(完整word版)鲁教版七年级数学下册期中考试试题xx
鲁教版七年级下册期中数学测试题一(含答案)
鲁教版数学七年级下册期中测试题(一)(时间:100分钟 满分:120分)一、选择题(每小题3分,共36分)1.“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是( )A.必然事件 B 不可能事件 C.随机事件 D.确定事件2.若方程(a 2-4)xy +(a +2)x +3y =5是二元一次方程,则a 的值是( )A.±2B.2C.-2D.43.中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”在这12个字中,“早”字出现的频率是( ) A.121 B.41 C.32 D.31 4下列说法正确的是( )A.命题一定是正确的B.不正确的判断就不是命题C.真命题都是公理D.定理都是真命题5.已知⎩⎨⎧-==2y a x 是关于x ,y 的方程3x-ay =5的一个解,则a 的值为( ) A.1 B.2 C.3 D.46.如图所示,AB ∥CD ,∠D =42°,∠CBA =64°,则∠CBD 的度数是( )A.42°B.64°C.74°D.106°7.一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,则这个游戏( )A.是公平的B.是不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大8.一个不透明的盒子中装有4个形状、大小、质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球上所标数字是正数的概率为( ) A.41 B.31 C.21 D.43 9.一个口袋中装有10个红球和若干个黄球,在不允许将球倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据估计口袋中有黄球( )A.30个B.15个C.20个D.12个10.某校七年级四个班的代表队准备举行篮球友谊赛甲、乙、丙三位同学预测比赛的结果如下:甲说:“702班得冠军,704班得第三”乙说:“701班得第四,703班得亚军”丙说:“703班得第三,704班得冠军”赛后得知,三人都只猜对了一半,则得冠军的是( )A.701班B.702班C.703 班D.704班11.若方程组⎩⎨⎧=+=+423by ax by ax 与方程组⎩⎨⎧=-=+032y x y x 有相同的解,则a 、b 的值分别为( )A.1、2B.3,0C.31、-32D.-31、32 12.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品的价格是多少元?设共有x 个人,这个物品的价格是y 元,则可列方程组为( )A.⎩⎨⎧-=+=4738y x y xB.⎩⎨⎧+=-=4738y x y xC.⎩⎨⎧-=+=3748y x y xD.⎩⎨⎧+=-=3748y x y x 二、填空题(每小题4分,共24分)13.能够说明“设a ,b 是任意非零实数,若a >b ,则a 1<b1”是假命题的一组整数a ,b 的值分别为_________.14.一枚质地均匀的骰子,每个面分别标有1,1,2,3,4,4,投掷后,朝上一面的数字是4的概率为___________.15.如图所示,△ABC 中,∠ABC =50°,∠ACB =70°,AD 平分∠BAC ,过点D 作DE ⊥AB 于点E ,则∠ADE =_________.16.如图所示,△ABC 是一块直角三角板,∠BAC =90°,∠B =30°,现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F 若∠CAF =20°,则∠BED 的度数为________°.17.若方程组⎩⎨⎧=+=+5231y x y x 的解也是方程3x +ky =10的一个解,则k =_________. 18.估计下列事件发生的可能性的大小:①从装有1个红球和2个黄球的袋子中摸出1个球是白球;②抛掷1枚质地均匀的骰子,向上一面的点数是偶数;③调查商场中的1位顾客,他是闰年出生的;④随意调查一位青年,他接受过九年制义务教育;⑤在地面上抛掷一个小石块,石块会落下将这些事件发生的可能性按从大到小的顺序排列是__________________.(填序号)三、解答题(共60分)19.(8分)解下列二元一次方程组:(1)⎩⎨⎧=+=-1172y x y x ; (2)⎩⎨⎧=-=+1134132y x y x .20.(6分)下图为一个封闭的圆形区域.(1)随机扔一粒黄豆,则黄豆落在黄色区域的概率是多少?(2)随机往圆形区域内扔270粒黄豆,请问大约有多少粒黄豆落在红色区域?飞镖投在红色区域的概率是多少?21.(7分)如图所示,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠ABC =70°,∠C =30°,求∠DAE 和∠AOB 的度数.22.(8分)已知一次函数y =ax +2与y =kx +b 的图象如图所示,且方程组⎩⎨⎧-=--=-by kx y ax 2的解为⎩⎨⎧==12y x ,点B 的坐标为(0,-1),求这两个一次函数的表达式.23.(9分)如图所示,在△ABC 中,AD 平分∠BAC ,DE 、DF 分别是△ADC 的高和角平分线(∠C >∠DAC ).(1)若∠B =80°,∠C =40°,求∠DAE 的度数;(2)试猜想∠EDF 、∠C 与∠DAC 有何关系,并说明理由.24.(10分)为提高学生的综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远?25.(12分)如图①,已知AD ∥BC ,∠B =∠D =120°.(1)AB 与CD 平行吗?为什么?(2)若点E 、F 在线段CD 上,且满足AC 平分∠BAE ,AF 平分∠DAE ,如图②,求∠FAC 的度数;(3)若点E 在直线CD 上,且满足∠EAC =21∠BAC ,求∠ACD:∠AED 的值.(请画出正确图形,并解答)参考答案一、选择题1. C2. B3. D4. D5. A6. C7. A8. C9. D10. B 11.A 12. A二、填空题13. 2,-1(答案不唯一) 14. 31 15. 60° 16. 80 17.-21 18.⑤④②③① 三、解答题19.解析 (1)⎩⎨⎧=+=-②①1172y x y x ,①+②,得3x =18,解得x =6把x =6代入①,得y =5∴原方程组的解是⎩⎨⎧==56y x .(2)⎩⎨⎧,②11=3y -4x ,①13=y +2x ①×3+②,得10x =50,解得x =5把x =5代人①,得y =3,∴原方程组的解是⎩⎨⎧==35y x . 20.解析整个圆的面积为π(3r )2=9πr 2;绿色区域的面积为πr 2;黄色区域的面积为π(2r )2-πr 2=3πr 2;红色区域的面积为π(3r )2-π(2r )2=5πr 2.(1)P (黄豆落在黄色区域)=319322=r r ππ, 故黄豆落在黄色区域的概率是31. (2)P (黄豆落在红色区域)=959522=r r ππ,270×95=150(粒). 答:大约有150粒黄豆落在红色区域,飞镖投在红色区域的概率是95. 21.解析∵∠ABC =70°,∠C =30°,∴∠BAC =180°-∠ABC-∠C =80°.∵AE 、BF 分别是∠BAC 、∠ABC 的平分线,∴∠CAE =21∠BAC =40°,∠CBF =21∠ABC =35°, ∴∠AED =∠CAE +∠C =40°+30°=70°,∴∠AOB =∠AED +∠CBF =70+35°=105°.∵AD ⊥BC ,∴∠DAE =90°-∠AED =20°.22.解析由题意可得A (2,1),把点A 的坐标代入y =ax +2,得1=2a +2,解得a =-21,∴y =-21x +2. 把A 、B 的坐标代入y =kx +b ,得⎩⎨⎧1-=b ,1=b +2k 解得⎩⎨⎧1-=b 1=k ,∴y =x-1, ∴两个一次函数的表达式为y =-21x +2,y =x-1. 23.解析(1)在△ABC 中,∠B =80°,∠C =40°,∴∠BAC =180°-80°-40°=60° ∵AD 平分∠BAC ,∴∠DAE =21∠BAC =30° (2)∠EDF =21(∠C-∠DAC )理由如下: 在△ADC 中,∠ADC +∠DAC +∠C =180°∴∠ADC =180°-∠DAC-∠C ,∵DF 平分∠ADC ,∴∠CDF =21∠ADC =21(180°-∠DAC-∠C ). ∵DE 是△ADC 的高,∴∠DEC =90°,∴∠CDE =90°-∠C ,∴∠EDF =∠CDF-∠CDE =21(180°-∠DAC-∠C )-(90°-∠C )=21(∠C-∠DAC ). 故∠EDF =21(∠C-∠DAC ). 24.解析设平路有x 千米,坡路有y 千米, 由题意,得⎪⎪⎩⎪⎪⎨⎧=+=+454336y x y x ,解得⎪⎪⎩⎪⎪⎨⎧==35344y x , 答:平路有344千米,坡路有35千米. 25.解析(1)平行.理由∵AD ∥BC ,∴∠A +∠B =180°,又∵∠B =∠D =120°,∴∠D +∠A =180°,∴AB ∥CD.(2)∵AD ∥BC ,∠B =∠D =120°,∴∠DAB =60°.∵AC 平分∠BAE ,AF 平分∠DAE ,∴∠EAC =21∠BAE ,∠EAF =21∠DAE , ∴∠FAC =∠EAC +∠EAF =21(∠BAE +∠DAE )=21∠DAB =30°. (3)(i )如图a ,当点E 在线段CD 上时,由(1)可得AB ∥CD ,∴∠ACD =∠BAC ,∠AED =∠BAE ,又∵∠EAC =21∠BAC ,∴∠ACD:∠AED =∠BAC:∠BAE =2:3=32; (ii )如图b ,当点E 在DC 的延长线上时,由(i )可得AB ∥CD ,∴∠ACD=∠BAC ,∠AED=∠BAE , 又∵∠EAC=21∠BAC ,∴∠ACD :∠AED=∠BAC :∠BAE=2:1=2.。
【鲁教版】初一数学下期中试题附答案
一、选择题1.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 2.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2) 5.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 6.下列说法正确的是( )A .2的平方根是2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D .无理数21的整数部分是57.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .0 8.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5 B .2 C .3 D .49.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等10.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 11.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个 12.交换下列命题的题设和结论,得到的新命题是假命题的是( ) A .两直线平行,同位角相等 B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3 二、填空题13.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 14.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____15.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.16.比较大小:312- ________0.5.(填“>”“<”或“=”) 17.8的相反数是_______,平方得9的数是________. 18.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).19.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.20.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.三、解答题21.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.22.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC 先向右平移3个单位长度,再向下平移2个单位长度,得到△A 'B 'C '.请画出△A 'B 'C '并写出A ',B ′,C '的坐标;(2)在△ABC 内有一点P (a ,b ),请写出按(1)中平移后的对应点P ″的坐标. 23.计算:(1)﹣12+327-﹣(﹣2)×9(2)3(3+1)+|3﹣2|24.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.25.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.26.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点(2,-1)关于x轴对称的点的坐标为(2,1).故选:A.【点睛】本题考查了关于x轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.2.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a+>,a+,3-)在第四象限.点A(21故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D解析:D【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:30>,20-<,∴点()3,2P -所在的象限是第四象限.故选D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),.+-根据各象限内点的坐标特征解答.4.D解析:D【分析】先判断出点P 在第一或第二象限,再根据点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值求解.【详解】解:∵点P 在x 轴上方,∴点P 在第一或第二象限,∵点P 到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为3或-3,纵坐标为2,∴点P 的坐标为(-3,2)或(3,2).故选D .【点睛】本题考查点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.5.B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.6.B解析:B【分析】根据平方根的定义,算术平方根的定义,近似数的定义及无理数的估算方法分别计算可判定求解.【详解】解:A.2的平方根是,故错误;B .(﹣4)2的算术平方根是4,故正确;C .近似数35万精确到万位,故错误;D .∵4<5,∴4,故错误.故选:B .【点睛】本题考查了平方根,算术平方根,近似数,无理数,掌握相关概念及性质是解题的关键. 7.A解析:A【分析】根据数轴可得a>0,b<0,然后根据加法法则可得a +b <0,然后根据平方根的性质和绝对值的性质及立方根化简即可.【详解】解:由数轴可得:a>0,b<0,∵|a |<|b |,∴a +b <0,∴||a b +=()a a b b ++-=2a故选A .【点睛】此题考查的是平方根的化简和绝对值的化简及开立方根,掌握利用数轴判断各字母的符号、加法法则、平方根的性质和绝对值的性质是解题关键.8.D解析:D【分析】根据无理数的概念逐一判断即可,其中无限不循环小数是无理数.【详解】3.14是有理数,2π是无理数,===是无理数,30.0010.1-=-是有理数,23+是无理数,227-是有理数, 5.121121112-……是无理数;故选D .【点睛】本题考查了无理数的概念,熟记无限不循环小数为无理数是本题的关键.9.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意; B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.10.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62° ,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B 观察点A 的方向是北偏东28°,故选:B .【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE 的度数是解题的关键. 11.B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.12.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x解析:-7或9【分析】根据纵坐标相同可知MN∥x轴,然后分点N在点M的左边与右边两种情况求出点N的横坐标,即可得解.