x P +≤≤−=≤≤=11|41|,. (1)是否存在实数m ,使P x ∈是S x ∈的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.(2)是否存在实数m ,使P x ∈是S x ∈的必要条件?若存在,求出m 的取值范围;若不存在,请说明理由.19.(本题满分10分)已知关于x 的不等式0622<+−k x kx .(1)若不等式的解集为{}32|<<x x ,求实数k 的值;(2)不等式对R x ∈恒成立,求实数k 的取值范围. 20.(本题满分10分)已知函数xx x f 212)(+=. (1)试判断函数)(x f 在区间]21,0(上的单调性,并用函数单调性定义证明;(2)对任意]21,0(∈x 时,m x f −≥2)(都成立,求实数m 的取值范围.21.(本题满分10分)已知集合{}225|−<<−∈=x x x R x A ,{}132|+≤≤+=m x m x B .(1)若A B ⊆,求实数m 的取值范围;(2)试判断是否存在R m ∈,使得( A ð∅=)B R ,并说明理由.22.(本题满分10分)已知.1)1()(2−−+=x a ax x f (1)若0)(>x f 的解集为)21,1(−−,求关于x 的不等式013<−+x ax 的解集; (2)解关于x 的不等式0)(≥x f .23.(本题满分15分)已知函数12||)(2−+−=a x ax x f ,其中.,R a o a ∈≥设)(x f 在区间[1,2]上的最小值为)(a g ,求)(a g 的解析式.太和二中2021~2022学年第一学期人教A 版必修一数学第1~3章基础测试卷参考答案一.选择题(本题共10道小题,每小题5分,满分50分)1.函数121)(−−−=x x x f 的定义域为( )A . [2,3)∪(3,+∞)B .(2,3)∪(3,+∞)C . (2,+∞)D .(3,+∞)【解析】要使函数有意义,则⎩⎨⎧≠−−≥−01202x x 即⎩⎨⎧≠≥32x x 所以函数的定义域为[2,3)∪(3,+∞).故选A.2.设函数x x x f 1)(3−=,则)(x f ( )A .是奇函数,且在()0,+∞ 上单调递增B .是奇函数,且在()0,+∞ 上单调递减C .是偶函数,且在()0,+∞ 上单调递增D .是偶函数,且在()0,+∞ 上单调递减【解析】 ∵函数x x x f 1)(3−=的定义域为{}0|≠x x ,其关于原点对称,而)()(x f x f −=−,∴函数)(x f 为奇函数.又∵函数3x y =在()0,+∞ 上单调递增,在()-∞,0 上单调递增,而x y 1==1−x 在()0,+∞ 上单调递减,在()-∞,0 上单调递减,∴函数x x x f 1)(3−=在()0,+∞ 上单调递增,在()-∞,0 上单调递增.故选A.3.幂函数)(x f y =的图像经过点)3,3(,则f(x)是( )A. 偶函数,且在),0(+∞上是增函数B. 偶函数,且在),0(+∞上是减函数C. 奇函数,且在),0(+∞上是减函数D. 非奇非偶函数,且在),0(+∞上是增函数 【答案】D解:设幂函数的解析式为:αx y =,将)3,3(代入解析式得:33=α,解得21=α,21x y =∴,则函数21x y =为非奇非偶函数,且在),0(+∞上是增函数,故选D .公众号:潍坊高中数学4.集合{}{}54|,2|2+−==−==x x y y B x y x A ,则=B A ( )A .]2,1(B .)2,1[C .]5,0[D .]2,1[ 【答案】D5.集合{}{}a x a x B x x A −<<+=<<=3|,51|,且B B A = , 则a 的取值范围是( )A .),23[+∞−B .)23,2[−− C .),2[+∞− D .]23,2[−− 【答案】C6.96,:2−≥−∈∀x x R x p ,则p ⌝是( )A .96,2−≤−∈∃x x R x B .96,2−≥−∈∃x x R x C .096,2<+−∈∃x x R x D .096,2<+−∈∀x x R x 【答案】C7.若定义在R 上的奇函数)(x f 在(-∞,0)上单调递减,0)2(=f ,且0)1(≥−x xf ,则x 的取值范围是( )A .),3[]1,1[+∞−B .]1,0[]1,3[ −−C .),1[]0,1[+∞−D .]3,1[]0,1[ −【解析】 因为定义在R 上的奇函数)(x f 在(-∞,0)上单调递减,且f(2)=0, 所以)(x f 在(0,+∞)上也单调递减,且0)0(,0)2(==−f f ,所以当x ∈(-∞,-2)∪(0,2)时,)(x f >0,当x ∈(-2,0)∪(2,+∞)时,)(x f <0,所以由0)1(≥−x xf 可得,⎩⎨⎧≤−≤−<0120x x 或⎩⎨⎧≤−≤>2100x x 或0=x , 解得-1≤x ≤0或1≤x ≤3,所以满足0)1(≥−x xf 的x 的取值范围是]3,1[]0,1[ −,故选D. 8.若函数)43)((5)(x a x xx f +−=为奇函数,则=a ( )A.21 B.32 C. 1D.43 【答案】D解:)(x f 为奇函数,)()(x f x f −=−∴,)34)(())(34(+−=−−+−∴x a x a x x ,解得43=a . 