第四章 船舶稳性
船舶原理
§4-4稳心半径及其与船形的关系
3、垂柱体船
水线面为菱形的垂柱体船
据各正浮d 时的r值绘成r=fr(d)曲线(见图3-12)。 计及zm=zb+r,可绘出zm=fm(d)曲线(见图3-9)。 由上曲线可见,zb近似为过原点斜率约为0.535直线; 而r在低吃水时为大值,在高吃水时为小值。 zm曲线在d临=7m附近有极值,说明当7m> d > 7m时均 将增大。
广义结论:船舶
等容微倾的稳心 半径等于任意初 始水线面积对其 过漂心倾斜轴的 面积惯矩与排水 体积之商。END
稳心的几何意义:浮心移动轨迹的曲率中ห้องสมุดไป่ตู้;
稳心的物理意义:两相邻浮力作用线的交点。
稳心半径表达式的使用范围:θ <10°~15°
四、稳性半径表达式
稳性半径表达式推导:
由于横倾后出水三角体体积v2的浮心k2移至入水三角 体体积v1的浮心k1位置。根据平行力移动原理和等容条件, 则有: v1·k2k1 =V·BB1 设横倾角为无穷小dθ,有: k2k1=k2o+ok1 计及上式和等容条件,则有: BB1=(v· k 2o + v · ok1)/V 入水: v· ok1 = dθ∫( 1/3)Y3dx= dθ·i1 出水: v2·k2o = dθ∫ ( 1/3)Y3dx= dθ·i2 BB1=dx(i1+i2)/V=dx· Ixf,由图可见:r= BB1 l /dθ 将BB1式代入即得稳性半径公式 2 3
§4—2水面船舶的平衡状态
•由此可见,水面船舶的平衡状态与其重心G与稳心 M的相对位置有关,而水面船舶满足稳定平衡状态 的条件是:重心低于稳心,即 GM>0 。 •假设船舶倾斜前后船内重量无相对位移,故G为定 点,D为船舶排水量;B为船舶初始位置的浮心; B1为船舶倾斜位置的浮心。由于倾斜前后水线下排 水体积几何形状改变,故B为变点。
船舶原理教案2(稳性和吃水差)
G G1 =
D
GG1 tgθ = DGM
3.横倾
W G1(P q2 ) W1L1 D B1
4.表达式
tg θ =
Ply DGM
第四章 稳性---初稳性方程的应用(1)
(2)力矩平衡法 -P
M
θ
I
+P
ly
W W1
L1 L
θ
MS
第四章 稳性---初稳性方程的应用(1)
(2)力矩平衡法
根据D对应的平均吃水查对应静水力曲 线图得到 zm
GM = z m − z g
第四章 稳性---初稳性方程的应用(1)
船内重 物垂移
W ~ G ( P ~ q ) 1.初始状态 WL D~B
M S = D g G M sin θ
如图示,根据平行力移动原理有:
要调整船舶稳性需考虑重 2.垂移 物垂移,或因重物垂移需 考虑对稳性的影响。
重物横向偏于一侧装卸
第四章 稳性---初稳性方程的应用(2)
液体重物装卸
第四章 稳性---初稳性方程的应用(2)
大量 装卸 问题
第四章 稳性---静稳性图、横倾力矩
静稳性图
初稳性方 程的用途 局限性 静稳性图 静稳性图 资料 稳性交叉 曲线
稳性方程: 用途:
局限性: 局限性1: 局限性2:
第四章 稳性---静稳性图、横倾力矩
船舶原理
船舶原理
湛江海洋大学航海学院
船舶原理----第四章 稳性
§4-1 §4-2 §4-3 §4-4 §4-5 §4-6 §4-7 §4-8 稳性及其分类和初稳性方程 稳心半径及其与船型的关系 初稳性方程的应用---船内问题 初稳性方程的应用---少量、大量装卸问题 静稳性图、横倾力矩 动稳性图 稳性衡准 船长的责任
船舶静力学第4章 大倾角稳性(2)
3、增大船舶的横摇阻尼,减小横摇角。 可通过设置减摇装置,如舭龙骨来实现。 4、舷墙上开排水孔。使甲板上浪使甲板 上浪能迅速排水,减小附加横倾力矩。 5、采取措施防止载荷移动,减小附加横 倾力矩。
28
本次课小结
• 1、极限重心高度曲线的意义及相关 基本概念; • 2、绘制极限重心高度曲线的方法; • 3、船体几何要素、船舶重心位置等 对船舶稳性的影响; • 4、提高船舶稳性的主要措施。
6
实际极限重心高度曲线的简便形式
7
五、极限重心高度曲线的计算方法
国内航行海船(普通货船)的稳性要求 (1)初稳性高不小于0.15m。
(2)横倾角为30度处的复原力臂应不小于 0.2m。若进水角小于30度,则进水角处的 复原力臂应不小于0.2m。
(3)船舶最大复原力臂所对应的横倾角应 不小于30度。
24
三、提高船舶稳性的措施
(一)提高最小倾覆力矩 1、降低船舶重心。如:在船舶底部加 压载物;取轻型结构;简化机舱设备; 设备尽量往下布置等。 2、增加干舷高度。这是提高船舶稳性 的有效措施之一 ,某些稳性不足的老 船可将载重线降低以增加干舷高度。
25
3、增加船宽。这是提高船舶稳性的有效 措施之一 ,某些老船稳性不足时,常在 船的两舷水线附近加装相当厚的护木和 浮箱等,或可在舷侧加装一个凸出体。
20
一般地增加船宽能有效的改善船舶稳性
问题六:对船舶整体性能而言,初稳性 高越大越好吗?为什么?