【详解】∵点M(1,3)与点N(x,3)的纵坐标都是3,∴MN∥x轴,∵MN=8,∴点N在点M的左边时,x=1−8=−7,点N在点M的右边时,x=1+8=9,∴x的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.14.3【分析】根据x轴上的点坐标特点即可求出b=2然后代入横坐标即可【详解】解:∵点P(b+1b-2)在x轴上∴b-2=0b=2∴b+1=3故答案为:3【点睛】此题主要考查坐标轴上的点坐标特点解题的关键解析:3【分析】根据x轴上的点坐标特点即可求出b=2,然后代入横坐标即可.【详解】解:∵点 P(b+1,b-2)在x轴上,∴b-2=0b=2∴b+1=3.故答案为:3.【点睛】此题主要考查坐标轴上的点坐标特点,解题的关键是正确理解特点.15.4【分析】首先根据平方根的定义求出m值再根据立方根的定义求出n代入-n+2m求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4【分析】首先根据平方根的定义,求出m值,再根据立方根的定义求出n,代入-n+2m,求出这个值的算术平方根即可.【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n 的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m 的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m 、n 值,然后再求-n+2m 的算术平方根.16.<【分析】将05变形为将两数作差后借助<2即可得出﹣05<0进而即可得出<05【详解】解:∵05=∴﹣05=∵()2=322=43<4∴<2∴<0∴﹣05<0即<05故答案为:<【点睛】本题考查了实解析:<【分析】将0.5变形为12<2﹣0.5<0,进而即可得出<0.5. 【详解】解:∵0.5=12,∴12﹣0.5=22. ∵2=3,22=4,3<4, ∴2,∴0,∴12﹣0.5<0,<0.5. 故答案为:<.【点睛】﹣0.5<0是解题的关键. 17.﹣8±3【分析】根据相反数和平方根的定义及性质解答即可【详解】解:8的相反数是-8;∵∴平方得9的数是±3【点睛】本题考查了相反数和平方根的定义及性质解题关键是理解相反数和平方根的定义及性质解析:﹣8 ±3.【分析】根据相反数和平方根的定义及性质解答即可.【详解】解:8的相反数是-8;∵23=9,()2-3=9∴平方得9的数是±3.【点睛】本题考查了相反数和平方根的定义及性质,解题关键是理解相反数和平方根的定义及性质.18.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.19.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】∠=︒解:∵134∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质. 20.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可 解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.三、解答题21.(1)画图见解析,()()()4,2,0,4,1,1A B C '''----;(2)7【分析】(1)首先确定A 、B 、C 三点平移后的位置,然后再连接即可;(2)利用矩形面积减去周围多余三角形的面积即可.【详解】(1)如图所示,A B C '''∆即为所求,由图可知:()()()4,2,0,4,1,1A B C '''----(2)11135152413222A B CS'''∆=⨯-⨯⨯-⨯⨯-⨯⨯5315422=---7=【点睛】本题主要考查了作图平移变换,关键是正确确定组成图形的关键点平移后的位置.22.(1)图见解析,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)(a+3,b﹣2)【分析】(1)利用点平移的坐标变换规律写出A',B′,C'的坐标,然后描点即可;(2)利用(1)中的平移规律,把P点的横坐标加3,纵坐标减2得到P′点的坐标.【详解】解:(1)如图,△A'B'C'为所作,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)点P (a ,b )平移后的对应点P″的坐标为(a+3,b ﹣2).【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.平移中点的坐标变化规律:横坐标左减右加,纵坐标上加下减.23.(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.24.(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 25.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.26.证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D ∠=∠,∠=∠,∴D ABDAC DF,∴//∠=∠.∴A F【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键.。
【鲁教版】初一数学下期中试卷(附答案)(1)
一、选择题1.已知点 M到x轴的距离为 3,到y轴的距离为2,且在第四象限内,则点M的坐标为()A.(-2,3)B.(2,-3)C.(3,2)D.不能确定2.平面直角坐标系中,线段CD是由线段AB平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D的坐标为()A.(-1,-4) B.(1,-4) C.(1,2) D.(-1,2)3.过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,则点B的坐标为()A.(0,﹣2)B.(3,0)C.(0,3)D.(﹣2,0)4.如图,将点A0(-2,1)作如下变换:作A0关于x轴对称点,再往右平移1个单位得到点A1,作A1关于x轴对称点,再往右平移2个单位得到点A2,…,作A n-1关于x轴对称点,再往右平移n个单位得到点A n(n为正整数),则点A64的坐标为()A.(2078,-1)B.(2014 ,-1)C.(2078 ,1)D.(2014 ,1)5.2x-,则x+y的值为()A.-3 B.3 C.-1 D.16.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是()A.2015 B.2014 C.20152014D.2015×20147.下列等式成立的是()A.1±1 B4=±2 C3216- 6 D393 8.下列各组数中都是无理数的为()A.0.07,23,π;B.0.7•,π2;C26,π;D.0.1010101……101,π3 9.如图,由点B观察点A的方向是().A.南偏东62︒B.北偏东28︒C.南偏西28︒D.北偏东62︒10.下列语句中不是命题的有()(1)两点之间,线段最短;(2)连接A、B两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a为怎样的有理数,式子a2+1的值都是正数吗?A.1个B.2个C.3个D.4个11.如图,将直角边长为a(a>1)的等腰直角三角形ABC沿BC向右平移1个单位长度,得到三角形DEF,则图中阴影部分面积为()A.a-12B.a-1C.a+1 D.a2-112.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°二、填空题13.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.14.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______15.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-16.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3)311256273⎛⎫+-+- ⎪ ⎪⎝⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦17.求下列各式中的x :(1)29(1)25x -=(2)3548x +=18.如图,已知ABC 中,4AB =、5AC =、6BC =,将ABC 沿直线BC 向右平移得到A B C ''',点A 、B 、C 的对应点分别是A '、B '、C ',连接AA '.如果四边形AA C B ''的周长为19,那么四边形AA C B ''的面积与ABC 的面积的比值是________.19.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.20.如图,已知12∠=∠,求证:A BCH ∠=∠. 证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行) ∴A BCH ∠=∠(______)三、解答题21.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)22.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______).(2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置.23.计算:(1223168(2)(3)--(2)22(2)8x -=24.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________;(3)计算:213+223+233+......+293+303的值.25.请将下列题目的证明过程补充完整:⊥于点如图,F是BC上一点,FG AC于点,G H是AB上一点,HE ACE∠=∠,,12DE BC.求证://证明:连接EF.∴⊥⊥,FG AC HE AC,∴∠=∠=.FGC HEC︒90∴_______().//FG∴∠=∠_______().3∠=∠,又12=∠+∠,∴______24=∠.即∠_________EFC∴(___________).//DE BC⊥,OF平分26.如图,直线BC、DE相交于点O,OA、OF为射线,OA OB∠+∠=54.求AOE∠的度数.∠,BOF CODBOE【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.C解析:C【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(-4,-1)的对应点D 的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(-4,-1)的对应点D的坐标为(-4+5,-1+3),即(1,2).故选:C.【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.C解析:C【分析】直接利用点的坐标特点进而画出图形得出答案.【详解】解:如图所示:,过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,故点B的坐标为:(0,3).【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.4.C解析:C 【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可. 【详解】 解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A .故选C . 【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.5.D解析:D 【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可. 【详解】解:∵∴x-2=0,y+1=0 ∴x=2,y=-1 ∴x+y=2-1=1. 故答案为D . 【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.6.A解析:A 【分析】根据题意列出实数混合运算的式子,进而可得出结论; 【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅, ∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=20152014201312015 2014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯,故选:A.【点睛】本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.A解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A.书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A.【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.8.C解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误;B.0.7是有理数,故该选项错误;C,π都是无理数,故该选项正确;D.0.1010101……101是有理数,故该选项错误.故选:C.【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.B解析:B【分析】根据平行线的性质求出∠ABE,求出∠CBA,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.10.C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A、B两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a为怎样的有理数,式子a2+1的值都是正数吗?它为疑问句,所以(5)不是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.A解析:A【分析】直接根据平移的性质得到DE=AB=a,EF=BC=a,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a,EF=BC=a,EC=a-1,∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=- 故选:A .【点睛】 本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容.12.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B .【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.二、填空题13.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.14.【分析】先分别求出A1A2A3A4A5A6A7……的坐标据此发现每个点的横坐标为序号的一半据此解答即可【详解】解:根据题意可知……由此可知每个点的横坐标为序号的一半∴点P2021的横坐标为:故答案为 解析:20212. 【分析】 先分别求出A 1、A 2、A 3、A 4、A 5、A 6、A 7、……的坐标,据此发现每个点的横坐标为序号的一半,据此解答即可.【详解】解:根据题意可知,1122A ⎛ ⎝⎭,,()210A ,,3322A ⎛⎫ ⎪ ⎪⎝⎭,,()420A ,,5522A ⎛⎫- ⎪ ⎪⎝⎭,,()630A ,,772A ⎛ ⎝⎭……由此可知,每个点的横坐标为序号的一半,∴点P 2021的横坐标为:20212. 故答案为:20212. 【点睛】此题主要考查探索规律,解题的关键是根据题意发现规律. 15.数轴见解析<<0<<【分析】根据用数轴表示数的方法在数轴上先表示出各数再由数轴上右边的数总比左边的数大把这些数用<连接即可【详解】解:在数轴上表示各数如图:∴<<0<<【点睛】本题主要考查了实数的大解析:数轴见解析, 1.5-<04-.【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可.【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-.【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键. 16.(1);(2)-1;(3);(4)9【分析】(1)运用乘法分配律去括号再进行乘法运算最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根再进行加解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】 解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭=33231(8)()()()44343-⨯-+-⨯+-⨯- =11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3311256273⎫--⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=34(92) 29-⨯-⨯-=3(42) 2-⨯--=3(6) 2-⨯-=9.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.17.