共射极基本放大电路的组成及各元件的作用解读
共射极放大电路
(2)静态工作点的作用 若不设置静态工作点,三极管只有在大于死区电
压才能导通,其他情况下不导通,故放大电路中的信 号是严重失真的信号。
若设置合适的静态工作点,三极管在任何时刻都 能正常导通,来自信号源的信号能完整通过放大电路 ,是真实的信号。
作用:使来自信号源的信号能完整通过放大电路进 行放大。
4.工作原理
放大电路的种类
二、共射极基本放大电路的组成及工作原理
1.放大电路的组成及各元件的作用
双电源供电
单电源供电
习惯画法
偏置电阻
RB C1
Ui电源
UCC
V
耦合电容
RL Uo
负载
放大电路各元件的作用
2.放大器中电压、电流符号及正方向的规定
在没有信号输入时,放大电路中三极管各电极电压、 电流均为直流。
在共射极基本放大电路中,设UCC=12V, RB=300kΩ,RC=2kΩ,β=50,试求静态工作点?
(2).若输入信号电压ui,即ui≠0时,称为动态。 与直流电压UBEQ叠加,这时基极总电压为
uBE U BEQ ui
基极总电流为 iB I BQ ib
集电极总电流为 iC I CQ ic
当有信号输入时,电路中有两个电源共同作用,电路 中的电流和电压时直流分量和交流分量的叠加。
3.静态工作点的设置 (1).静态工作点 静态:放大电路处于放大状态但没有交流信号时的状态叫静态。 静态值:静态时,放大电路中IB、IC、UBE、UCE叫静态值。 静态工作点:静态值对应三极管特性曲线上的一点Q。
共射极基本放大电路
复习
1.三极管图形符号 2.三极管工作电压 3.三极管电流放大作用 4.三极管三个工作区 5.用万用表测三极管
9 共射极放大电路
江 阴 学 院
• 三极管微变等效电路模型的建立
1 使用条件
低频 小信号 变化量
江 阴 学 院
输入回路可等效为
ib
B
u be
B
等效为
ib
u be
江 阴 学 院
rbe
E
对于小功率三极管:
E
26(mV ) rbe 200( ) (1 β ) I E (mA )
rbe一般为几百欧到几千欧。
基极电流的瞬时值(交流分量+直流分量)
共射放大电路的电压放大作用
+UCC RB C1 + C2 + + iB iC + + T uCE uBE – uo – iE – iC RC
江 阴 学 院
+ ui
–
uo = 0 uBE = UBE uCE = UCE
uCE
无输入信号(ui = 0)时:
uBE UBE tO iB IB tO
分析对象:各极电压电流的直流分量。 所用电路:放大电路的直流通路。
江 阴 学 院
设置Q点的目的: (1) 使放大电路的放大信号不失真; (2) 使放大电路工作在较佳的工作状态,静态是 动态的基础。
分压偏置放大电路——工作点稳定
RB1、RB2——分压电阻,保证VB恒定。
U CC
RC
江 阴 学 院
RB1
波形分析
RB
iC
C1 +
+UCC RC
江 阴 学 院
ui
+
iB
t ui
–
t + + iB iC u T uCE C + uBE – – t iE
第2章 基本共射放大电路的工作原理
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也
是在此期间,欧阳修在滁州留下了不逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江
参知政事范仲淹等人遭谗离职,欧阳修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
上限频率
4) 非线性失真系数D
5)最大不失真输出电压Uom:交流有效值。 6)最大输出功率Pom和效率
测试上述指标参数,要在放大电路上输 入什么样的信号?