21
3、横剖面形状对稳性的影响
一般地V型剖面船的稳性比U型剖面船好
22
二、重心位置对稳性的影响
问题七:重量的垂向移动对船舶初稳性有什 么影响?
23
结论:重心位置对船舶稳性有 重大影响。提高重心将使初稳 性复原力臂和稳矩都相应减小 ;降低重心,则作用相反。
4-运船舶的技术性能(一)详解
W G
xG=xB
W G B
zB zG d
B
o △ x
d
o△
y
W , W xG yG xcB , y ycB 0 x g x g y
Heeling condition 横倾状态
z
z
W G
xG=xB
W G B
o yB
zB
B
o △ x
d
zG
yG
△
y
W , x g xc W y y ( z z ) tg x x , y y g c g c B G B G
Ab dx 2
T
0
ydzdx
dz
T
M xoy M yoz
L 2 L 2 L 2 L 2
Ab zb dx 2 Ab xdx 2
浮心C的竖向位置为:
zc
M xoy
浮心C的纵向位置为:
xc
M yoz
L 2 L b b 2 L 2 L b 2 L 2 L b 2 L 2 L b 2
V 1119.23 2389.64 5095.12 7972.16 10931.66 13956.66 17021.74 20143.43 23364.80 26627.88 30009.00
D 1150.66 2456.73 5238.17 8195.98 11238.57 14348.49 17499.63 20708.95 24020.77 27375.46 30851.50
第四章 船舶的技术性能(一)
§1 船舶的浮性 一、重力与浮力
船舶完整稳性
第2章完整稳性衡准第1节一般规定2.1.1当船上设置除毗龙骨以外的防摇装置时,应确保该装置工作时上述衡准仍能保持,且供电系统的失效或装置的故障不会导致船舶无法满足本篇的有关要求。
2.1.2应在必要的范围内考虑一些不利于稳性的影响因素,诸如顶部和舷部结冰、甲板上浪O2.1.3考虑到类似由于吸水和结冰引起的重量增加,及由于燃料和备品的消耗引起的重量减少等因素,应为航程的各阶段的稳性安全界限做出规定。
2.1.4每船均应备有1份由验船部门批准的稳性手册,该手册应含有足够的资料以使船长能够按本篇规定的使用要求操纵船舶。
2.1.5如果最小营运初重稳距(GM)曲线(或表)或者最大重心坐标(KG)曲线(或表)用于表示符合完整稳性衡准,这些限制曲线应包含整个营运纵倾范围,但验船部门认为纵倾影响不大时除外。
当上述曲线或表格无法囊括营运纵倾,船长应当核实作业情况没有偏离经设计的装载工况,或通过计算证实考虑到纵倾影响后该装载工况满足稳性衡准。
应为气象衡准数,这是稳性衡准数之一!图 2.2.2.12.2.2.2动稳性曲线因进水角为影响而中断时,除了用经过动稳性曲线中断处的割线代替上 述切线外,其余均同上述2.221所述(如图2.222)。
图 2.2222.2.3风压倾侧力臂。
按下式计算:Z P∖Zl v = -------- m v9810Δ式中:p —单位计算风压,p a ;按225要求计算;4——船舶装载水线以上受风面积,(包括甲板上装载物),m 2,按226要求计算;Z ——计算风力作用力臂,m ;按224计算;」——所核算装载情况下船舶排水量,32.2.4 计算风力作用力臂Z 为在所核算装载情况下船舶正浮时受风面积中心至水线的垂向距离。
受风面积中心应用通常确定图形形心的方法求得。
2.2.5 单位计算风压P 应按计算风力作用力臂Z 及不同航区由表2.2.5线性插值查得:单位计算风压P (Pa)表2.2.5本来2000规则已经回归成了光顺曲线的数据,应作为一个鱼腥味的亮点,现在又抄回去了,真佩服这复旧的能力!其航区之间有L83和2.00倍的关系。
船舶静力学第4章_大倾角稳性(1)
28
结论:
在接近满舱或空舱时,自由液面对稳性的影响 很小;但在半舱时,其影响较大。
在稳性计算中,应把影响最大的情况作为进行 修正的依据。
29
§4-5 静稳性曲线的特征
30
一、 静稳性曲线的特征
1、静稳性曲线在原点处的斜率等于初稳性 高。常用此特性来绘制或检验静稳性曲线 的起始阶段。
31
2、静稳性曲线的最高点B的纵坐标值是船 舶在横倾过程中所具有的最大复原力矩( 或复原力臂),表示船舶所能承受的最大 静态横倾力矩。其对应的横倾角(B点的横 坐标值)称为极限静倾角。
别计算这些水线下的浮心位置,在计算各倾 角下的复原力臂并绘制该排水量时的静稳性 曲线。
• 二、具体计算方法 • 反复试算,以确定某一倾角下的等体积倾斜
水线。
22
§4-4 上层建筑与自由液面对静稳性 曲线的影响
23
24
25
自由液面对静稳性曲线的影响
26
自由液面产生了一个倾斜力矩 船舶的实际复原力矩
计算时使用的稳性曲线必须经过自由液 面修正和考虑进水角影响后的曲线。
60
横摇角的计算: 根据图形查得
61
62
2、最小风倾力矩(最小风倾力臂)的计算
63
二、初稳性高与静稳性曲线
三、船舶稳性横准的基本思想
稳性曲线只是表示了船舶本身所具有的抵抗 外力矩的能力,或者说,只表示了船舶本身 所具有的稳性能力。 至于船舶受到的力矩究竟有多大,以及是否 经受得住,这要看外力矩的作用情况而定。
34
5、静稳性曲线下的面积越大,船舶所具有可 抵抗横倾力矩的位能就越大,即船舶的稳性 就越好。
35
§4-6 动稳性
• 一、基本概念
船舶稳性计算及调整—船舶稳性调整
A.在船舶原重心之上加装货物 B.考虑加装甲板货 C.排放双层底压载水舱等压载水
2.稳性过小时
A.在双层底注入压载水 B.改变燃润料、淡水的补给计划 C.注入压载水和改变油水的补给方案,应考虑船舶的总体营运效益问题
三、保证船舶具有适度稳性的经验方法 货物如何安排才能保证船舶稳性?