经检验,当43=a 时满足)()(x f x f −=−∴,且定义域为⎭⎬⎫⎩⎨⎧±≠43|x x 关于原点对称,故选:D . 9.函数)0(2)(>−=a x ax f 在]7,3[上的最大值为2,则a 的值为( ) A. 1 B. 2 C. 3 D. 4 【答案】B解:函数)0(2)(>−=a x ax f 在]7,3[上的最大值为2, 0>a 时,函数2)(−=x ax f 在]7,3[上单调递减,223=−∴a ,2=∴a 故选:B .10.设函数⎩⎨⎧≥−<<=.1),1(2,10,)(x x x x x f 若)1()(+=a f a f ,则)1(a f 等于( )A .2B .4C .6D .8【解析】当1≥x 时,)1(2)(−=x x f 单调递增,可知)1()(+≠a f a f ;当0<a <1时,由)1()(+=a f a f ,得)11(2−+=a a ,解得a =14,则)1(a f =2×(4-1)=6,故选C.二、多选题(本大题共2小题,共10分) 11.下列不等式中有解的是( )A. x 2+3x +3<0B. x 2+6x +9≤0C. 0122>−−−x x D. 01222≥−+−c cx x【答案】BD解:根据题意,对选项依次判断,对选项A :函数y =x 2+3x +3开口向上,其对应一元二次方程根的判别式为△=b 2−4ac =32−4×1×3=−3<0,图像与x 轴无交点,即x 2+3x +3>0恒成立,故A 不正确;对选项B :函数y =x 2+6x +9开口向上,其对应一元二次方程根的判别式△=b 2−4ac =公众号:潍坊高中数学众公解:根据题意可得⎩⎨⎧≥−<+=.0,4,0,4)(22x x x x x x x g{}⎪⎩⎪⎨⎧≥−<<−−≤+=∈=.6,4,62,2,2,4)()(),()(2x x x x x x x x R x x g x f max x F画出F(x)的大致图象,由图象可得:①当6≥x 时,x x x 242≥− ,x x x F 4)(2−=∴,正确;②由图象可得:函数)(x F 不为奇函数,错误;③由图象知函数)(x F 在]6,2[−上是增函数,因此函数)(x F 在]2,2[−上为增函数,正确; ④由图象易知函数)(x F 的最小值为4)2(−=−F ,无最大值.错误, 其中正确的是①③.故答案为①③.三.解答题(本题共6道题,满分65分)18.(本题满分10分)已知P ={x|1≤x ≤4},S ={x|1−m ≤x ≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围;若不存在, 请说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在, 请说明理由.【答案】解:P ={x|1⩽x ⩽4}. (1)要使x ∈P 是x ∈S 的充要条件, 则P =S ,即{1−m =11+m =4 此方程组无解,则不存在实数m ,使x ∈P 是x ∈S 的充要条件; (2)要使x ∈P 是x ∈S 的必要条件,则S ⊆P , ①当S =⌀时,1−m >1+m ,解得m <0; ②当S ≠⌀时,1−m ⩽1+m ,解得m ⩾0, 要使S ⊆P ,则有{1−m ≥11+m ≤4,解得m ⩽0, 所以m =0,综上可得,当实数m ⩽0时,x ∈P 是x ∈S 的必要条件.众公22.(本题满分10分)已知.1)1()(2−−+=x a ax x f(1)若0)(>x f 的解集为)21,1(−−,求关于x 的不等式013<−+x ax 的解集; (2)解关于x 的不等式0)(≥x f .【答案】解:(1)由题意得1−与21−是方程01)1(2=−−+x a ax 的两个根,且0<a , 故⎪⎩⎪⎨⎧−=−⨯−−−=−−.1)21(11211a a a 解得2−=a , 所以不等式的解集为),23[)1,(+∞∞ . (2)当0=a 时,原不等式可化为x +1⩽0,解集为(−∞,−1];当0>a 时,原不等式可化为0)1)(1(≥+−x a x ,解集为),1[]1,(+∞−−∞a; 当0<a a <0时,原不等式可化为0)1)(1(≤+−x ax ,当11−>a ,即1−<a 时,解集为]1,1[a−; 当11−=a,即1−=a 时,解集为{}1−; 当11−<a ,即01<<−a 时,解集为]1,1[−a . 23.(本题满分15分)已知函数12||)(2−+−=a x ax x f ,其中.,R a o a ∈≥设)(x f 在区间[1,2]上的最小值为)(a g ,求)(a g 的解析式.解:当x ∈]2,1[时,12)(2−+−=a x ax x f . 若a =0,则1)(−−=x x f 在区间]2,1[上单调递减,所以)(a g =)2(f =3−;若0>a ,则)(x f 的图象的对称轴是直线a x 21=.当0<a 21<1,即21>a 时,)(x f 在区间]2,1[上单调递增, 所以)(a g =23)1(−=a f ;公众号:潍坊高中数学当1≤a 21≤2,即14 ≤a ≤12时, 所以1412)21()(−−==a a a f a g ;当a 21>2,即0<a <14时,)(x f 在区间]2,1[上单调递减, 所以36)2()(−==a f a g .综上可得,⎪⎪⎪⎩⎪⎪⎪⎨⎧>−≤≤−−<≤−=.21,232141,1412,410,36)(a a a a a a a a g。