二、基本共射放大电路的组成及各元件的作用
VBB、Rb:使UBE> Uon,且有 合适的IB。 VCC:使UCE≥Uon,同时作为负 载的能源。 Rc:将ΔiC转换成ΔuCE(uo) 。
RL
将输出等效 成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
《电子技术基础》教案共发射极基本放大器
高级技工学校文化理论课教案编号:QD-0707-03 流水号:授课教师:备课日期:年月日审批:日期:年月日一、教学回顾及导入课题放大电路电路结构示意图放大电路主要功能:将输入信号不失真地放大。
即把微弱的输入信号,转换成一定强度的、随输入信号变化的输出信号。
放大电路放大的本质是能量的控制和转换;是在输入信号作用下,通过放大电路将直流电源的能量转换成负载所获得的能量,使负载从电源获得的能量大于信号源所提供的能量。
因此,电子电路放大的基本特征是功率放大,即负载上总是获得比输入信号大得多的电压或电流,有时兼而有之。
这样,在放大电路中必须存在能够控制能量的元件,即有源元件,如晶体管和场效应管等。
二、新课讲授§2--2共发射极基本放大器一、电路组成图2—1共发射极基本放大器a)阻容耦合式 b)直接耦合式二、各元件的作用1.三极管V:放大电路核心元件,正常工作时主要起电流放大作用。
2.电源Vcc:放大器的能源与恰当阻值的配合,使发射结正偏、集电结反偏,以满足三极管放大的外部条件。
3. 基极偏流电阻RB:和Vcc一起,给基极提供一个合适的基极偏流IB。
三极管只有建立了合适的基极偏流IB,输出信号才不会失真4.集电极负载电阻Rc:将放大后的IC电流变化转变成RC上电压变化,从而引起VCE 的变化,这个变化电压就是输出电压vO。
5. 耦合电容C1和C2:电容C1用于连接信号源与放大电路,电容C2用于连接放大电路与负载,这种在电路中起连接作用的电容称为耦合电容。
“耦合电容的作用是“隔离直流,通过交流”。
利用电容交流阻抗小,直流阻抗大的特点实现耦合交流信号,隔断直流信号,从而避免信号源与放大电路之间、放大电路与负载之间直流电流的相互影响。
三、工作原理如图2-1所示为基本共射极放大电路。
当放大器未加信号,即当ui =0时,称放大电路处于静态。
在输入回路中,基极电源VBB使晶体管b-e间电压UBE 大于开启电压Uon,并与基极电阻Rb共同决定基极电流IB;在输出回路中,集电极电源VCC应足够高,使晶体管的集电结反偏,以保证晶体管工作在放大状态,因此,集电极电流IC =βIB;集电极电阻Rc上的电流等于IC,因而Rc上的电压为ICRc,从而确定了c-e间电压UCE =VCC-ICRc。
共射极基本放大电路
R b1 C b1
+
u-i
短路
+ 置VC零C
Rc
C b2
T 短路
+
uo RL -
.
上一页 下一页 返回
共射极基本放大电路
交流通路
+
+
ui RB -
+
T Rc
+
RL u o -
上一页 下一页 返回
共射极基本放大电路
三极管微变等效电路
T rbe
26(mV)
C = 12V , RB1 = 20kΩ ,
RB2 =10kΩ, RC=2 kΩ,
RB1
RE=2 kΩ,RL=3 kΩ,β =50, UBE =o.6V。试求:+
C1
+
1)静态值 IB、IC 和UCE 。
u i
RB2
2) 电压放大倍数Au ,输入 -
电阻 Ri和输出电阻 Ro。
+
Rc
+VCC C2
T
共射极基本放大电路
1. 共射基本放大电路的组成
图所示是一个典型的共射基 本放大电路。电路中各元件的 作用如下所述:
(1)三极管T。它是放大电 路的核心器件,具有放大电流 的作用
(2)基极偏流电阻RB。其作 用是向三极管的基极提供合适 的偏置电流,并使发射结正向 偏置。
R b1 Cb1
+
u-i
+ VCC
RL
u
o
-
+
+
u i
R B1
R B2
rbe
-
共射极放大器原理
Q′
IC
Q
0
t
0
Ib = 0 Q
ib2
0 u ce2 u ce
t
为了使放大电路的输出电压幅度 尽可能大,而非线性失真小一般将静 态工作点设置在交流负载线中段稍下 一点。
二、稳定工作点的偏置电路
在共射基本放大器中,IBQ
=
EC
UBEQ Rb
EC Rb
是固定不变的,叫固定偏置电路,其温度稳
性很差,当温度变化时,三极管的反向饱和
0
u ce
(d)
0
UBE U beq
u BE
+
t0
t0
t
IB Ibq
iB
+
t0
t
0
t
IC Icq
iC
+0
t
t0
t
UCE Uceq
u CE
+
t0
t0
t
由图可得:
基极总电压是静态电压 UBE 和信号电
压 ui 的叠加,
即: uCE = UBEQ ui
同理,基极总电流也是静态基极电流 IBQ 和交变信号电流 Ib 的叠加.