A 对具有二层舱的普通货船
B 如装甲板货,分配比例为
5 20整
如何调整船舶稳性?
一、船舶稳性的调整
调整船舶重心是改善稳性的根本措施。
1.垂向移动载荷 2.增加或减少载荷
A.稳性过大时,可以在船舶原重心之上增加载荷或在船舶原重心之下减 少载荷;
B.稳性过小时,可以在船舶原重心之上减少载荷或在船舶原重心之下增 加载荷。
二、具 体 措 施
第四章 稳性、载重线、不沉性、吨位丈量
第四章 稳性、载重线、不沉性、吨位丈量第1节 稳 性4.1.1 一般要求4.1.1.1 下列船舶应按本节规定核算船舶稳性:(1)新船;(2)初次检验的现有船舶;(3)船舶因改装、改建或修理使船舶稳性恶化或空船状况变化较大的现有船舶;(4)对其船舶稳性发生怀疑的现有船舶。
4.1.1.2 船舶一般应按《渔业船舶法定检验规则》有关规定进行稳性核算和倾斜试验。
4.1.1.3 对于缺少资料的现有船,可按4.1.3规定的简易衡准方法校核稳性。
4.1.1.4 船舶稳性计算虽已符合本章的要求,但船长仍应注意船舶装载及气象、海况、航向等情况,谨慎驾驶和操作。
在船舶遭遇特殊情况或紧急情况而采取应变措施时,应注意船舶的稳性,防止发生倾覆的危险。
4.1.1.5 本节4.1.3、4.1.4的规定不适用于高速船。
4.1.2 完整稳性4.1.2.1 船舶应具有足够的稳性,稳性指标应满足4.1.1.2或4.1.3的要求。
4.1.2.2 高速船的完整稳性除满足以下要求外,尚应满足4.1.1.2要求。
.1 在换证检验时,应核查空船排水量和重心纵向位置,并与已批准的稳性资料相比较,如空船排水量的偏差值超过2%,或重心纵向位置的偏差值超过l %船舶垂线间长时,则应重新进行倾斜试验。
.2 船舶最大复原力臂所对应的横倾角应不小于25º,如进水角小于最大复原力臂所对应的横倾角,则进水角即为最大复原力臂所对应的横倾角。
.3 对遮蔽航区的船,以下要求可作为以上要求的等效要求:.3.1 最大复原力臂对应的横倾角应不小于l5º;.3.2 最大复原力臂lm 应不小于按下式计算所得之值:0.20.022(30)m m l φ=+-式中:m φ——最大复原力臂m l 对应的横倾角,(º)。
.3.3 进水角小于最大复原力臂所对应的横倾角时,则进水角即为最大复原力臂所对应的横倾角,进水角处的复原力臂即为最大复原力臂。
.4 高速船在静水状态中,在任何允许的装载情况下受到可能产生的不可控制的乘员移动作用时,引起的横倾角应不大于12º。
4章 船舶稳性解析
计算KG2
根据合力矩定理:
KG1 Pi Z i KG2 Pi
GM2 KM2 KG2
三、 大倾角静稳性
(一)船舶大倾角稳性的表示
1、大倾角稳性和初稳性的区别 横倾角的范围不同 船舶在大倾角横倾时,横稳心点M不再是定点。 M点变为浮心B的渐近线,随横倾角的变化而变 化。 船舶大倾角横倾时倾斜轴 M 不再过初始水线面漂心F。 W L 大倾角稳性不能用GM作 B 衡量标志。
Pi ( KG Z i ) GM KM Pi
因为是少量载荷变动,所以通常装载状 态下载荷变化前后KM变化较小,则可以忽略 不计,即载荷变化前后假定KM不变,公式变 为: Pi ( KG Z i ) GM Pi
GM2 GM1 GM
②大量载荷重量变动对初稳性的影响 计算KM2
①少量载荷变动对初稳性的影响
Pi 10%
GM GM2 GM1 ( KM2 KM1 ) ( KG2 KG1 )
KG1 P Z GM KM KG KM ( KG1 ) P
P ( KG1 Z ) GM KM P
M R GZ GM sin
初稳性的衡量标志 GM:初稳性高度(Initial metacentric height)
3、 GM的计算
GM KM KG
(1)、KM
根据平均吃水或排水量查取静水力图表 KM=KB+BM
(2)、船舶重心高度KG
式中: Pi--构成排水量的各项重量,包括 空船重量、船舶常数、货物重量、油水 装载量、固定航次储备量。 Zi--Pi的重心距基线高度
船舶原理
稳心半径表达式的使用范围:θ<10°~15°
四、稳性半径表达式
稳性半径表达式推导:
由于横倾后出水三角体体积v2的浮心k2移至入水三角 体体积v1的浮心k1位置。根据平行力移动原理和等容条件, 则有: v1·k2k1 =V·BB1 设横倾角为无穷小dθ,有: k2k1=k2o+ok1 计及上式和等容条件,则有:
动稳性——指船在计及及角速度和角加速度的稳性。 4、按其船舱状态分 完整稳性——船舱为完整状态的稳性;
破舱稳性——船舱为破舱进水状态的稳性。
§4-2水面船舶的平衡状态
M
稳定平衡状态——微倾后W和D组成稳性力矩,其特点
为G点位于M点之下,GM取正值,船舶具有稳性, 即船舶具有抵御倾斜的复原力矩。
§4-2水面船舶的平衡状态
M
随遇平衡状态——微倾后W和D作用于同一铅垂线上,其特
征为G点和M点重合,GM = 0,船舶处于中性平衡,既 无稳性力矩又无横倾力矩,船舶同样不具有稳性。
§4-2水面船舶的平衡状态
不稳定平衡状态——微倾后W和D组成横倾力矩,其特