(1)x=或x=-;(2)x=【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】解:(1)∵9(x-1)2=25∴x-1=±即x-1=或x-1=-解得x=或x=-;(2)解析:(1)x=83或x=-23;(2)x=32-.【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】解:(1)∵9(x-1)2=25∴x-1=±53,即x-1=53或x-1=-53,解得x=83或x=-23;(2)35 48x+=354 8x=-3278 x=-x=32 -.【点睛】本题主要考查了求一个数的平方根与立方根,熟记定义是解答本题的关键.18.【分析】过点A作BC上的高根据平移的性质可得=且然后根据已知周长可得=2从而求出然后根据梯形的面积公式和三角形的面积公式即可求出结论【详解】解:过点A作BC上的高由平移的性质可得=且∴四边形为梯形∵解析:53【分析】过点A 作BC 上的高h ,根据平移的性质可得AA '=CC ',且//AA CC '',5A C AC ''==,然后根据已知周长可得AA '=2,从而求出BC ',然后根据梯形的面积公式和三角形的面积公式即可求出结论.【详解】解:过点A 作BC 上的高h由平移的性质可得AA '=CC ',且//AA CC '',5A C AC ''==∴四边形AA C B ''为梯形∵四边形AA C B ''的周长为19,∴AA '+A C ''+BC '+AB=19 ∴AA '+5+6+CC '+4=19∴2AA '=4∴AA '=2 ∴CC '=2∴BC '=BC +CC '=8∴四边形AA C B ''的面积与ABC 的面积的比为()128521632h AA BC hBC ''++== 故答案为:53. 【点睛】 此题考查的是图形的平移问题,掌握平移的性质是解题关键.19.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.20.对顶角相等AG 两直线平行同位角相等【分析】根据对顶角的定义可得再根据平行线的判定可得CH//AG 最后由两直线平行同位角相等即可证明【详解】解:证明:∵(已知)(对顶角相等)∴(等量代换)∴(AG )(解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.三、解答题21.(1)画图见解析,点1A 的坐标是(7,5);(2)﹣m ,﹣n【分析】(1)由点C 与其对应点C 1的坐标得出平移方式是先向右平移3个单位,再向上平移2个单位,进而可得点A 1、B 1的坐标,描点后再顺次连接即可;(2)对比点A 、B 、C 与其对应点P 、Q 、R 可得这种变换的方式,从而可得答案.【详解】解:(1)△111A B C 如图所示,点1A 的坐标是(7,5);(2)由于点A(4,3)的对应点P(﹣4,﹣3),点B(3,1)的对应点Q(﹣3,﹣1),点C(1,2)的对应点R(﹣1,﹣2),所以经过这种变换,对应点的横、纵坐标均互为相反数,M m n,所以点N的坐标为(﹣m,﹣n);因为点(),故答案为:﹣m,﹣n.【点睛】本题考查了平移变换与平移作图,属于常见题型,熟练掌握平移的性质是解题的关键.22.(1)+4,+1,-2,+1;(2)8秒;(3)图见解析.【分析】(1)根据题意,向上向右为正,向下向左为负,进而得出答案;(2)根据甲虫的行走路线,借助网格求出总路程,再根据时间等于路程除以速度即可;(3)结合各点变化得出其位置,进而得出答案.【详解】解:(1)结合网格可知→(-2,+1);→(+4,+1);C BA D故答案为:+4,+1,-2,+1;(2)∵甲虫的行走路线为:A→B→C→D→A,∴甲虫走过的路程为:1+4+2+1+1+2+4+1=16甲虫行走的时间为:16÷2=8秒;(3)如图2所示:【点睛】本题考查了正数和负数,坐标位置的确定,读懂题目信息,明确正数和负数的意义是解题的关键.23.(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(1223168(2)(3)--=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.24.(1)221(1)4n n ⨯⨯+;(2)3025;(3)172125【分析】(1)根据题中所给各式可直接进行分析求解;(2)由(1)可直接代入求值即可;(3)根据(1)可直接进行求解.【详解】解:(1)根据题意可得出:33333123(1)n n ++++-+=221(1)4n n ⨯⨯+;(2)将n =10代入221(1)4n n ⨯⨯+, 原式221×1010130254=⨯+=(); (3)原式=22221130(301)20(201)44⨯⨯+-⨯⨯+=172125.【点睛】本题主要考查实数的运算,熟练掌握实数的运算是解题的关键.25.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 26.126º【分析】设BOF ∠=x ,根据角平分线的定义表示出∠BOE ,再根据对顶角相等求出COD ∠,然后列出方程求出x ,从而得到∠BOE 的度数,再根据垂线的定义求出AOB ∠,最后根据AOE ∠=AOB BOE ∠+∠代入数据进行计算即可得解.【详解】设BOF ∠=x ,∵OF 平分∠BOE ,∴∠BOE =2BOF ∠=2x ,∴COD ∠=∠BOE =2x (对顶角相等),∵BOF COD ∠+∠=54,∴2x x +=54,解得x =18,∴∠BOE =218⨯=36,∵OA OB ⊥,∴AOB ∠=90,∴AOE ∠=AOB BOE ∠+∠=9036+=126.【点睛】本题考查了垂线的定义,对顶角相等的性质,角平分线的定义,是基础题,设出未知数并根据已知条件列出方程求出∠BOE 是解题的关键.。
【鲁教版】初一数学下期中试卷(及答案)(1)
一、选择题1.已知A ,B 两地相距4千米,上午8:00,甲从A 地出发步行到B 地,8:20乙从B 地出发骑自行车到A 地,甲、乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A 地的时刻为( )A .8:30B .8:35C .8:40D .8:45 2.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t 的关系的大致图象是( )A .B .C .D . 3.如图是某市一天的气温T(℃)随时间t(时)变化的图象,那么这天的( )A .最高气温是10 ℃,最低气温是2 ℃B .最高气温是6 ℃,最低气温是2 ℃C .最高气温是6 ℃,最低气温是-2 ℃D .最高气温是10 ℃,最低气温是-2 ℃ 4.在三角形面积公式S =ah ,a =2cm 中,下列说法正确的是( ) A .S ,a 是变量,h 是常量 B .S ,h 是变量,是常量 C .S ,h 是变量,a 是常量 D .S ,h ,a 是变量,是常量 5.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°6.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 7.如图,有A ,B ,C 三个地点,且AB ⊥BC ,从A 地测得B 地在A 地的北偏东43°的方向上,那么从B 地测得C 地在B 地的( )A .北偏西47B .南偏东47C .北偏东43D .南偏西43 8.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠ 9.下列运算正确的是( )A .a 6÷a 3=a 2B .(a 2)3=a 5C .(﹣2a 2)3=﹣8a 6D .(2a +1)2=4a 2+2a +110.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 11.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷=12.如3a b +=-,1ab =,则22a b +=( )A .-11B .11C .-7D .7二、填空题13.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势 年 份2006 2007 2008 … 入学儿童人数 2520 2330 2140 …(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.14.声音在空气中传播的速度y (米/秒)(简称音速)与气温x (℃)之间的关系如下:从表中可知音速y 随温度x 的升高而_____.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米. 15.一个角的余角比它的补角的一半少30,则这个角的度数为___________. 16.一个角是它的补角的五分之一,则这个角的余角是______度.17.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.18.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;……(1)()432(1)1x x x x x -++++=___; (2)根据规律可得:()1(1)1n x x x --+++=_____(其中n 为正整数); (3)计算:()5049482(31)333331-++++++; 19.已知3927x y ÷=,则20202y x +-的值为_________.20.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.三、解答题21.如图,圆柱的高是,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)写出体积与半径的关系式;(3)当底面半径由变化到时,通过计算说明圆柱的体积增加了多少. 22.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月利润(利润=收入费用-支出费用)y (元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中, 是自变量, 是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为 元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达 人.23.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.24.如图所示,直线AB 、CD 相交于点O ,OE 是∠BOD 的平分线,∠AOE =140°.猜想与说理:(1)图中与∠COE 互补的角是 .(2)因为∠AOD +∠AOC =180°,∠BOC +∠AOC =180°,所以根据 ,可以得到∠AOD =∠BOC .探究与计算:(3)请你求出∠AOC 的度数.联想与拓展:(4)若以点O 为观测中心,OB 为正东方向,则射线OC 的方向是 . 25.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 26.计算(1))(253a a b -(2))()(2322223m n m n m n m n +-÷【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【详解】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.故选C.【点睛】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.2.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.3.D解析:D【解析】试题横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为12时,10℃,;温度最低应找到函数图象的最低点所对应的x值与y值:为4时,-2℃.D正确.故选D.4.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.5.D解析:D【分析】根据对顶角相等求出∠AOC,根据角平分线的定义计算即可求出∠COE的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE平分∠AOC,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D.【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.6.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 7.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF ∥DE ,∴∠ABE =∠FAB =43°,∵AB ⊥BC ,∴∠ABC =90°,∴∠CBD =180°-∠ABC -∠ABE =47°,∴C 地在B 地的北偏西47°的方向上.故选:A .【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.8.A解析:A【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】解:∵////a b c ,∴∠ABE=∠α,∠CBE=∠β,∴∠ABC=a β∠+∠,∵BD 平分ABC ∠,∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A .【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.9.C解析:C【分析】分别根据同底数幂的除法,幂的乘方,积的乘方以及完全平方公式逐一判断即可.【详解】解:A. a 6÷a 3=a 3,故选项A 不合题意;B.(a 2)3=a 6,故选项B 不合题意;C.(-2a 2b )3=-8a 6b 3,正确,故选项C 符合题意;D.(2a+1)2=4a 2+4a+1,故选项D 不合题意.故选:C .【点睛】本题主要考查了幂的运算以及完全平方公式,熟练掌握幂的运算法则是解答本题的关键. 10.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.11.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.12.D解析:D【分析】根据222()2a b a b ab +=+-直接代入求值即可.【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7.故选:D .【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键二、填空题13.年份入学儿童人数2014【分析】(1)根据题意每一年的递减人数相等判断出y 与x 是一次函数关系设y=kx+b 再取两组数据代入得到二元一次方程组求出kb 即可得到答案;(2)根据不超过1000人列出不等式解析:年份 入学儿童人数 2014【分析】(1)根据题意,每一年的递减人数相等判断出y 与x 是一次函数关系,设y=kx+b ,再取两组数据代入得到二元一次方程组,求出k 、b 即可得到答案;(2)根据不超过1000人列出不等式,然后求解即可得到答案.【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量,故答案为:年份 ;入学儿童人数;(2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000,解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人.故答案为: 2014.【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.14.增大;686【分析】从表格可以看到y 随x 的增大而增大;20℃时音速为343米/秒距离为343×02=686米【详解】从表格可以看到y 随x 的增大而增大;20℃时音速为343米/秒343×02=686米解析:增大; 68.6.【分析】从表格可以看到y 随x 的增大而增大;20℃时,音速为343米/秒,距离为343×0.2=68.6米.【详解】从表格可以看到y 随x 的增大而增大;20℃时,音速为343米/秒,343×0.2=68.6米,这个人距离发令点68.6米;故答案为:增大;68.6.【点睛】本题考查变量之间的关系,函数的表示方法;能够通过表格观察出变量的变化关系,利用表格的数据计算距离是解题的关键.15.【分析】这个角的度数为x 根据题意列一元一次方程并求解即可得到答案【详解】这个角的度数为x 根据题意得:∴∴故答案为:【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质从而完成 解析:60︒【分析】这个角的度数为x ,根据题意,列一元一次方程并求解,即可得到答案.【详解】这个角的度数为x根据题意得:()()190301802x x -+=- ∴180260180x x -+=-∴60x =故答案为:60︒.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解. 16.60【分析】设这个角为x 补角为(180°-x )再由这个角是补角的五分之一可得出方程求出x 的值即可得到答案【详解】解:设这个角为x 补角为(180°-x )则解得:x=30°则这个角为30°所以它的余角=解析:60【分析】设这个角为x ,补角为(180°-x ),再由这个角是补角的五分之一,可得出方程,求出x 的值即可得到答案.