高一数学必修1、4基础题及答案

高一数学必修1、4基础题及答案

必修1 第一章 集合基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

(高一)高一数学必修1习题及答案5篇

(高一)高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。

高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。

数学必修1测试题及答案

数学必修1测试题及答案

数学必修1测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 函数f(x) = 2x + 3的值域是?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 计算(2x - 3)(x + 1)的结果,其中x = 2。

A. 5B. 7C. 9D. 11答案:B5. 已知a = 3,b = 4,c = 5,下列哪个等式是正确的?A. a² + b² = c²B. a² + b² > c²C. a² + b² < c²D. a² + b² = 2bc答案:C6. 函数y = sin(x)在区间[0, π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:D7. 计算极限lim(x→0) (sinx/x)的值。

A. 0B. 1C. πD. ∞答案:B8. 已知等差数列{an}的首项a1 = 1,公差d = 2,则第5项a5的值是?A. 9B. 11C. 13D. 15答案:A9. 计算定积分∫(0 to 1) x² dx的值。

A. 1/3B. 1/2C. 1D. 2答案:B10. 已知函数f(x) = x³ - 3x + 2,求其导数f'(x)。

A. 3x² - 3B. x² - 3C. 3x - 3D. x³ - 3答案:A二、填空题(每题4分,共20分)1. 计算(3x + 2)(2x - 1) = ________。

答案:6x² - x - 22. 已知函数f(x) = x² - 4x + 4,求其对称轴方程。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案) 人教版数学必修I测试题一、选择题(共10题,每题5分,共50分)1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(CU B)=()A、{2}B、{2,3}C、{3}D、{1,3}2、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN ()A、{}B、{0,1}C、{1,2}D、{0,2}3、函数y=1+log2x,(x≥4)的值域是()A、[2,+∞)B、(3,+∞)C、[3,+∞)D、(-∞,+∞)4、在y=1/x2,y=2x,y=x2+x,y=3x5四个函数中,幂函数有()A、1个B、2个C、3个D、4个5、如果a>1,b<-1,那么函数f(x)=ax+b的图象在()A第一、二、三象限 B第一、三、四象限C第二、三、四象限 D第一、二、四象限6、设集合M={x|x2-6x+5=0},N={x|x2-5x=0},则MN等于()A.{}B.{5}C.{1,5}D.{-1,-5}7、若102x=25,10x则等于()A、-15B、5C、11/50D、6258、函数y=ax+2(a且a≠1)图象一定过点()A(0,1)B(0,3)C(1,0)D(3,0)9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟。

骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是()10、若f(2x)=x2,则f(3)=()A、9B、49/4C、9/4D、3/2二、填空题(共4题,每题4分,共16分)11、函数y=x+1+1/(2-x)的定义域为(-∞,2)U(2,∞)。

12、f(x)=x2+1,x≤0;f(x)= -2x,x>0.若f(x)=10,则x=-2.13、函数f(x)=2+log5(x+3)在区间[-2,2]上的值域是[2,3]。

(完整word版)高一数学必修1试题附答案详解

(完整word版)高一数学必修1试题附答案详解

高一数学必修1试题1。

已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数2。

如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z },则集合A,B 的关系3.设A ={x ∈Z ||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是4.若集合P ={x |3〈x ≤22},非空集合Q ={x |2a +1≤x 〈3a -5},则能使Q ⊆ (P ∩Q )成立的所 有实数a 的取值范围为5。

已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9, 则19在f 作用下的象为6。

函数f (x )=错误! (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元 素是7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为8。

下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=错误!C.f (x )=|x |,g (x )=错误! D 。

f (x )=x ,g (x )=(错误!)29。

f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0,则f {f [f (-3)]}等于10。

已知2lg (x -2y )=lg x +lg y ,则错误!的11。

设x ∈R ,若a 〈lg (|x -3|+|x +7|)恒成立,则a 取值范围是12.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是高一数学必修1试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A。

高一数学必修一测试题基础卷

高一数学必修一测试题基础卷

高一数学必修一测试题(基础卷 )一、选择题(每小题3分,共36分)1.设集合{1,3},A =集合{1,2,4,5}B =,则集合A B ⋃=( )A .{1,3,1,2,4,5}B .{1}C .{1,2,3,4,5}D .{2,3,4,5}2.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤3.与||y x =为同一函数的是( )。

A.2y = B.y C .{,(0),(0)x x y x x >=-< D .log a x y a = 4.设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( ). A .(1,1.25) B .(1.25,1.5) C .(1.5,2) D .不能确定5.下列各式错误的是( ).A . 0.80.733> B.0.50.5log 0.4log 0.6>C . 0.10.10.750.75-<D .lg1.6lg1.4>6.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( )A .]2,(-∞B .),1[+∞-C .),1(+∞-D .[-1,2]7.已知753()2f x ax bx cx =-++,且(5),f m -= 则(5)(5)f f +-的值为( ).A .4B .0C .2mD .4m -+8.函数21()322⎛⎫=+- ⎪⎝⎭xf x x 的零点有( )个。

A .0 B .1 C .2 D .3 9.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ). A .1 B .2 C .4 D .510.如图的曲线是幂函数n x y =在第一象限内的图象. 已知n 分别取 2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( ). A .112,,,222-- B .112,,2,22-- C .11,2,2,22-- D .112,,,222-- 11.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9B .14C .18D .12.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月) 425c 4c 3c 2c 1的关系:t y a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ;③ 浮萍从24m 蔓延到212m 需要经过1.5个月;④ 浮萍每个月增加的面积都相等。

高一数学课本必修一试题及答案

高一数学课本必修一试题及答案

高一数学课本必修一试题及答案
一、课本必修一测试题
一、选择题
1. 下列四个运算中,不能使两个数的乘积增大的是( )
A. 交换运算
B. 加减运算
C. 利用积律减少步骤
D. 乘法运算
2. 下列不同类运算形式,利用乘积律最简换算的是( )
A. 3 ÷ 2
B. (3×2-2)÷2
C. (3+2)×2
D. (3-2)×2
3. 已知有以下等式成立:2m - 6 = 3(2n+2),则 m= ( )
A. 2n+6
B. 8-2n
C. 5+2n
D. 4n+3
二、填空题
1. 若两个正数的乘积为60,则其中一个数为_____________。

2. 三个数的乘积为24,已知其中一个数为4,则其余两个数的和为_____________。

3. 乘法运算的记号是_____________。

三、判断题
1. 在加减运算中,两个数的和和每个数的大小无关。

( )
2. 按积律,(3a)×2 = 3(a+a)。

( )
3. 乘积中,若两个数符号不同,则乘积一定是负数。

( )
四、解答题
1. 计算 (7×4-3)×5
解:先用括号内乘积律求出(7×4-3)=29,再用乘法运算得:
29×5=145
2. 若 a×b=25,求出 a+b 的可能值
解:假定a=x,则根据乘法公式:b=25/x,则代入 a+b=x+25/x,可得 x 的可能值为±5,
所以 a+b 可能的答案为:-2 和 10。