征为G点位于M点之上, GM取负值,船舶不具有稳 性,即船舶具有横倾力矩。
BB1=(v·k2o +v·ok1)/V
入水: v·ok1 = dθ∫( 1/3)Y3dx= dθ·i1
出水: v2·k2o = dθ∫ ( 1/3)Y3dx= dθ·i2
BB1=dx(i1+i2)/V=dx·Ixf,由图可见:r= BB1
/dθ 将BB1式代入即得稳性半径公式
r I xf
lF 2 y3dx
船舶原理
船舶原理
第四章 稳性
§4-1 稳性及其分类 §4-2水面船舶的平衡状态 §4-3 初稳性方程式 §4-4 稳心半径及其与船形的关系 §4-5 初稳性方程的应用---船内问题 §4-6 初稳性方程的应用---少量、大量装卸问题 §4-7 静稳性图、横倾力矩 §4-8 静平衡和动平衡 §4-7动稳性图 §4-8 稳性衡准
船舶静力学第4章 大倾角稳性
浮力作用线至 重力作用线( 通过假定重心 S)的水平距
离:
12
13
的计 算:
14
同理可得:
15
入水小三角形的 面积对N-N轴线 的面积静矩为:
16
沿船长L积分得微楔体对N-N轴线的 体积静矩为:
整个入水楔形对N-N轴体积静矩为:
17
整个出水楔形对N-N轴体积静矩为:
回复力矩所做的功是衡量船舶动稳性的重 要指标。船舶动稳性是以回复力矩所做的 功来表达的。
41
二、动稳性曲线
复原力矩所 作的功:
42
复原力矩所 作的功又可 写成:
43
动稳性曲 线与静稳 性曲线的 关系:动 稳性曲线 是静稳性 曲线的积 分曲线。
44
三、静稳性和动稳性曲线的应用
1、动倾角的 确定
动稳性
37
1、船舶在倾斜和复原过程中的运动情况
38
2、倾斜过程中船舶的往复摆动
39
3、动倾角
只有当外力矩 所作的功完全 由复原力矩所 作的功抵消时 ,船的角速度 才变为零而停 止倾斜。根据 这个原理,确
定动倾角。
40
4、静稳性和动稳性的特点
回复力矩是衡量船舶静稳性的重要指标。 船舶静稳性是以回复力矩来表达的。
计算时使用的稳性曲线必须经过自由液 面修正和考虑进水角影响后的曲线。
61
横摇角的计算: 根据图形查
得
62
63
2、最小风倾力矩(最小风倾力臂)的计算
64
二、初稳性高与静稳性曲线
三、船舶稳性横准的基本思想
稳性曲线只是表示了船舶本身所具有的抵抗 外力矩的能力,或者说,只表示了船舶本身 所具有的稳性能力。 至于船舶受到的力矩究竟有多大,以及是否 经受得住,这要看外力矩的作用情况而定。
船舶完整稳性规则
附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则说明与要求1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。
2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。
详见本法规第4篇附则2《际高速船安全规则》。
3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。
349第1章一般规定1.1 宗旨关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。
1.2 适用范围1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具:——货船;——装载木材甲板货的货船;——装载散装谷物的货船;——客船;——渔船;——特种用途船;——近海供应船;——海上移动式钻井平台;——方驳;——动力支承船;——集装箱船。
1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。
1.3 定义下列定义适用于本规则。
对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。
1.3.1 主管机关:系指船旗国政府。
1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。
1.3.3 货船:系指非客船的任何船舶。
1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。
1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。
船舶的稳性
船舶稳性判定
当稳心M位于重心G之上 时,GM>0,Ms>0,称为稳定 平衡,船舶有稳性
当稳心M位于重心G之下 时,GM<0,Ms<0,称为不稳 定平衡,船舶没有稳性
当稳心M位于重心G重叠 时,GM<0,Ms<0,称为不稳 定平衡,船舶没有稳性
(θ≤100
~
150)
,
水线面由
W
L
移至
W1L1,
①重力W大小不变,因为在倾斜过程中没有重物的增减;
②重心G位置不变,因为在倾斜过程中没有重物移动
③浮力D大小不变,因为重量不变,所以排水量也不变