(IBQ<<I1)
C1
则基极电位为: ui I2
IBQ b c
V
e
R
U
b2
E
Re
u0
UB
=
Rb2 R b1 R b2
EC
分压式偏置稳定电路
(2)、利用发射极电阻 Re 来获得直流负 反馈,稳定静态工作点。过程如下:
T(C) ICEO ICQ UE UBE IBQ ICQ
通常,UB>>UBE 所以发射极电流为:
放大电路大综合——史上最全的放大电路介绍
三极管三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。
三极管有一个重要参数就是电流放大系数β。
当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。
集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。
利用其放大作用,三极管还可以作电子开关,配合其它元件还可以构成振荡器。
三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置,否则会放大失真。
在三极管的集电极与电源之间接一个电阻,可将电流放大转换成电压放大:当基极电压UB升高时,IB变大,IC也变大,IC 在集电极电阻RC的压降也越大,所以三极管集电极电压UC会降低,且UB越高,UC就越低,ΔUC=ΔUB。
三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
放大电路的三种基本组态
一、复习引入复习基本共射极放大电路的结构及各元件的名称和作用。
二、新授(一)基本共射极放大电路分析(1)基本共射极放大电路的静态工作点无输入信号(u i=0)时电路的状态称为静态,只有直流电源U cc加在电路上,三极管各极电流和各极之间的电压都是直流量,分别用I B、I C、U BE、U CE表示,它们对应着三极管输入输出特性曲线上的一个固定点,习惯上称它们为静态工作点,简称Q点。
I B、I C、U BE、U CE通常表示为I BQ、I CQ、U BEQ 和U CEQ。
(a)共射放大电路 (b)直流通路图1 共射基本放大电路及其直流通路静态值既然是直流,故可用交流放大电路的直流通路来分析计算。
在如图1(b)所示共射基本电路的直流通路中,由+U cc —R b—b极—e极—地可得:一般U CC>U BEE,则I BQ=(U CC-U BEQ)/R b≈U CC/R b当U CC和R b选定后,偏流I B即为固定值,所以共射极基本电路又称为固定偏流电路。
如果三极管工作在放大区,且忽略I CEO,则I CQ≈βI BQ由+U cc—R c b极—c极—e极—地可得U CEQ=U CC=I CQ R C如果按上式算得值小于0.3V,说明三极管已处于或接近饱和状态,I CQ将不再与I BQ成β倍关系。
此时I CQ称为集电极饱和电流I CS,集电极与发射极间电压称为饱和电压U CES。
U CES值很小,硅管取0.3V。
可由下式求得I CS =(U CC-U CES)/R C一般情况下,U cc>U CESI CS≈U CC/R C(2)微变等效电路分析法共射基本放大电路的微变等效电路,如图2所示。
从图中可以看出,输入电阻R i为R b与r be的并联值,所图2 R i基本共射电路的微变等效电路R i=R b//r be≈r be当us被短路时,i b=0,i c=0,从输出端看进去,只有电阻Rc,所以输出电阻为R0=R C从图2中输入回路可以看出U i=i b r be令RL′=RC//RL,其输出电压为U O=-i c(R C//R L)=-i c R L′=-βi b R L′因此,电压放大倍数为A u=u o/u i=-iβR L/r be式中,负号表示U0志u r相位相反。
共射极放大电路
第 11 页
共
射共
极射
放 大 电 路
极 放 大 电 路
的
分
析
1.2
由图10-3(b)所示可知,IBQ的值不同,静态工作点在负载线上的位置 也就不同。晶体管的工作状态要求不同,需要的静态工作点也不同,这可通 过改变IBQ的大小来实现。因此,IBQ很重要,通常将其称为偏置电流,简称 偏流。产生偏流的电路称为偏置电路。在如图10-2所示电路中,其路径为 UCC→RB→发射结→地。通常可通过改变偏置电阻RB的阻值来调整偏流IBQ的 大小。