【详解】解:设这个角为x ,补角为(180°-x ),则1(180)5x x =︒- , 解得:x=30°,则这个角为30°.所以,它的余角=90°-30°=60°故答案为:60.【点睛】本题考查了余角和补角的知识,关键是掌握互余的两角之和为90°,互补的两角之和为180°.17.64°116°【分析】根据垂线的定义进行作答【详解】由OE ⊥AB 得到∠AOE=90°所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°∠COB=180°-∠BOD=116°【点解析:64° 116°.【分析】根据垂线的定义进行作答.【详解】由OE ⊥AB ,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.18.(1);(2);(3)【分析】(1)第二个括号里最高次数4根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x 次数根据解析:(1)51x -;(2)1n x -;(3)5131-.【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5;(2) 第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x ,次数根据观察规律确定即可.【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4, ∴()432(1)1x x x x x -++++=51x -, 故应该填51x -;(2)∵()11n x x -+++的最高次数是n-1, ∴()1(1)1n x x x --+++=1n x -,故应该填1n x -;(3)由(2)知:()1(1)11n n x x x x --+++=-,令3x =,51n =,得:()504948251(31)33333131-++++++=-,故应该填5131-.【点睛】 本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键.19.【分析】把化成同底数幂的除法算式得出的值然后整体代入算式即可求解【详解】∵∴∴故答案为:2017【点睛】此题考查了同底数幂的除法的逆运算然后用到整体代入的思想求解要熟练同底数幂的除法的法则是解题的关键解析:【分析】把3927x y ÷=化成同底数幂的除法算式232333=3x y x y -÷=得出2x y -的值,然后整体代入算式即可求解.【详解】∵23933x y x y ÷=÷23x y -=33=∴23x y -=,∴202022020(2)y x x y +-=--20203=-2017=.故答案为:2017.【点睛】此题考查了同底数幂的除法的逆运算,然后用到整体代入的思想求解.要熟练同底数幂的除法的法则是解题的关键.20.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.三、解答题21.(1)半径;体积;(2);(3).【分析】(1)根据常量和变量的定义来判断自变量、因变量和常量;(2)圆柱体的体积等于底面积乘以高,底面积等于π乘以半径的平方,将它用含有V 和r 的关系式表达出来即可;(3)利用圆柱的体积计算方法计算增加的体积即可.【详解】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)根据圆柱体的体积计算公式:.(3)体积增加了(π×102−π×12)×3=297πcm 3.【点睛】本题考查变量之间的关系,(1)考查自变量与因变量,理解自变量与因变量的定义是解题关键;(2)考查用关系式法表示变量之间的关系,在本题中掌握圆柱体体积的计算方法尤为重要;(3)分别代入求值做差即可.22.(1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500.【解析】【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;(2) ∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0,∴每月乘客量达到2000人以上时,该公交车才不会亏损;(3) ∵每月乘客量增加500人时,每月利润增加1000元,∴当每月乘车人数为3500人时,每月利润为3000元;(4) ∵每月乘客量增加500人时,每月利润增加1000元,∴若5月份想获得利润5000元,5月份的乘客量需达4500人.【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键. 23.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】 170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒,又//AB CD ,255BED ∴∠=∠=︒.【点睛】本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.24.(1)∠BOE 和∠DOE ;(2)同角的补角相等;(3)∠AOC =80°;(4)北偏西10°【分析】(1)根据互为补角的两角之和为180°可得出与∠COE 互补的角;(2)根据同角(或等角)的补角相等即可解答;(3)先求出∠BOE ,继而根据角平分线的性质得出∠DOB ,再由对顶角相等可得出∠AOC 的度数;(4)根据补角的定义求得∠BOC 的值,然后根据直角是90°和方向角的定义即可解答.【详解】解:(1)因为OE 是∠BOD 的平分线,∠COE+∠DOE=180°, 所以∠BOE =∠DOE ,故与∠COE 互补的角有:∠BOE 和∠DOE ;(2)因为同角(或等角)的补角相等,所以∠AOD +∠AOC =180°,∠BOC +∠AOC =180°时,∠AOD =∠BOC .即答案为:同角的补角相等;(3)由题意得,∠BOE=180°-∠AOE=40°,因为OE 是∠BOD 的平分线,所以∠BOD=2∠BOE=80°所以∠AOC=80°;(4)如图,MN 为南北方向,由(3)得∠AOC=80°,所以∠BOC=180°-∠AOC=180°- 80°=100°,又因为∠BOM=90°,所以∠MOC=∠BOC-∠BOM=100°- 90°=10°,故射线OC 的方向是北偏西10°.【点睛】本题考查补角和方位角的知识,结合图形进行考查比较新颖,注意掌握互为补角的两角之和为180°,另外本题还用到对顶角相等及角平分线的性质.25.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.26.(1)3253a b a -;(2)1+23m n -.【分析】(1)利用单项式乘以多项式乘开,再利用单项式乘以单项式法则计算即可;(2)利用多项式除以单项式法则转化为单项式除以单项式法则计算即可.【详解】解:(1))(253a a b -,=2235a a a b ⋅-⋅,=3253a b a -;(2))()(2322223m n m n m n m n +-÷, =223222223m n m n m n m n m n m n ÷+÷-÷,=1+23m n -.【点睛】本题考查单项式乘以多项式与多项式除以单项式的计算,掌握单项式乘以多项式与多项式除以单项式的计算,单项式乘以单项式法则以及单项式除以单项式的法则是解题关键.。
【鲁教版】初一数学下期中试题含答案(1)
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 3.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗4.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1) 5.2x -,则x+y 的值为( ) A .-3B .3C .-1D .1 6.下列各式计算正确的是( ) A 31-B 38= ±2 C 4= ±2 D .9 7.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 818.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 9.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 10.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒11.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACE D .∠DAC =∠BCA12.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2二、填空题13.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.14.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.15.已知213a -=,31a b -+的平方根是4±,c 是43的整数部分,求3a b c ++的平方根.16.已知3331.51 1.147,15.1 2.472,0.1510.5325===,则31510的值是______________________.17.已知223y x x =-+-+,则y x 的平方根是____.18.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .19.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.20.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.三、解答题21.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).22.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:A→B ( +1,+3 ),从B 到A 记为:B→A ( -1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向.填空:(1)图中A→C ( , ) C→ ( , )(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M 的坐标为( , )(3)若图中另有两个格点P 、Q ,且P→A ( m+3,n+2),P→Q(m+1, n -2),则从Q 到A 记为( , )23.计算:(1)﹣12+327-﹣(﹣2)×9(2)3(3+1)+|3﹣2|24.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.25.如图,AD BC ⊥于点D ,EG BC ⊥于点G ,若1E ∠=∠,试说明:23∠∠=.下面是推理过程,请将推理过程补充完整.∵AD BC ⊥于点D ,EG BC ⊥于点G (已知),∴90ADC EGC ∠=∠=︒∴//AD EG ( )∴12∠=∠( )∵1E ∠=∠(已知),∴E ∠=_______(等量代换)又∵//AD EG (已证),∴______3=∠( )∴23∠∠=(等量代换).26.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.2.C解析:C【分析】根据点A 到x 轴的距离与到y 轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m 的值.【详解】解:∵点A 到x 轴的距离与到y 轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C .【点睛】本题考查了点的坐标,关键是掌握到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值.3.A解析:A【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A .【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--,. 4.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】 本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.5.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.6.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.7.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227分数,是有理数,选项不符合题意;B、1.2012001是有理数,选项不符合题意;C、2 是无理数,选项符合题意;D,9是整数是有理数,,选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.9.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 10.B解析:B【分析】直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键. 11.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC =∠DAB ,∴AD ∥BC ,故A 正确,本选项不符合题意;B.∵∠ADC+∠BCD =180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.12.B解析:B【详解】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B.二、填空题13.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A(2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A(2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.14.【分析】先根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A(11)B(﹣11)C(﹣1﹣2)D (1﹣2)∴AB =1﹣(﹣1)=2BC =1﹣(解析:()0,1【分析】先根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD 一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键. 15.【分析】根据求出a 的值根据3a+b-1的平方根是±4求出b 的值根据c 是的整数部分求出c 的值把求得的值代入a+b+3c 然后求出入a+b+3c 的平方根即可【详解】∵∴解得:∵的平方根是∴解得:∵是的整数解析:5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.16.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.17.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.18.(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 19.4【分析】观察图象发现平移前后BE 对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.20.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案 解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.三、解答题21.(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标.【详解】(1)由图可知能通过平移使ABC 与222A B C △重合,∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称,∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b∴点A (m ,1+b ),点B (m -a ,1)又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1)∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 22.(1) +3,-1;D ,+1,+3;(2)7,3;(3)+2,+4【分析】(1)根据规定“向上向右走均为正,向下向左走均为负”即可求解;(2)将从A 处到M 处的行走路线的第一个数相加后等于+6,表明是向右走了6个单位,将行走路程的第二个数相加后等于+1,表明是向上走了1个单位,由此即可求解;(3)根据P→A ( m+3,n+2),P→Q(m+1, n -2)可知m+1-(m+3)=-2,n-2-(n+2)=-4,相当于向左走了2个单位,向下走了4个单位,由此即可求解.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+3,-1);C→D记为(1,+3);故答案为:+3,-1;D,+1,+3;(2)若这只蚂蚁从A处去M处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),∵+3+(+2)+(-3)+(+4)=+6,∴相当于向右走了6个单位,∵+3+(-1)+(-3)+(+2)=1,∴相当于向上走了1个单位,又A点的坐标为(1,2),故点M的坐标为(7,3),故答案为:7,3;(3)∵P→A ( m+3,n+2),P→Q(m+1, n-2),∴m+1-(m+3)=-2,n-2-(n+2)=-4,∴点A向左走2个格点,向下走4个格点到点N,∴Q→A应记为(+2,+4).故答案为:+2,+4.【点睛】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.23.(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.24.(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a)的值,求解可得答案;,相等或互为相反数,列式求解可得a的值,根据平方运算,可得(2)根据题意可知x y答案.【详解】解:(1)∵x的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 25.见解析【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD ∥EG ,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.【详解】∵AD ⊥BC 于点D ,EG ⊥BC 于点G (已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD ∥EG (同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E=∠1(已知)∴∠E=∠2(等量代换)∵AD ∥EG ,∴∠E=∠3(两直线平行,同位角相等).∴∠2=∠3(等量代换).【点睛】考查了平行线的性质、垂直的定义,解题关键是熟练掌握平行线的性质.26.答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C∴∠=∠∴//AB CD∴∠=∠.A D【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.。