④只有浮心B的位置因排水体积形状变化而改变,由原来的B 向倾 斜一侧移至B 斜一侧移至B l
此时,重力W和浮力D的方向虽垂直于新的水 线面W 1 L 1,但两 个力不再作用于同一条 垂线上 ,形成一个与横倾力矩 M h方向相 反的力偶距MS=D·GZ 。称该力偶矩为船舶 复原力矩 。如图所示。式中GZ值是船舶重 力与浮力之间的垂直距 称为复原力臂,也
静稳性曲线图
船舶在某一吃水d和重 心高度Zg时,预先计 算出不同倾角下的静 稳性力臂GZ值,并画 出静稳性力臂随着横 倾角的变化曲线,即 GZ=f(θ),该曲线就 称为静态性曲线
பைடு நூலகம்
称为静稳性力臂,用符号“1”表示。
大倾角稳性
船舶在横倾力矩是作用下,倾斜角度 θ>100 ~ 150 ,,此时船舶稳性称为大倾角稳 性
浮心B和稳心M的轨迹
浮心B移动的轨迹不再是一段圆弧线,则 浮心曲线的曲率重心,即稳心M点,也 不再是一个固定点,而是随着横倾角逐 渐移动的曲线。
船舶静力学第4章 大倾角稳性(1)
§4-1 概述
一、研究方法 1、仍然是研究船舶倾斜后产生复原力矩以阻 止其倾覆的能力,而且着重研究复原力矩随横 倾角变化的能力; 2、假定船舶处于静水中,水线面为一水平平 面,并且不考虑横倾与纵倾之间的耦合作用。
1
二、关键问题
是确定复原力矩的大 小,而求复原力矩的 关键是确定船舶在横 倾后的浮心位置。有 两种方法: 1、利用倾斜水线计算 横倾后的浮心位置。 2、利用重心移动原理 计算倾斜后浮心位置 的移动距离。
60
横摇角的计算:
根据图形查得
61
62
2、最小风倾力矩(最小风倾力臂)的计算
63
二、初稳性高与静稳性曲线 三、船舶稳性横准的基本思想
稳性曲线只是表示了船舶本身所具有的抵抗 外力矩的能力,或者说,只表示了船舶本身 所具有的稳性能力。 至于船舶受到的力矩究竟有多大,以及是否 经受得住,这要看外力矩的作用情况而定。 外力矩主要来自风浪的作用,而风浪的大小 又与离岸距离以及水域开阔程度有关
式中 为 水线面对 N-N轴的面 积惯性矩 。
18
三、 稳性 插值 曲线
19
四、稳性横截曲线图
20
五、静稳性曲线
计算不同横倾角时的静稳性臂 l,据此可以绘制船舶在某一 排水量(即某一装载情况下) 时的静稳性曲线。
21
§4-3 静稳性曲线的等排水量法
• 一、基本原理 • 首先确定各倾角的等体积倾斜水线,然后分 别计算这些水线下的浮心位置,在计算各倾 角下的复原力臂并绘制该排水量时的静稳性 曲线。 • 二、具体计算方法 • 反复试算,以确定某一倾角下的等体积倾斜 水线。
43
三、静稳性和动稳性曲线的应用
1、动倾角的 确定
第四章 船舶稳性资料
MR = GMsin GM可以作为衡量船舶大小的标志。欲使 船舶具有二节 船舶稳性的计算
2.初稳性衡准指标 GM计算
(1)基本计算法 GM = KM - KG0 式中:KM —— 横稳心距基线高度(m), KM=KB+BM或者KM = f(dm); KG0 —— 船舶重心距基线高度(m);
f d m
2019/1/14
第一节 稳性的基本概念
三、船舶的三种平衡状态(equilibrium) 1.稳定平衡:重心G在稳心M之下,MR为正值。 2.不稳定平衡:重心G在稳心M之上, MR为负值。 3.随遇平衡:重心G与稳心M重合, MR为零。
2019/1/14
第一节 稳性的基本概念
(ii)舱容曲线图法 (iii)舱内货物合重心法
2019/1/14
第二节 船舶稳性的计算
(i) Zi确定方法:估算法
2019/1/14
第二节 船舶稳性的计算
(ii) Zi确定方法:舱容曲线图
2019/1/14
(iii) Zi确定方法:舱内货物合重心法
以舱内所装货物的合体积中心作为该舱货物的合重心 (如果货舱已满仓,则取舱容中心作为货物的合重心)—— 合体积中心计算方法同上述方法(i) 配货的一般原则是重货在下、轻货在上,因此将货物合 体积重心作为该舱货物的合重心是一种偏安全的做法。
2019/1/14
第一节 稳性的基本概念
二、几个基本概念 2. (横)稳心(Metacenter)M: 船舶微倾前后浮力作用线的交点。其距基线的 高度KM = f(dm)可从船舶资料中查取。
2019/1/14
第一节 稳性的基本概念
二、几个基本概念 3.(横)稳心半径(Metacentric radius)BM: IT BM 浮心B点到稳心M点之间的距离。 式中:IT —— 水线面面积横向惯性矩(m4);
第四章船舶稳性
第一节稳性的基本概念船舶平衡的3种状态:1 .船舶的平衡状态船舶漂浮于水面上,其重力为W,浮力为△, G为船舶重心,B为船舶初始位置的浮心。
在某一性质的外力矩作用下船舶发生倾斜,由于倾斜后水线下排水体积的几何形状改变,浮心由B移至B i点,当外力矩消失后船舶能否恢复到初始平衡位置,取决于它处在何种平衡状态(下图)。
(1)稳定平衡。
如图(a)所示,船舶倾斜后在重力W0浮力△作用下产生一稳性力矩,在此力矩作用下,船舶将会恢复到初始平衡位置,称该种船舶初始平衡状态为稳定平衡状态。