共
射共
极射
放 大 电 路
极 放 大 电 路
的
分
析
1.2
第6页
放大电路的分析要从静态和动态两个方面来进行。 静态是指放大电路没有交流输入信号(ui=0)时的直流工作状态。此时, 放大电路中的电流和电压称为静态值。静态分析的目的是要确定放大电路的 静态工作点值:IB、IC、UCE,看三极管是否处在其伏安特性曲线的合适位置。 动态是指放大电路在有输入信号(ui≠0)时的工作状态。此时,放大电 路中的电流和电压都含有直流分量和交流分量。动态分析的目的是要确定放 大器对信号的电压放大倍数Au,并分析放大器的输入电阻ri和输出电阻ro等。
1 共射极基本放大电路的结构
如图10-1所示(右图)为典型 的共射极放大电路。电路中各元件 的作用如下: ➢ 三极管VT:它是放大电路的核 心,是能量转换控制器件,起电流 放大作用,即ΔiC=βΔiB。
共共
射射
极极
放 大 电 路
放 大 电 路 基
础
知
识
1.1
第4页
➢ 集电极电源电压UCC:除为输出信号提供能量外,它还保证集电结处于 反向偏置,以使晶体管起到放大作用。UCC一般为几伏到几十伏。
第2章 放大电路分析基础分析
第2章 放大电路分析基础
讨论一
画图示电路的直流通路和交流通路。
第2章 放大电路分析基础
二、图解法
uBE VBB iB Rb
应用实测特性曲线
uCE VCC iC Rc
1. 静态分析:图解二元方程组
输入回路 负载线 IBQ
负载线
Q
ICQ
Q
IBQ
UBEQ
UCEQ
第2章 放大电路分析基础
第2章 放大电路分析基础
一、放大的概念及放大电路的性能指标
1、放大的概念
放大的对象:变化量
放大的本质:能量的控制
放大的特征:功率放大
判断电路能否放 大的基本出发点
放大的基本要求:不失真,放大的前提
第2章 放大电均可看成为两端口网络。
输入电流
信号源 内阻 输出电流
2)输入电阻和输出电阻
从输入端看进去的 等效电阻
Ui Ri Ii
输入电压与 输入电流有 效值之比。
U Uo U Ro ( 1) RL Uo Uo RL
' o ' o
将输出等效 成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
第2章 放大电路分析基础
第2章 放大电路分析基础
在基本共射放大电路中,电压和电流都得到放大(ic=ib, uoui),即功率得到放大。需要提醒大家的是,输出功
率并非来自输入信号 (信号源),而是来自直流电源 VCC。
正是由于 iB 或 iE 对 iC 的控制作用,使得在 ui 的作用下直 流电源VCC输出的电流中包含与 ui同样变化且被放大的 分量,即放大电路的输出功率是在输入信号的作用下 通过晶体管将直流电源的能量转换而来。因此,放大
基本放大电路
耦合电容C1和C2 :用来隔断直流、耦合交流。电容 值应足够大,以保证在一定 的频率范围内,电容上的 交流压降可以忽略不计,即对交流信号可视为短路。
7.1.2 放大电路的分析
一、分析三极管电路的基本思想和方法
基本思想
非线性电路经适当近似后可按线性电路对待, 利用叠加定理,分别分析电路中的交、直流成分。 直流通路(ui = 0)分析静态。 交流通路(ui 0)分析动态,只考虑变化的电压和电流。 画交流通路原则:
7.2sint (mV)
ib
u be r be
5.5sin t (A)
iC = ( 2.4 + 0.55sint ) mA uCE = ( 5.5 – 0.85sint ) V
ic i b 0.55sin t (mA )
IBQ
12 0.7 470
0.024 (mA)
ICQ = IBQ = 2.4 mA UCEQ = 12 2.4 2.7 = 5.5 (V)
r be
200 (1 ) 26
I EQ
200 26 1 283 () 0.024
② 交流通路 iC
C2
③ 小信号等效
+
+
C1
RS + uS –
1.微变等效电路法
动态分析的目的:确定放大电路的电压放大倍数 , 输入电阻和输入电阻。
分析方法:微变(小信号)等效电路分析法。
B ib + ube
–
ic C
+
uce
E
–
IB
IB
Q IB
rbe
UBE IB
ube ib
300() (
1) 26(mV ) IE (mA )
基本放大电路 电路知识讲解