【鲁教版】初一数学下期中试题(附答案)
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0-B .()2,2-C .()2,0D .()5,1 2.已知P(a ,b )满足ab=0,则点P 在( ) A .坐标原点 B .X 轴上 C .Y 轴上 D .坐标轴上 3.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 5.在实数3,-3.14,0,π364中,无理数有( )A .1个B .2个C .3个D .4个 6.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 7.在03、0.53639227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .68.下列各数中,属于无理数的是( ) A .227 B .3.1415926 C .2.010010001 D .π3- 9.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离10.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个11.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°12.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒二、填空题13.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.14.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 15.在下列各数中,无理数有_______个.331320252,7,,2,,5,8,,0,0.57577577756239π--(相邻两个5之间的7的个数逐次加1).16.计算2020318|4|-+---=_________.17.比较大小:-3_______ -1.518.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.19.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 20.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.三、解答题21.已知点()32,24A a a +-,试分别根据下列条件,求出a 的值并写出点A 的坐标. (1)点A 在x 轴上;(2)点A 与点8'4,3A ⎛⎫-- ⎪⎝⎭关于y 轴对称;(3)经过点()32,24A a a +-,()3,4B 的直线,与x 轴平行;(4)点A 到两坐标轴的距离相等.22.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.23.38642--.24.解方程:(1)2810x -=;(2)38(1)27x +=. 25.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,2AOD BOD =∠∠.(1)求DOE ∠的度数;(2)求BOF ∠的度数.26.已知:如图,//,12180EF CD ︒∠+∠=.(1)求证://GD CA .(2)若CD 平分,ACB DG 平分CDB ∠,且36A ︒∠=,求ACB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据点A 的平移规律,求出点'C 的坐标即可.【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,, 故选:C .【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.D解析:D【分析】根据题意可得0a =或0b =,利用点的坐标特征即可求解.【详解】解:∵0ab =,∴0a =或0b =,∴点P 在坐标轴上,故选:D .【点睛】本题考查坐标轴上点的坐标特征,掌握点的坐标特征是解题的关键.3.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab=0,则a=0或b=0,所以点P (a ,b )表示在坐标轴上的点,故此选项不符合题意;B 、当a >0时,点(1,a )在第一象限,故此选项不符合题意;C 、已知点A (3,-3)与点B (3,3),A ,B 两点的横坐标相同,则直线AB ∥y 轴,故此选项不符合题意;D 、若ab >0,则a 、b 同号,故点P (a ,b )在第一或三象限,故此选项符合题意. 故选:D .【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.4.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得.【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△ 故选B【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.5.B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.6.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….7.B解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B .【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A.在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误;B.两直线相交,对顶角相等,故本选项错误;C.垂线段最短,故本选项正确;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误;故选:C.【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.10.B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.11.D解析:D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.12.C解析:C【分析】分别过C、D作AB的平行线CM和DN,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C、D作AB的平行线CM和DN,∵AB//EF,∴AB//CM//DN//EF,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .二、填空题13.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A (2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A (2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.14.7或﹣4【分析】根据题意可以求得a 的值然后再对t 进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t >2时h=t ﹣1则3(t ﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a 的值,然后再对t 进行讨论,即可求得t 的值.【详解】由题意可得,“水平底”a =1﹣(﹣2)=3,当t >2时,h =t ﹣1,则3(t ﹣1)=18,解得,t =7;当1≤t ≤2时,h =2﹣1=1≠6,故此种情况不符合题意;当t <1时,h =2﹣t ,则3(2﹣t )=18,解得t =﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.15.7【分析】先计算立方根算术平方根再根据无理数的定义即可得【详解】则这些数中无理数为共有7个故答案为:7【点睛】本题考查了立方根算术平方根无理数熟练掌握无理数的概念是解题关键解析:7【分析】先计算立方根、算术平方根,再根据无理数的定义即可得.【详解】2=,53=,π-,共有7个, 故答案为:7.【点睛】本题考查了立方根、算术平方根、无理数,熟练掌握无理数的概念是解题关键. 16.-5【分析】本题涉及乘方绝对值立方根以及二次根式化简等知识点在计算时需要针对每个知识点分别进行计算然后根据实数的运算法则求得计算结果【详解】解:===-5故答案为:-5【点睛】本题主要考查了实数的综解析:-5【分析】本题涉及乘方、绝对值、立方根以及二次根式化简等知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:20201|-+----=12|2|---=122=-5.故答案为:-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、二次根式、三次根式、绝对值等知识点的运算.17.<【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:(−)2=3(-15)2=225∵3>225∴-<-15故答案为:<此题主要考查了实数大小解析:<.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:)2=3,(-1.5)2=2.25,∵3>2.25,∴-1.5.故答案为:<.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.18.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70︒【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB=90°+50°=140°,∴∠AOD=140°,∵OF平分∠AOD,∴∠FOD=1∠AOD=70°,2故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.19.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 20.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE 和BC 被AB 所截∴当时AD ∥BC (内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B ∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE 和BC 被AB 所截,∴当DAB B ∠=∠时,AD ∥BC (内错角相等,两直线平行).故答案为DAB B ∠=∠【点睛】此题考查平行线的性质,难度不大三、解答题21.(1)2a =,A 点的坐标是()8,0;(2)23a =,A 点的坐标是84,3⎛⎫- ⎪⎝⎭;(3)4a =,A 点的坐标是()14,4;(4)当点A 在一,三象限夹角平分线上时,6a =-,A点的坐标是()16,16--,当点A 在二,四象限夹角平分线上时, 25a =,A 点的坐标是1616,55⎛⎫- ⎪⎝⎭. 【分析】(1)根据x 轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据关于y 轴对称点的性质,横坐标互为相反数、纵坐标相同,可得方程,解方程可得答案;(3)根据平行于x 轴直线上的点纵坐标相等,可得方程,解方程可得答案;(4)根据点A 到两坐标轴的距离相等,可得关于a 的方程,解方程可得答案.【详解】解:(1)点A 在x 轴上,则240,a -=解得a =2,323228a +=⨯+=,故A 点的坐标是()8,0.(2)根据题意得,324a +=, 解得2.3a = A 点的坐标是84,.3⎛⎫- ⎪⎝⎭(3)因为AB ∥x 轴,所以244,a -=解得a =4,3214.a +=A 点的坐标是()14,4.(4)当点A 在一,三象限夹角平分线上时,有3224,a a +=-解得6a =-3216.a +=-A 点的坐标是()16,16.--当点A 在二,四象限夹角平分线上时,有32240,a a ++-= 解得25a = 16325a +=, A 点的坐标是1616,.55⎛⎫-⎪⎝⎭ 【点睛】本题考查了点的坐标,x 轴上的点的纵坐标等于零;y 轴上的点的横坐标等于零;关于y 轴对称点的性质,横坐标互为相反数、纵坐标相同;平行于x 轴直线上的点纵坐标相等. 22.(1)1m =;(2)6【分析】(1)根据点在x 轴上纵坐标为0求解.(2)根据直线MN ⊥x 轴的横坐标相等求解.【详解】解:(1)由题意,得10m -=,解得:1m =.(2)∵点(3,2)N -,且直线MN x ⊥轴,∴233m +=-,解得:3m =-,∴(3,4)M --,∴()246MN =--=.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.23.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.24.(1)9x =±;(2)12x =. 【分析】(1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=,∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 25.(1)30°,(2)45°.【分析】(1)根据邻补角的和等于180°求出∠BOD 的度数,然后根据角平分线的定义解答; (2)先求出∠COE 的度数,再根据角平分线的定义求出∠EOF ,再根据∠BOF =∠EOF -∠BOE ,代入数据进行计算即可得解.【详解】解:(1)∵2AOD BOD =∠∠,∠AOD +∠BOD =180°,∴∠BOD =13×180°=60°, ∵OE 平分∠BOD , ∴∠DOE =∠BOE=12∠BOD =12×60°=30°; (2)∠COE =∠COD ﹣∠DOE =180°﹣30°=150°,∵OF 平分∠COE ,∴∠EOF =12∠COE =12×150°=75°, 由(1)得,∠BOE =30°,∴∠BOF =∠EOF -∠BOE =75°-30°=45°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.26.(1)证明见解析.(2)72°.【分析】(1)利用两直线平行,同旁内角互补可得∠1+∠ECD=180°,从而可得∠2=∠ECD ,再根据内错角相等两直线平行可得GD ∥CA ;(2)由GD ∥CA ,得∠A=∠GDB=∠2=36°=∠ACD ,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF ∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=36°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=36°,∴∠ACD=∠2=36°,∵CD平分∠ACB,∴∠ACB=2∠ACD=72°.【点睛】本题考查角平分线的有关证明和平行线的性质和判定.能正确识别同位角、内错角、同旁内角是解题关键.。