(2)随遇平衡。
如图2-1所示,船舶倾斜后重力W和浮力△仍然作用在同一垂线上而不产生力矩,因而船舶不能恢复到初始平衡位置,则称该种船舶初始平衡状态为随遇平衡状态。
(3)不稳定平衡。
如图2-1(c)所示,船舶倾斜后重力W和浮力△作用下产生一倾覆力矩,在此力矩作用下船舶将继续倾斜,称称该种船舶初始平衡状态为不稳定平衡状态。
2 .船舶平衡状态的判别为对船舶的平衡状态进行判别,将船舶正浮时浮力作用线和倾斜后浮力作用线的交点定义为稳心,以M表示。
由于船舶倾斜后的浮心位置或浮力作用线与船舶吃水(或排水量)、船舶倾角有关,稳心位置也随船舶吃水(或排水量)、船舶倾角不同而变化。
进一步分析表明,船舶处于何种平衡状态与重心G和稳心M的相对位置有关。
船舶稳定平衡时,重心G位于稳心M之下;船舶不稳定平衡时,重心G位于稳心M 之上;船舶随遇平衡时,重心G和稳心M重合。
因此,为了使船舶在受到一外力矩作用下具有一定的复原能力从而保证船舶安全,船舶重心必须在相应倾角时的稳心之下。
处于稳定平衡状态的船舶,其复原能力的大小取决于倾斜后产生的稳性力矩或复原力矩M s的大小。
由图(a)可见,该稳性力矩大小为式中:GZ——静稳性力臂(m)是船舶重心G至倾斜后浮力作用线的垂直距离,通常简称作稳性力臂或复原力臂。
船舶稳性的分类:船舶在外力矩作用下偏离其初始平衡位置而倾斜,当外力矩消失后船体能自行恢复到初始平衡状态的能力称为船舶稳性。
船舶原理
散装货物
这里分别用力系平衡法;力矩系平衡法进行求解。
倾斜试验
§4-5初稳性方程式的应用---船内问题
一、船内重物水平横移
1、力系平衡法 P ly
M
q1
q2 L1
W
L
W
W1
G
G1
B
B1
D
§4-5初稳性方程式的应用---船内问题
⑴初始状态
W WL
: G(P : D: B
q1
)
共垂线
⑵水平横移
GG1
Pl y D
⑶横倾
W W1L1
:
G1(P : D : B1
q2
)
⑷表达式
tg Ply
DGM
§4-5初稳性方程式的应用---船内问题
2、力矩系平衡法M
-P
I
+P
ly
L1
W
W1
L
MS
§4-5初稳性方程式的应用---船内问题
⑴初始状态 ⑵水平横移
WL
W
:
G(P : D: B
q1)
共垂线
§4-5初稳性方程式的应用---船内问题
二、用倾斜试验求空船重心
1、倾斜试验的目的——确定船舶空船重
心距基线高 zg(o 简称空船重心高度)
➢ 新建或经过重大改建工程后的船舶必须进行倾
斜 报试 告验 书》,中以查确到定。其(空船船厂重z应心go 在高验度船可师以的从监《督稳下性
进行倾斜试验,并根据数据提交“倾斜试验报 告书” ,设计人员根据“倾斜试验报告书” 中 的空船重心高度值编写《稳性报告书》)。
由上曲线可见,zb近似为过原点斜率约为0.535直线;
第四章大倾角稳性
讨论
Mq
(1)总结
M H max
M f max
M
' f
max
1
d
' d
M' f max
从船舶发生倾斜的程度看,其是船舶所能承受的最大倾斜力矩;
从船舶是否发生倾覆来看,其是使船舶倾覆的最小力矩,称最小倾覆力矩;
(2) 说明
A:外力矩是随横倾角变化的,特别是风力矩,而且多
4、最大静稳性臂及对应的横倾角
结论:静稳性曲线上的最高点B代表船舶所能承受的最大静态横 倾力矩MHmax,即船舶本身所具有的最大复原力矩(臂),其对应 的横倾角为极限静倾角φmax
注:最大静稳性臂lmax和所对应的横倾角φmax是衡量船舶大倾角 稳性的重要指标。
5、稳性消失角及稳距
在静稳性曲线上的D点,其复原力矩MR=0,对应横倾角为稳性消失 角φV,OD的距离为稳距,船舶在该段范围内是具有复原力矩的, 当超过φV ,复原力矩为负,使船舶继续倾斜直至倾覆。
dl d
B M
cos2
yB
sin
B M
sin
2
zB
cos
KG cos
原点处 0,B M B0M0,zB KB0,sin 0,cos 1,
dl d
|0
B0M
0
KB0
KG
GM。
2、稳定平衡与不稳定平衡 MH为横倾力矩
ld ld o
三、静稳性、动稳性曲线的应用 1、横倾力矩的概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章船舶稳性第一节船舶稳性的基本概念(一)船舶平衡的3种状态1、稳定平衡>0G点在M点之下,GM>0,MR2、随遇平衡G点与M点重合,GM=0,M=0R3、不稳定平衡<0G点在M点之上,GM<0,MR(二)稳性的定义船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。
(三)稳性分类分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水┏破舱稳性稳性┫┏初稳性(小倾角稳性)┃┏横稳性┫┏静稳性┗完整稳性┫┗大倾角稳性┫┗纵稳性┗动稳性其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。
倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。
第二节船舶初稳性(1)(一)船舶初稳性的基本标志1.稳心M 与稳心距基线高度KM船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。
稳心M距基线的垂向坐标称为稳心距基线高度。
2.初稳性的衡准指标稳心M至重心G的垂距称为初稳性高度GM。
初稳性高度GM是衡准船舶是否具有初稳性的指标。
初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。
3.初稳性中的假设(对于任一给定的吃水或排水量)(1)小倾角横倾(微倾);(2)在微倾过程中稳心M和重心G的位置固定不变;(3)在微倾过程中浮心B的移动轨迹是一段以稳心为圆心的圆弧;(4)在微倾过程中倾斜轴过漂心。
(二)初稳性高度GM的表达式GM=KB+BM-KG=KM-KG第二节 船舶初稳性(2)(三) 初稳性高度的求取1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。
2、 KG 的计算式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,tZ i —— 载荷P i 的重心距基线高度,m3、Z i 确定(1)舱容曲线图表查取法船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下:i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。
ii )对于积载因素相近、合理积载的件杂货,根据所装货物的体积,在下横轴找到相应点向上做垂线,交舱容曲线得A 点,过A 点做水平线交舱容中心距基线高度曲线得B 点,过B 点向上做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。
)2.3()m (Z P KG ii ∆*∑=(2)舱容中心高度法无论舱内载荷匀质与否和数量多少,均以该舱的几何中心高度作为该舱载荷的重心距基线高度Z i 。
该方法的优点有二:一是查取方便,船舶资料中通常有各个货舱和液舱的舱容中心高度数据可查;二是结果高于实际值,偏于安全。
缺点是当舱内货物较少时误差较大。
(四)自由液面对GM 的影响 1、自由液面(Free surface)船舶的液体舱柜中装有液体但未满舱时的液面。
2、自由液面的影响结果自由液面的存在 使初稳性高度GM 恒减小。
3、自由液面计算公式i x --自由液面对过液面中心倾斜轴的面积惯性矩(m 4)。
4、自由液面惯性矩i x 的求取 (1)查取船舶资料求取i x“各液舱自由液面惯性矩i x 表”,“各液舱自由液面对初稳性高度修正值表” (2)利用公式法计算i x自由液面的形状为矩形、三角形矩形:k=1/12;直角三角形:k=1/36;等腰三角形:k=1/48 自由液面的形状为梯形直角梯形:k=1/36;等腰梯形:k=1/485、减小自由液面影响的措施设置水密纵隔壁减少甲板上浪和存水,及时排出积水液体舱柜应根据实际情况尽量装满或排空航行中,应逐舱使用油水并尽量减少同时存在自由液面的液舱数。
液体散货船装载货物时,尽量少留部分装载舱。
部分装载舱应选择舱室宽度较小的货舱。
保证液体舱柜内的纵向水密隔壁的完整性∆=∑xfiGMρδ)(01f f GM KG KM GM GM GM δδ+-=-=3b k i x =))((222121b b b b k i x ++=第三节载荷变动对稳性的影响(一)载荷移动1、船内重物水平移动2、船内重物垂移载荷下移,重心下移,Z取“+”,GM1增加;载荷上移,重心上移,Z取“-”,GM1减小(二)重量增减1、重量大量增减2、重量少量增减假定条件:(1)载荷变动时,稳心距基线高度KM保持不变;(2)载荷变动时,自由液面对初稳性的影响保持不变。
(三)货物悬挂悬挂重物对稳性的影响:相当于将其重心从实际位置上移到悬挂点。
GM1=GM--(四)船舶倾斜试验1、试验目的确定船舶的空船重心高度KG0和空船初稳性高度GM。
2、试验条件GMPytg⋅∆=θ∆⋅=ZPGMδGMGMGMδ=-1iiiPZPKGKG∑±∆∑±⋅∆=1111KGKMGM-=)4.3()m(P)ZKG(PG MG M1P112+∆-*+=∆⋅=ZPGMδGMδ新建船舶或经重大改建的船舶在出场前应进行倾斜试验。
3、进行倾斜试验的注意事项试验现场风力不大于2级,水面平静无流,无来往船只船舶应尽量保持正浮空船状态,并系牢可移动物尽量减少自由液面的存在船上多余重量或不足重量对于空船排水量大于3000t的船舶,应不大于0.5%ΔL 倾斜角θ一般为2︒~ 4︒,但不得小于1︒试验时缆绳应处于不受力状态第四节 船舶大倾角静稳性(一)大倾角静稳性基本概念 1、大倾角稳性和初稳性的区别横倾角的范围不同船舶在大倾角横倾时,横稳心点M 不再是定点。