(完整版)高一数学必修一基础知识测试含答案

(完整版)高一数学必修一基础知识测试含答案

必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A )3个 (B ) 4个 (C ) 5个 (D ) 6个2.已知S={x |x=2n ,n ∈Z}, T={x |x=4k ±1,k ∈Z},则 ( ) (A )S ⊂≠T (B ) T ⊂≠S (C )S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B ){(0,2 ),(1,1)} (C ){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R,则a 的取值范围是 ( ) (A)016<≤-a (B )16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B )5 (C)4 ( D )3 6。

函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C )[-1,3] (D )[0,2] 7.函数y=(2k+1)x+b 在(—∞,+∞)上是减函数,则 ( )(A)k>12 (B )k 〈12 (C)k>12- (D).k 〈12-8.若函数f (x )=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤—3 (B)a ≥-3 (C)a ≤5 (D )a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A ) 0,1a a >≠ (B) 1a = (C) 12a = ( D ) 121a a ==或10.已知函数f (x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11。

高中数学必修1基础练习题(附详细答案)

高中数学必修1基础练习题(附详细答案)

➢•高中数学必修一基础练习题班号姓名❖❖集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围. 集合的补集运算1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7}, 则∁U (M ∪N )=( ) A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}2.已知全集U ={2,3,5},集合A ={2,|a -5|},若∁U A ={3},则a 的值为( ) A .0B .10C .0或10D .0或-103.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4}, 那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5}, B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.函数的概念1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集 合N 的函数关系的是( ) 2.f (x )=2x -x的定义域是( )A .(-∞,1]B .(0,1)∪(1,+∞)C .(-∞,0)∪(0,1]D .(0,+∞)3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}4.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1B .0C .-1D .25.函数y =x 2x 2+1(x ∈R )的值域是________.6.设f (x )=11-x,则f [f (x )]=________. 7.求下列函数的定义域:(1) f (x )=2x -1-3-x +1; (2) f (x )=4-x 2x +1.8.已知函数f (x )=x 21+x 2, (1)求f (2)+f (12),f (3)+f (13)的值; (2)求证f (x )+f (1x )是定值。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)22、(本小题满分14分)已知()()()()22log 4log 1log 5log 21,0,1a a a a x y xy a a +++=+->≠且,求8log yx的值。

人教版数学必修I 测试题高一数学(答案卷)一、选择题(本大题共12道小题,每小题5分,共60分。

在每小题给出的四个选项中,二、填空题(本大题共4道小题,每小题5分,共20分。

把答案填在题中横线上) 13、[)2,+∞ ; 14、(]1,0- ; 15、1- ; 16、 2 。

三、解答题(本大题共6道小题,共70分。

解答应写出文字说明、证明过程或演算步骤) 17、(本小题满分10分)设{}{}24,21,,5,1,9A a a B a a =--=--,已知{}9A B =,求a 的值。

解:{}9,99A B A B =∴∈∈且 ----------------------------------1分 有219a -=或29a =,解得:5,3a a ==±或 ---------------------4分 当5a =时,{}{}4,9,25,0,4,9A B =-=-,则有{}4,9A B =-,与题意不相符,∴5a =舍去。

-----------6分 当3a =时,{}4,9,5,512A a a =--=-=-,则与B 中有3个元素不相符,∴3a =舍去。

------------------8分 当3a =-时,{}{}4,7,9,8,4,9A B =--=-,{}9A B = 3a ∴= ------10分18、(本小题满分10分)判断并证明()221x f x x =+在()0,+∞的单调性。