鲁教版七下数学期中考试
鲁教版七下数学期中考试文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)初二数学练习题(鲁教版五四制模拟卷)1下列方程中○1x=y ○2xy=-5 ○3x +2y=x2○4x- 1x=2其中是二元一次方程组的有,A. 1个B. 2个C. 3个个2.下列句子属于命题的是A. 直线、射线和线段B. 两点之间线段最短 .C. 你今天运动了吗D. 画一个90度的角3. 下列事件是确定事件的是.A 2010年的教师节是阴天 B. 吸烟有害健康C. 弟弟的体重比哥哥轻D. 明天是晴天4. 下列四组数值中,哪一组是二元一次方程组{7x−3x=22x+x=8的解A. {x=2x=4B {x=−1x=−3C{x=4x=2 D {x=1x=6在此处键入公式。
5.如图,直线a‖b ,三角板的直角顶点在直线b上,已知∠1=25°则∠2为多少度A. 25°B. 55°°D77°6. 下列诗句所描写的事件中,不可能事件是A.大漠孤烟直B.锄禾日当午C.水往低处流D. 手可摘星辰7. 如图已知函数y=x+1和y=ax+3的图像相交于点P,点P的横坐标为1,那么x,y的方程组{x−x=−1xx−x=−3的解为A.{x=1x=2B. {x=2x=1C. {x=1x=−2 D {x=−2x=18. 如图,下列给出的条件中不能判定AB‖DF的是A. ∠A+∠2=180°B. ∠1=∠AC.∠1=∠4D. ∠3=∠A9. 如图,如果AB‖CD , CD‖EF ,那么∠BCE等于A. ∠1+∠2B. ∠2-∠1C. 180°-∠2+∠1D. 180°-∠1+∠210. 如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板两条直角边DE,DF恰好分别经过点B,C如果∠A=40°,求∠ABD+∠ACD° B. 40°° D.11题图60°11. 如图,在△ABC中,∠A=52°,∠ABC和∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,以此类推,∠ABD4和∠ACD4的角平分线交于点D5,则∠BD5C ° B. 56° C. 94° D. 68°12如图,在正方形ABCD的每个顶点上写一个数字,把这个正方形每条边的两端上的数加起来,将和写在这条边上,已知AB上的数字是3,BC上的数字是7,CD上的数字是12,那么AD上的数字是A. 2B. 7题图二、填空(共9小题;共27分)13. 方程组{x+x=13x−x=3的解是____________14.如图,BD是△ABC的角平分线。
【鲁教版】七年级数学下期中试卷(含答案)
一、选择题1.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的图象,那么符合小明行驶情况的图象大致是( ) A .B .C .D .2.某市一周平均气温(℃)如图所示,下列说法不正确的是( )A .星期二的平均气温最高B .星期四到星期日天气逐渐转暖C .这一周最高气温与最低气温相差4 ℃D .星期四的平均气温最低3.如图所示是某市6月20日的温度随时间变化的图象.通过观察可知,下列说法不正确的是( ).A .这天15时温度最高B .这天3时温度最低C .这天的温差是13℃D .这天21时温度是32℃4.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x与售价y 如下表: 长度x/m 1 2 3 4 … 售价y/元8+0.316+0.624+0.932+1.2…下列用长度x 表示售价y 的关系式中,正确的是( ) A .y=8x+0.3B .y=(8+0.3)xC .y=8+0.3xD .y=8+0.3+x5.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒6.下列说法正确的有( ) ①绝对值等于本身的数是正数. ②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离. ④若AC =BC ,则点C 就是线段AB 的中点. ⑤不相交的两条直线是平行线 A .1个B .2个C .3个D .4个7.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O '为圆心,OC 为半径作弧,交OA '于'C ; (4)以C '为圆心,OC 为半径作弧,交前面的弧于D ; (5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角. 以上作法中,错误的一步是( ) A .()2B .()3C .()4D .()58.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .1269.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n- B .m ﹣n C .2m D .2n 10.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( ) A .32a bB .23a bC .32a b +D .32a b +11.下列运算正确的是( ) A .()326a a --=B .22326a a a ⋅=C .422a a ÷=D .()2211a a +=+12.如3a b +=-,1ab =,则22a b +=( ) A .-11 B .11 C .-7D .7二、填空题13.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃. 15.若∠A 的余角与∠A 的补角的度数和比平角的13多110︒,则∠A =____________. 16.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.17.如图,点 B 在点 C 北偏东 39°方向,点 B 在点 A 北偏西 23°方向,则∠ABC 的度数为 ___________.18.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.19.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____. 20.若13x x -=,则221x x+= _______________. 三、解答题21.商店在出售某商品时,在进价的基础上增加一定的利润,其质量x 与售价y 之间的关系如下表所示: 质量x/千克 1 2 3 4 … 售价y/元8+0.416+0.824+1.232+1.6…(1)请根据表中提供的信息,写出y 与x 的关系式; (2)求x=2.5时,y 的值; (3)当x 取何值时,y=126?22.如图所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是 ℃,温度是0℃时的时刻是 时,最暖和的时刻是 时,温度在-3℃以下的持续时间为 时;(2)从图象中还能获取哪些信息?(写出1~2条即可)23.如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题. (1)求∠AEF 的度数; (2)∠A FD '= 度.24.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒ ∴//AB ________∴3ADE ∠=∠(________________________) ∵3B ∠=∠ ∴_______B =∠∴//DE BC (____________________________) ∴180C DEC ∠+∠=︒ ∵66C ∠=︒ ∴114DEC ∠=︒25.小华同学在学习整式乘法时发现,如果合理地使用乘法公式可以简化运算,于是如下计算题她是这样做的:()()()22322x y x y x y ---+22224632x xy y x y =-+-- 第一步 2236x xy y =-+ 第二步查一下.”小华仔细检查后自己找到了如下一处错误:小禹看到小华的改错后说:“你还有错没有改出来.”小华还有哪些错误没有改出来?请你帮助小华把第一步中的其他错误圈画出来,再完成此题的正确解答过程.26.先化简,再求值:22(2)(2)()2(2)(2)+++-+-++a b a b a a b a b a b ,其中21a =,21b =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S 是均匀减小的,接着不变,后来速度加快,所以S 变化也加快变小,由此即可作出选择. 【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S 先缓慢减小,再不变,在加速减小. 故选D . 【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.2.C解析:C 【解析】 【分析】根据图象分析判断即可. 【详解】由图象可得:星期二的平均气温最高,故A 正确; 星期四到星期日天气逐渐转暖,故B 正确;这一周最高气温与最低气温相差12-4=8℃,故C 错误; 星期四的平均气温最低,故D 正确; 故选C . 【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.3.C解析:C 【解析】观察图象可知:这天15时温度最高、这天3时温度最低、这天的温差是15℃、这天21时温度是32℃,故A 、B 、D 正确,C 错误, 故选C.4.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.D解析:D 【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120∠=︒,BAE∴∠=︒-∠=︒,18060AEF BAEAB CD,又////∴,EF CD∴=∠=∠︒,DCECEF40∴∠=∠+∠=︒+︒=︒,6040100AEC AEF CEF故选:D.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.6.B解析:B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A、B、C不共线时,AC=BC,则点C也不是线段AB的中点,故④错误;⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B.【点睛】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.7.C解析:C【分析】根据作一个角等于已知角的方法解决问题即可.【详解】解:(4)错误.应该是以C'为圆心,CD为半径作弧,交前面的弧于D';故选:C.【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.8.A解析:A【分析】根据平行线的性质可求解∠GFD的度数,再结合垂线的定义可求解.【详解】解:∵AB//CD ,∠1=54°, ∴∠GFD=∠1=54°, ∵EF ⊥CD , ∴∠EFD=90°, 即∠2+∠GFD=90°, ∴∠2=36°. 故选:A . 【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.9.A解析:A 【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等. 【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+,解得:2m nx -=. 故选:A . 【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.10.A解析:A 【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解. 【详解】∵2,32m n a b ==, ∴3102m n+=31022mn⨯=()()31022nm ⨯=()()23232nm ⎡⎤⨯⎣⎦=32a b , 故选A . 【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.11.A解析:A 【分析】根据整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式依次计算判断即可. 【详解】 A 、()326a a --=,故此选项正确;B 、23326a a a ⋅=,故此选项不正确;C 、422a a a ÷=,故此选项不正确;D 、()22211a a a ++=+,故此选项不正确; 故选:A. 【点睛】此题考查整式的计算能力,正确掌握整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式计算法则是解题的关键.12.D解析:D 【分析】根据222()2a b a b ab +=+-直接代入求值即可. 【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7.故选:D . 【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键二、填空题13.【解析】小红家与学校的距离为6km 从图象可知她从学校到家用时为3-2=1小时故从学校到家的平均速度等于6÷1=6km/h 故答案为:6【点睛】本题考查了函数的图象分段函数解此题的关键是找到相应的路程与解析:【解析】小红家与学校的距离为6km ,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h , 故答案为:6.【点睛】本题考查了函数的图象,分段函数,解此题的关键是找到相应的路程与时间,根据速度=路程÷时间得到相应的速度.14.8【解析】【详解】解:由表格中的数据可知每上升05km温度大约下降3℃∴向上攀登的海拔高度为23km时登山队所在位置的气温约为﹣88℃故答案为﹣88解析:-8【解析】【详解】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.3km时,登山队所在位置的气温约为﹣8.8℃,故答案为﹣8.8.15.50°【分析】设∠A=x根据余角补角及平角的定义列方程求出x的值即可得答案【详解】设∠A=x∴∠A的余角为90°-x补角为180°-x∵∠的余角与∠的补角的度数和比平角的多∴(90°-x)+(180解析:50°【分析】设∠A=x,根据余角、补角及平角的定义列方程求出x的值即可得答案.【详解】设∠A=x,∴∠A的余角为90°-x,补角为180°-x,∵∠A的余角与∠A的补角的度数和比平角的1多110︒,3∴(90°-x)+(180°-x)=1×180°+110°,3解得:x=50°,故答案为:50°【点睛】本题考查余角与补角,解答此类题一般根据一个角的余角和补角列出代数式和方程(组)求解.熟记互为余角的两个角的和为90°,互为补角的两个角的和为180°是解题关键.16.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC∥DE,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a∥b,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.17.62°【分析】过B作BF∥CD则BF∥AE依据平行线的性质即可得到∠CBF=39°∠ABF=23°进而得出∠ABC的度数【详解】如图所示过B作BF∥CD则BF∥AE∵点B在点C北偏东39°方向点B在解析:62°【分析】过B作BF∥CD,则BF∥AE,依据平行线的性质即可得到∠CBF=39°,∠ABF=23°,进而得出∠ABC的度数.【详解】如图所示,过B作BF∥CD,则BF∥AE,∵点B在点C北偏东39°方向,点B在点A北偏西23°方向,∴∠BCD=39°,∠BAE=23°,∴∠CBF=39°,∠ABF=23°,∴∠ABC=39°+23°=62°,故答案为62°.【点睛】本题主要考查了平行线的性质以及方向角,解题时注意:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.18.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.19.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3=2a -4-(-8)b 2-(-3),=2a 4b 5.故答案为:2a 4b 5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.20.11【分析】先利用差的完全平方公式逆运算进行整理然后整体代入求值即可【详解】解:∵∴故答案为:11【点睛】此题主要考查求代数式的值解题的关键是将式子整理为能够整体代入的形式解析:11【分析】先利用差的完全平方公式逆运算进行整理,然后整体代入求值即可.【详解】解:222112x x x x ⎛⎫+=-+ ⎪⎝⎭ ∵13x x-= ∴222132=11x x +=+ 故答案为:11.【点睛】此题主要考查求代数式的值,解题的关键是将式子整理为能够整体代入的形式.三、解答题21.(1) y=8x+0.4x=8.4x ;(2)当x=2.5时,y=21(元);(3)当y=126时, x=15.【解析】【分析】(1)根据表格中数据得出y 与x 的函数关系式即可;(2)将x=2.5千克时,代入求出即可;(3)将y=126代入求出x 即可.