M 点变为浮心B 的渐近线,随横倾角的变化而变化。
船舶大倾角横倾时倾斜轴不再过初始水线面漂心F 。
大倾角稳性不能用GM 作衡量标志。
2、大倾角静稳性的基本标志船舶在大倾角倾斜时稳性力矩的计算公式为: GZ :静稳性力臂(复原力臂或扶正力臂)作为衡量大倾角静稳性的基本标志 (二)静稳性力臂的求算 1、基点法KN :形状稳性力臂 KH :重量稳性力臂 2、假定重心法求取GZ 3、稳心点法MS --剩余稳性力臂 (三)静稳性曲线1、定义:静稳性力矩M R 或静稳性力臂GZ 与船舶横倾角θ的关系曲线图。
M R ~θ的关系曲线图称为静稳性力矩曲线GZ ~θ的关系曲线图称为静稳性力臂曲线 2、绘制根据公式GZ=KN-KGsin θ及KN 曲线图可得。
GZM s ⋅∆=θsin KG KN KH KN GZ -=-=θsin GM MS GZ +=将经自由液面对大倾角稳性影响修正后的复原力臂GZ随横倾角变化关系画成静稳性曲线如图3-3所示。
3、静稳性曲线图的主要特征静平衡位置静平衡角(静倾角)θS甲板浸水角甲θ曲线反曲点对应的角度。
甲板浸水后稳性增长减缓。
该点的曲线斜率最大。
最大复原力臂GZ max最大复原力矩M R.max极限静倾角θS.max稳性消失角θv0~θv的范围定义为船舶的稳性范围。
曲线原点处的斜率等于初稳性高度GM 4、影响静稳性曲线的因素(1)船宽B(2)干舷F:对初稳性没有影响。
(3)重心高度KG若排水量一定,则:(4)排水量(吃水):若KG相同,则:(5)自由液面↓↓↓↑↑↑vsGZKNBθθθ,,,,,甲max.max↔↓↓↓↑甲,,,,θθθvsGZKGmax.max↓↓↓↓↑∆vsGZθθθ,,,,甲max.max自由液面的影响可以看作船舶重心高度KG 增大,所以影响结果同KG 的影响。
(6) 初始横倾(常定横倾): 船舶重心偏离纵中剖面。
↓↓↑v GZ KG θ,,max第五节船舶动稳性(一)船舶动平衡及动倾角1.船舶动平衡:研究船舶横倾过程中,功之间的平衡关系。
动平衡条件:2.动倾角(动平衡角):船舶达到动平衡时的横倾角(二)船舶动稳性的基本标志船舶动稳性的大小取决于船舶复原力矩所作功Md(动稳性力矩)的大小。
动稳性力矩M d在数值上等于静稳性力矩M R曲线下的面积。
动稳性力臂l d在数值上等于静稳性力臂GZ曲线下的面积。
(三)最小倾覆力矩Mh.min1 定义●船舶在动平衡条件下能够承受的横倾力矩的极限值。
●能使船舶倾覆的最小外力矩。
●船舶在动平衡条件下,稳性所允许的最大横倾力矩。
2 结论●船舶在动力作用下不致倾覆的条件:M h≤M h.min●船舶在静力作用下不致倾覆的条件:M h≤M R.max(四)动稳性曲线图1、定义动稳性力矩曲线:W R~θ的关系曲线图。
动稳性力臂曲线:l d ~θ的关系曲线图。
2、绘制动稳性力矩曲线为M R曲线的积分曲线动稳性力臂曲线为GZ曲线的积分曲线WsWh3、动稳性曲线的特征曲线过原点曲线反曲点对应角为极限动倾角θd.max曲线极值点对应角为稳性消失角θv 4、动稳性曲线的用途已知恒定外力矩Mh ,求动倾角θd;求取Mh.min和θd.max5、初始横摇角及船舶进水角θj 对Mh.min的修正5.1 初始横摇角θi的修正风浪联合作用的不利条件下求取Mh.min。
5.2 船舶进水角θj 对Mh.min的修正进水角(Angle of flooding):船舶横倾至非水密开口时的横倾角。
法定规则规定,当船舶横倾至进水角后,船舶将被视为稳性丧失。
第六节 对船舶稳性的要求(一)、中国船级社法定规则对船舶稳性的基本要求 1、稳性衡准基本要求 *稳性衡准数K 的计算A W --船舶正浮时水线上船体和甲板货的侧面积投影(m 2); P W --单位计算风压(kPa),根据Z W 和限定航区查取P W 曲线图; Z W --计算风力作用力臂(m),A W 的中心至水线的垂直距离。
2、临界稳性高度GM C 和极限重心高度KG maxGM C从初稳性、大倾角稳性及动稳性的要求出发提出的对初稳性高度的下限限制值,即同时满足《法定规则》对船舶稳性衡准的五点要求时,船舶初稳性高度的最低值。
极限重心高度KG max从初稳性、大倾角稳性及动稳性的要求出发提出的对重心高度的上限限制值,即 同时足《法定规则》对船舶稳性衡准的五点要求时,船舶重心高度的最大值。
3、稳性特殊要求集装箱船舶的稳性衡准木材船的稳性衡准液货船的稳性衡准散装谷物船舶的稳性衡准 (二)IMO 对船舶稳性的要求1、IMO 对普通货船完整稳性的基本要求mGM 15.0≥初稳性:⎪⎪⎩⎪⎪⎨⎧︒≥︒≥︒≥≥≥︒<︒=55253020.020.0max .max .3030vs s mGZ m GZ jθθθθθ(第一峰值),,大倾角稳性1≥K 动稳性:稳性衡准数wh w h M M K min .min .==ww w w Z A P M ⋅⋅=001.0CGM GM ≥maxKG KG ≤大倾角稳性2、对动稳性的要求(天气衡准要求)对L BP ≥24m 的船舶,应满足天气衡准。