解:判断:()221x f x x =+在()0,+∞的单调递增。

--------------------------2分证明:设120x x >>,则有()()2212122212,11x x f x f x x x ==++ ----------------3分()()()()()()2222221221121222221212111111x x x x x x f x f x x x x x ∙+-∙+-=-=+++∙+--------5分()()()()()()22121212222212121111x x x x x x x x x x +∙--==+∙++∙+-------------7分120x x >>,12120,0x x x x ∴+>->,又221210,10x x +>+>-----10分()()()()12122212011x x x x xx +∙-∴>+∙+,即()()120f x f x ->故()221x f x x =+在()0,+∞的单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳37中学2014-2015学年度高一数学第一学段
考试试题(必修一)
一、选择题:本大题共15小题,每小题5分,共75分,在每小题给出的四个选项中,
只有一项是符合题目要求的. 1.若集合{1,0,1,2},{|(1)0}M N x x x =-=-=,则=N M ( ) A 、{1,0,1,2}- B 、{0,1,2} C 、{1,0,1}- D 、{0,1} 2.集合{}1,0的所有非空真子集的个数( ) A .1 B .2 C .3 D .4 3.下列函数与y = x 表示同一函数的是( )。

A .y =2
)(x
B .y =2
x
C .y =x
x 2
D .y =
33
x
4、下列函数是偶函数的是( )
A. x y =
B. 322
-=x y C. 2
1-
=x
y D. ]1,0[,2
∈=x x y
5.已知函数()f x 的图象是连续持续的,且有如下对应值表:
在下列区间中,函数()f x 必有零点的区间为(
). A .(1,2) B.(3,4) C . (2,3) D. (4,5) 6.若()f x =(3)f = ( )
A 、2
B 、4
C 、
D 、10 7.
3
log 9
log 28的值是( )。

A .
3
2 B .1 C .23
D .2
8、如果0log 2
1>x 成立,则x 应满足的条件是( )
A.x >21
B. 2
1
<x <1 C. x <1 D. 0<x <1
9、已知有三个数23.0=a ,3.0log 2=b ,3.02=c ,则它们之间的大小关系是( )
A b c a <<. B. c b a << C. c a b << D.a c b << 10.函数6)(2--=x x x f 的零点是( )
A .)0,3()0,2(或-
B .-2
C .-2或3 D. 3
11.计算机成本持续降低,若每隔三年计算机价格降低3
1
,则现在价格为8100元的
计算机9年后价格可降为( )
A.2400元
B.900元
C.300元
D.3600元
12.设1a >,函数x a log f(x )=在区间[,2]a a 上的最大值与最小值之差为1
2
,则a =( )
A B .2 C . D .4
13.设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得
()()(),025.1,05.1,01<><f f f 则方程的根落在区间
A.(1,1.25)
B.(1.25,1.5)
C.(1.5,2)
D.不能确定 14.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( )
A 、3a -≤
B 、3a -≥
C 、a ≤5
D 、a ≥5 15、若f(x)是偶函数,其定义域为(—∞,+∞),且在[0,+∞)上是减函数,则
⎪⎭⎫ ⎝⎛-23f 与⎪⎭

⎝⎛25f 的大小关系是 ( )
A.⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛-2523f f
B.⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-2523f f
C.⎪⎭

⎝⎛<⎪⎭⎫ ⎝⎛-2523f f D.不能确定
二、填空题:(本大题共5小题;每小题5分,共25分.把答案填在题中横线上) 11.已知幂函数a x x f =)((a 为常数)的图象经过点(3,9),则f (2)= 。

12.已知函数⎪⎩⎪
⎨⎧=,log ,0,2)(2x x f x )0()0()
0(>=<x x x 则[])1(f f = 。

13.已知x x x f 2)1(2+=+,则f (2)= 。

14. 设集合{}{}1212|,23|+≤≤-=≤≤-=k x k x B x x A 且B A ⊇,则实数k 的取值范围是
_________________
15.已知函数f(x)是定义在R 上的奇函数,当x≥0时,f(x)=)1(x x + ,则0<x 时,
=)(x f ;
三、解答题:(本大题共4小题;共50分.解答应写出文字说明、证明过程或演算步骤) 16.求下列函数的定义域。

(16分) ⑴54
--=
x x y
⑵)
34(2
log -=x y
16.化简求值。

(14分)
⑴ ()3
10
2
1
64275lg 972-⎪⎭
⎫ ⎝⎛++⎪⎭⎫ ⎝⎛
⑵ 4log log 2log 3525
3255+-
17.用定义证明函数)(x f =2x +1在),0(+∞上是增函数。

(10分)
18、已知())1(log )1log x x x f a a --+=(
)10≠>a a 且(。

(10分) (1)证明:在)1,1(-∈x 时()x f 为奇函数 ; (2)求使()x f >0成立的x 的取值范围 。

相关文档
最新文档