【详解】(1)由表中数据规律可知:y=8x+0.4x=8.4x.(2)当x=2.5时,y=8.4×2.5=21(元).(3)当y=126时,由8.4x=126,解得x=15.【点睛】本题考查了函数关系式的求法,要注意观察、比较和归纳,本题的解题过程体现了从特殊到一般,再从一般到特殊的数学思想方法.22.(1)-1,12,14,8;(2)见解析.【解析】试题分析:(1)找到图象上与相应时间(或温度)对应的点的纵坐标(或横坐标)即可得到本题答案;(2)本题答案不唯一,符合函数图象所反映的实际情况的信息都可以.试题(1)由图象可知:①20时的温度是“-1℃”;②温度是0℃的时刻是12时;③最暖和的时刻是14时;④温度在-3℃以下持续的时间为8小时;(2)从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息.23.(1)60°;(2)120【分析】(1)根据折叠的性质以及角平分线的定义可知∠AEF =∠A'EF =∠A'EB ,再根据平角的定义求解即可;(2)根据折叠的性质、互余的定义以及(1)的结论可得∠AFA'的度数,进而得出∠A'FD的度数.【详解】解:(1)根据折叠的性质可得∠AEF =∠A'EF ,∵EA'恰好平分∠FEB ,∴∠AEF =∠A'EF =∠A'EB ,∵∠AEF+A'EF+∠A'EB =180°,所以∠AEF =60°;(2)∵∠AFE 和∠AEF 互为余角,∴∠AFE =90°﹣∠AEF =30°,根据折叠的性质可得∠AFA'=2∠AFE =60°,∴∠A'FD =180°﹣∠AFA'=120°.故答案为:120.【点睛】本题主要考查了角的计算问题,掌握折叠的性质并理清相关角的关系是解答本题的关键. 24.见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 25.见解析【分析】根据整式的混合运算法则即可解答.【详解】解:如图:(2x-3y )2-(x-2y )(x+2y )=4x 2-12xy+9y 2-x 2+4y 2=3x 2-12xy+13y 2.【点睛】本题考查了整式的混合运算,解决本题的关键是熟记完全平方公式和平方差公式. 26.23b ab -,22-【分析】利用完全平方公式和合并同类项法则,化简,再代入求值,即可.【详解】原式=[]2(2)(2)()a b a b a a b +-+-+=2()()a b a a b --+=2222a b ab a ab +---=23b ab -, 当21a =,21b =时, 原式=)))22132121-⨯⨯ =()2122321+-⨯- =22-.【点睛】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式以及整式的运算法则,是解题的关键.。
【鲁教版】七年级数学下期中试题附答案
一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 3.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 4.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 5.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 6.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .107.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间8.设,A B 均为实数,且33,3A m B m =-=-,则,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ 9.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°10.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个 11.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是( )已知:如图,∠BEC =∠B+∠C ,求证:AB ∥CD证明:延长BE 交__※__于点F ,则∠BEC =__⊙__+∠C又∵∠BEC =∠B+∠C ,∴∠B =▲∴AB ∥CD (__□__相等,两直线平行)A .⊙代表∠FECB .□代表同位角C .▲代表∠EFCD .※代表AB 12.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④二、填空题13.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.14.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 15.计算(1)22234x +=;(2)38130125x += (3)21|12|(2)16-----; (4)(x +2)2=25. 16.若|2|0x x y -++=,则12xy -=_____. 17.已知()253|53|0x y -++--=.(1)求x ,y 的值;(2)求xy 的算术平方根.18.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.19.高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB 且与射线OA 交于点M ,另一把直尺压住射线OA 且与第一把直尺交于点P ,则OP 平分∠AOB .若∠BOP =32°,则∠AMP =_____°.20.如图,AB ∥CD ,∠β=130°,则∠α=_______°.三、解答题21.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a )(1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接PA 、PB ,并用含字母a 的式子表示△PAB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△PAB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.22.若点(1m -,32m -)在第二象限内,求m 的取值范围23.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 24.计算:(1)20193(1)816|22|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x25.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)∠ABN 的度数是_____,∠CBD 的度数是_______;(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是多少?26.如图,直线AB,CD相交于O,OE⊥CD于O,OF是∠BOE的平分线,∠DOF=25°.求∠AOC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】AB x轴,解://a≠-.∴=,15b故答案为C.【点睛】本题主要考查了坐标与图形,即平行于x轴的直线上的点纵坐标相同,平行于y轴的直线上的点横坐标相同.2.C解析:C【分析】线段AB∥x轴,A、B两点横坐标相等,B点可能在A点上边或者下边,根据AB长度,确定B点坐标即可.【详解】∵AB∥y轴,∴A、B两点横坐标都为-5,点A的坐标为(-4,3),又∵AB=5,∴当B点在A点上边时,B(-4,8),当B点在A点下边时,B(-4,-2);故选:C.【点睛】本题考查了坐标与图形的性质,平行于y轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.3.B解析:B【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B.【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.4.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故选:D.【点睛】本题主要考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.5.D解析:D【分析】根据A、C、O、B四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M与5表示的点B之间的距离,|m−c|表示点M与数c表示的点C之间的距离,|m-5|=|m−c|,∴MB=MC.∴点M在线段OB上.故选:D.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.6.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.7.B解析:B【分析】借助O、A、B、C的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d﹣5|=|d﹣c|∴BD=CD,∴D点介于O、B之间.故答案为B.【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.8.D解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵3A m =- ∴A 是一个非负数,且m-3≥0, ∴m≥3,∵33B m =-,∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度. 9.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.10.B解析:B根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.11.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.12.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.二、填空题13.3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形根据点坐标的性质可求得四边形ABFC 的底与高即可求出面积【详解】∵A(43)点C(53)∴AC=5-4=1∵沿AC 方向平移AC 长度的到∴AC解析:3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形,根据点坐标的性质可求得四边形ABFC 的底与高,即可求出面积.【详解】∵A(4,3),点C(5,3),∴AC=5-4=1,//AC x ,∵OAB ∆沿AC 方向平移AC 长度的到ECF ∆,∴AC=BF ,∴四边形ABFC 为平行四边形,∴四边形ABFC 的高为C 点到x 轴的距离,∴133ABFC S =⨯=四边形,故答案为:3.【点睛】本题主要考查的是平移的性质,点坐标的性质以及四边形面积的求解,熟练掌握平移的性质,点坐标的性质以及四边形面积的求解是解答本题的关键.14.(6-4)【分析】直接利用平移中点的变化规律求解即可平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】设点P 的坐标为()由题意得:求得所以点P 的坐标为()故答案为:()【点睛】本题解析:(6,-4)【分析】直接利用平移中,点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】设点P 的坐标为(x ,y ),由题意,得:42x -=,13y +=-,求得6x =,4y =-,所以点P 的坐标为(6,4-).故答案为:(6,4-).【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.15.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.16.2【分析】根据非负数的性质进行解答即可【详解】解:故答案为:2【点睛】本题考查了非负数的性质掌握几个非负数的和为0这几个数都为0是解题解析:2【分析】根据非负数的性质进行解答即可.【详解】解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-, ∴112(2)222xy -=-⨯⨯-=,故答案为:2.【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键. 17.(1);(2)【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值再根据算术平方根的定义求解【详解】解:(1)解得:;(2)的算术平方根为【点睛】本题考查了非负数的性质以及算术平方根的定义根解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.18.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒ 34︒【分析】根据平角的性质及对顶角的性质求解即可.∠=︒解:∵134∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质.19.64【分析】由长方形直尺可得MP//OB再根据作图过程可知OP平分∠AOB 进而可得∠AMP的度数【详解】解:∵OP平分∠AOB∴∠MOB=2∠BOP=64°由长方形直尺可知:MP//OB∴∠AMP=解析:64【分析】由长方形直尺可得MP//OB,再根据作图过程可知OP平分∠AOB,进而可得∠AMP的度数.【详解】解:∵OP平分∠AOB,∴∠MOB=2∠BOP=64°,由长方形直尺可知:MP//OB,∴∠AMP=∠MOB=64°,故答案为:64.【点睛】此题主要考查了基本作图,关键是掌握角平分线的作法.20.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB∥CD,∠ =∠1,∴α∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义.三、解答题21.(1)A(0,4-),B(4-,0),C(6,0);(2)a>0时,△PAB的面积为2a-4,a<0时,△PAB的面积为4-2a;(3)P(6-,12)或(6-,8-)【分析】(1)根据三角形面积公式得到12•OA2=8,解得OA=4,则OB=OA=4,OC=BC-OB=6,然后根据坐标轴上点的坐标特征写出△ABC三个顶点的坐标;(2)分类讨论:当点P在在直线AB上方即a>2;当点P在直线AB下方,即a<2;利用面积的和与差求解;(3)先计算出S△ABC=20,利用(2)中的结果得到方程,然后分别求出a的值,从而确定P点坐标.【详解】解:(1)∵S△ABO=12 OA•OB,∵OA=OB,∴12OA2=8,解得OA=4,∴OB=OA=4,∴OC=BC-OB=10-4=6,∴A(0,-4),B(-4,0),C(6,0);(2)当点P在第二象限,直线AB的上方,即a>2,作PH⊥y轴于H,如图,S △PAB =S △AOB +S 梯形BOHP -S △PBH =8+12(4+6)•a -12×6×(a+4)=2a-4; 当点P 在直线AB 下方,即a <2,作PH ⊥x 轴于H ,如图,S △PAB =S 梯形OHPA -S △PBH -S △OAB =12(-a+4)×6-12×(6-4)×(-a )-8=4-2a ; (3)S △ABC =12×10×4=20, 当2a-4=20,解得a=12.此时P 点坐标为(-6,12);当4-2a=20,解得a=-8.此时P 点坐标为(-6,-8).综上所述,点P 的坐标为(-6,12)或(-6,-8).【点睛】本题考查了坐标与图形性质,利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;掌握三角形面积公式.22.m <1【分析】根据点在第二象限的条件是:横坐标是负数,纵坐标是正数,得出不等式组,即可解答. 【详解】∵点(1m -,32m -)在第二象限,∴10320m m -<⎧⎨->⎩, ∴132m m <⎧⎪⎨<⎪⎩, 解得:1m <,∴m 的取值范围是:1m <.【点睛】本题考查了点所在的象限,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限()++,,第二象限()-+,,第三象限()--,,第四象限()+-,. 23.7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.24.(1)1-(2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.25.(1)116°;58°;(2)不变,∠APB=2∠ADB ,理由见解析;(3)29°【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出∠ABN ;由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果; (2)证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论;(3)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】(1)∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;故答案为:116°;58°;(2)不变,∠APB=2∠ADB,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB;(3)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.26.∠AOC=40°.【分析】利用垂直定义结合条件可得∠EOF=65°,然后再利用角平分线定义可得∠BOF=∠EOF=65°,然后再计算∠BOD的度数,进而可得∠AOC的度数.【详解】解:∵OE⊥CD于O,∴∠EOD=90°,∵∠DOF=25°,∴∠EOF=65°,∵OF是∠BOE的平分线,∴∠BOF=∠EOF=65°,∴∠BOD=65°﹣25°=40°,∴∠AOC=40°.【点睛】此题主要考查了垂线,关键是理清图中角之间和差的关系.。