0.7V,对硅管 0.3V,对锗管
Rb IBQ B +UCC RC
对输入回路,由KVL得: UCC I BQ Rb U BEQ
I BQ U CC U BEQ Rb
ICQ C
T E UCEQ
根据三极管的电流放大作用,有: ICQ I BQ
对输出回路,由KVL得: UCC IC RC UCEQ
U CEQ U CC I CQ RC
UBEQ
2. 用图解分析法确定静态工作点 采用该方法分析静态工作点,必须已知三极 管的输入输出特性曲线。
IB + VBE 共射极放大电路
IC + VCE -
直流通路
首先,画出直流通路
对输入回路,由KVL得: 则:
IB U 1 U BE CC Rb Rb
VCE VCC Rc I C 12V - 2k 9.6mA 7.2V
VCE不可能为负值,
I CM VCC VCES 12V 6mA Rc 2k
其最小值也只能为0.3V,即IC的最大电流为:
此时,Q(120uA,6mA,0.3V), 由于 I B I CM
+
+ -+
uo -
UCC
ui -
E
输出回路
基本放大电路的组成(4)
放大电路中电压、电流符号说明 由于放大电路中同时存在直流与交流量,因此在对其 进行分析时,为了表达明确,特对电压、电流符号作如下 规定(以三极管基极电流为例): IB:符号与下标均大写,表示直流分量。 ib:符号与下标均小写,表示交流分量的瞬时值。 Ib:符号大写、下标小写,表示交流分量的有效值。
用近似估算法求静态工作点
共射放大电路组成和元件作用
共射放大电路组成和元件作用
1.晶体管:共射放大电路中使用的晶体管是NPN型晶体管。
晶体管通过控制电流的方式来放大输入信号。
当输入信号施加到基极时,晶体管的发射极电流会相应地增大,由此产生输出信号。
2. 输入电容(Cin):输入电容用于隔离输入信号源和晶体管之间的交流信号,以提供稳定的输入特性。
它将直流偏置电压(通过电阻分压器提供)与输入信号相隔离,使得输入信号不会影响到偏置电压。
3. 输入电阻(Rin):输入电阻决定了输入信号源与电路之间的耦合特性。
它的大小应根据具体需求进行选择,以保证输入信号的质量和放大电路的灵敏度。
4.偏置电阻(RB,RE):偏置电阻用于设置晶体管的工作点,以确保晶体管在放大信号时处于适当的工作状态。
这些电阻通过分压器的方式来提供适当的偏置电压,以便晶体管正常工作。
5.耦合电容(C1):耦合电容用于通过交流信号而不影响直流偏置信号的传输。
它将放大电路的输出信号耦合到负载电路或后续电路中,同时将直流偏置分离开。
6. 输出电容(Cout):输出电容用于隔离负载电路与放大电路之间的交流信号。
它能够将放大电路的输出信号传送到负载电路中,同时阻止直流偏置信号通过。
7.负载电阻(RL):负载电阻是放大电路输出端的负载,用于产生输出信号。
其大小应根据具体的电路要求和负载特性进行选择,以确保输出信号的有效传送。
8.反馈电阻(Rf):反馈电阻用于提供负反馈,以改善放大电路的稳定性和线性度。
它连接到放大电路的输出端,将一部分输出信号回馈到输入端,从而抑制非线性失真并增强电路的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名称
主要作用
v
晶体管
具有电流放大作用,可以将微小的基极电流转换成较大的集电极电流,它是放大器的核心。
Vcc
直流电源
一是为电路提供能源;二是为电路提供工作电压。
RB
基极偏置电阻
为电路提供静态偏流IBQ,RB的阻值一般是几十千欧至几百千欧之间。
RC
集电极电阻
将晶体管的电流放大作用变换成电压放大作用。RC的取值一般是几千欧至几十千欧之间。
共射极基本放大电路的组成及各元件的作用
图7-1-8所示为应用最广的共射极基本放大电路。信号从1-1'端输入,从2-2'端输出,1'端和2'端是输入和输出的公共端,共射极放大电路因发射极是输入回路和输入回路的公共端而得名。
图7-1-8共射极基本放大电路
放大电路各元件的作用见表7-1-4。
表7-1-4放大电路各元件的作用
C1、C2
耦合电容
1.隔直流,使晶体管中的直流电流不影响输入端之前的信号源,也不影响输出端之后的负载。
2.通交流,当C1、C2的电容量足够大时,它们对交流信号呈现的容抗很小,可近似看做短路,这样可使交流信号顺利地通过。
C1、C2选用容