鲁教版七下数学期中考试
初二数学练习题(鲁教版五四制模拟卷)一、单项选择(共12小题;共36分)1下列方程中○1x =y ○2xy =-5 ○3x +2y =x 2 ○4x- 1b=2其中是二元一次方程组的有,A. 1个B. 2个C. 3个个2.下列句子属于命题的是A. 直线、射线和线段B. 两点之间线段最短 .C. 你今天运动了吗D. 画一个90度的角 3. 下列事件是确定事件的是.A 2010年的教师节是阴天 B. 吸烟有害健康C. 弟弟的体重比哥哥轻D. 明天是晴天 4. 下列四组数值中,哪一组是二元一次方程组{7x −3y =22x +y =8的解A. {x=2y=4 B {x=−1y=−3 C{x=4y=2 D {x=1y=6在此处键入公式。
5.如图,直线a‖b ,三角板的直角顶点在直线b上,已知∠1=25°则∠2为多少度A. 25°B. 55°°D77°6. 下列诗句所描写的事件中,不可能事件是A.大漠孤烟直B.锄禾日当午C.水往低处流D. 手可摘星辰7. 如图已知函数y=x+1和y=ax+3的图像相交于点P,点P的横坐标为1,那么x,y的方程组{x−y=−1ax−y=−3的解为A.{x=1y=2 B. {x=2y=1C. {x=1y=−2 D {x=−2y=18. 如图,下列给出的条件中不能判定AB‖DF的是A.∠A+∠2=180°B. ∠1=∠AC.∠1=∠4D. ∠3=∠A9.如图,如果AB‖CD , CD‖EF ,那么∠BCE等于A. ∠1+∠2B. ∠2-∠1C. 180°-∠2+∠1D. 180°-∠1+∠210. 如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板两条直角边DE,DF恰好分别经过点B,C如果∠A=40°,求∠ABD+∠ACD° B. 40°° D. 60°11题图11. 如图,在△ABC中,∠A=52°,∠ABC和∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,以此类推,∠ABD4和∠ACD4的角平分线交于点D5,则∠BD5C ° B. 56° C. 94° D. 68°12如图,在正方形ABCD的每个顶点上写一个数字,把这个正方形每条边的两端上的数加起来,将和写在这条边上,已知AB上的数字是3,BC上的数字是7,CD上的数字是12,那么AD上的数字是A. 2B. 7 题图二、填空(共9小题;共27分)13. 方程组{x+y=13x−y=3的解是____________14.如图,BD是△ABC的角平分线。
【鲁教版】初一数学下期中试卷(带答案)
一、选择题1.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( ) A .y=x(15-x) B .y=x(30-x) C .y=x(30-2x) D .y=x(15+x) 2.某人先以v 1的速度由A 地出发去B 地,途中在超市购买了一瓶水之后,又以v 2的速度继续进行至B 地,已知v 1<v 2 , 下面图象中能表示他从A 地到B 地的时间t (分钟)与路程s (千米)之间关系的是( )A .B .C .D .3.下列说法不正确的是( )A .表格可以准确的表示两个变量的数值关系B .图象能直观的反应两个变量之间的数量关系C .关系式是表示两个变量之间关系的唯一方法D .当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应 4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L 1L 2分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数关系,则以下判断错误..的是( )A .骑车的同学比步行的同学晚出发30分钟B .骑车的同学和步行的同学同时到达目的地C .骑车的同学从出发到追上步行的同学用了20分钟D .步行的速度是6千米/小时.5.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒6.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[7.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .1268.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112° 9.下列计算正确的是( ) A .326a a a ⋅=B .()()2122a a a +-=-C .()333ab a b =D .623a a a ÷=10.已知51x =,51y =,则代数式222x xy y ++的值为( ).A .20B .10C .45D .2511.如果4a 2﹣ka +1是完全平方式,那么k 的值是( ) A .﹣4B .±4C .4D .±8 12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是( )A .(a+b )(a-b )=a 2-b 2B .(a-b )2=a 2-2ab+b 2C .a (a+b )=a 2 +abD .a (a-b )=a 2-ab二、填空题13.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是_____℉.14.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x (千克)与售价y (元)之间的关系如下表:数量/kg x1 2 3 4 售价y /元 1.20.1+ 2.40.1+ 3.60.1+ 4.80.1+(1)变量x 与y 的关系式是__________.(2)卖__________kg 苹果,可得14.5元;若卖出苹果10kg ,则应得__________元. 15.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.16.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.17.将一副直角三角板如图放置,点E在AC边上,且ED//BC,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.18.如图1,在一个大正方形纸板中剪下边长为acm和边长为bcm的两个正方形,剩余长方形①和长方形②的面积和为8cm2.若将剩余的长方形①和②平移进边长为acm的正方形中(如图2),此时该正方形未被覆盖的面积为6cm2,则原大正方形的面积为_____.19.如果a3m+n=27,a m=3,则a n=_____.20.计算:201×199-1982=____________________.三、解答题21.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?22.观察下图,回答问题.(1)反映了哪两个变量之间的关系?(2)点A,B分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?∠=︒,求∠2的度数.23.如图,直线AB∥CD,EB平分∠AED,170DE BC EF AB,图中与∠BFE互补的角有几个,请分别写出来.24.如图,//,//25.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a,b的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b)2,ab和(2a+b)2的数量关系.26.化简:()()()2222x y y x x y -+--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【详解】∵长方形的周长为30,其中一边长为x ,∴该长方形的另一边长为:15x -,∴该长方形的面积:(15)y x x =-.故选A.2.C解析:C【解析】∵V 1<V 2,∴题中图象上表示为开始时图象斜率小,后来斜率大,又∵途中买了一瓶水,∴图象有一段平行于x 轴,故选C .3.C解析:C【解析】A. 表格可以准确的表示两个变量的数值关系,正确;B. 图象能直观的反应两个变量之间的数量关系,正确;C. 两个变量间的关系能用关系式表示,还能用列表法和图象法表示,故错误;D. 当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应,正确, 故选C.4.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A 正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B 不正确;C. 由图知, 骑车的同学从出发到追上步行的同学用了20分钟,故C 正确;D. 由图知,步行的速度是6千米/小时,故D 正确;故选B5.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.6.C解析:C【分析】过E 作EF ∥AB ,由平行线的质可得EF ∥CD ,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED 即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E 作EF ∥AB ,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB ∥CD ,∴EF ∥CD ,∴∠FED=∠EDC (两直线平行,内错角相等),∵∠β=∠AEF+∠FED ,又∵∠γ=∠EDC ,∴∠α+∠β-∠γ=180°,故选:C .【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.7.A解析:A【分析】根据平行线的性质可求解∠GFD 的度数,再结合垂线的定义可求解.解:∵AB//CD ,∠1=54°,∴∠GFD=∠1=54°,∵EF ⊥CD ,∴∠EFD=90°,即∠2+∠GFD=90°,∴∠2=36°.故选:A .【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.D解析:D【分析】由∠1=∠2证明直线AD//BC ,根据平行线的性质得∠D+∠BCD =180°,计算∠BCD 的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC ,∴∠D+∠BCD =180°,又∵∠D =68°,∴∠BCD =112°,故选:D .【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II 卷(非选择题)请点击修改第II 卷的文字说明9.C解析:C【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可;【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误; C 、()333ab a b = ,故该选项正确;D 、624a a a ÷= ,故该选项错误;【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;10.A解析:A【分析】利用完全平方公式计算即可得到答案.【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.11.B解析:B【分析】根据完全平方式的特点解答即可.【详解】解:因为4a 2﹣ka +1是完全平方式,所以﹣ka =±2×2a ×1,所以k =±4.故选:B .【点睛】本题考查了完全平方式的知识,属于常考题型,熟练掌握完全平方式的特点是解题的关键.12.B解析:B【分析】根据图形得出阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2,即可得出选项.【详解】解:从图中可知:阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2,∴(a-b )2=a 2-2ab+b 2,故选:B .【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.77【分析】把x=25直接代入解析式可得【详解】当x=25时y =×25+32=77故答案为77【点睛】考核知识点:求函数值解析:77【分析】把x=25直接代入解析式可得 .【详解】当x=25时,y =95×25+32=77 故答案为77【点睛】考核知识点:求函数值. 14.121【解析】(1)由表格中的数据可知变量x 与y 的关系式是y=12x+01故答案为:y=12x+01;(2)当y=145时12x+01=145∴x=12;当x=10时y=12×10+01=121即卖解析: 1.20.1y x =+12.1【解析】(1)由表格中的数据可知,变量x 与y 的关系式是y=1.2x+0.1.故答案为:y=1.2x+0.1; (2)当y=14.5时,1.2x+0.1=14.5, ∴x=1.2;当x=10时,y=1.2×10+0.1=12.1,即卖12kg 苹果,可得14.5元;若卖出苹果10kg.则应得12.1元,故答案为:(1). 1.20.1y x =+ (2). 12, 12.1 15.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.16.16【分析】根据角平分线的定义可求∠BCF 的度数再根据角平分线的定义可求∠BCD 和∠DCF 的度数再根据平行线的性质可求∠CDF 的度数【详解】解:∵∠BCA=64°CE 平分∠ACB ∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF 的度数,再根据角平分线的定义可求∠BCD 和∠DCF 的度数,再根据平行线的性质可求∠CDF 的度数.【详解】解:∵∠BCA=64°,CE 平分∠ACB ,∴∠BCF=32°,∵CD 平分∠ECB ,∴∠BCD=∠DCF=16°,∵DF ∥BC ,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.17.165【分析】根据两直线平行内错角相等求出∠DEC 然后由角的和差关系求得∠CEF 最后由邻补角的性质求得结果【详解】解:∵ED ∥BC ∠C=30°∴∠DEC=∠C=30°∵∠DEF=45°∴∠CEF=∠解析:165【分析】根据两直线平行,内错角相等求出∠DEC ,然后由角的和差关系求得∠CEF ,最后由邻补角的性质求得结果.【详解】解:∵ED ∥BC ,∠C=30°∴∠DEC=∠C=30°,∵∠DEF=45°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°.∴∠AEF=180°-∠CEF=165°,故答案为:165.【点睛】本题考查了角的和差,平行线的性质,邻补角的性质,熟记性质是解题的关键.18.22cm2【分析】由题意根据图1可知2ab=8cm2根据图2可知(a﹣b)2=6cm2依此求出(a+b)2的值即可求解【详解】解:根据图1可知2ab=8cm2根据图2可知(a﹣b)2=6cm2则(a解析:22cm2.【分析】由题意根据图1可知2ab=8cm2,根据图2可知(a﹣b)2=6cm2,依此求出(a+b)2的值即可求解.【详解】解:根据图1可知2ab=8cm2,根据图2可知(a﹣b)2=6cm2,则(a+b)2=(a﹣b)2+4ab=6+2×8=22(cm2).故原大正方形的面积为22cm2.故答案为:22cm2.【点睛】本题考查的图形面积与完全平方公式的关系,掌握利用完全平方公式的变形求解图形面积是解题的关键.19.1【分析】根据幂的乘方和同底数幂的乘法运算法则即可求解【详解】∵a3m+n=27∴a3m∙an=27∴(am)3∙an=27∵am=3∴33∙an=27∴an=1故答案是:1【点睛】本题主要考查幂的解析:1【分析】根据幂的乘方和同底数幂的乘法运算法则,即可求解.【详解】∵a3m+n=27,∴a3m∙a n =27,∴(a m)3∙a n=27,∵a m=3,∴33∙ a n=27,∴a n=1.故答案是:1.【点睛】本题主要考查幂的乘方和同底数幂的乘法法则,熟练掌握上述运算法则的逆运用,是解题的关键.20.795【分析】把原式化为(200+1)(200−1)利用平方差公式后再次利用平方差公式进行计算即可【详解】解:原式=(200+1)(200−1)-1982=−1-1982=(200+198)(200解析:795【分析】把原式化为(200+1)(200−1)利用平方差公式后,再次利用平方差公式进行计算即可.【详解】解:原式=(200+1)(200−1)-1982=2200−1-1982=(200+198)(200-198)-1=398×2-1=796-1=795,故答案为:795.【点睛】本题主要考察了平方差公式的应用,将式子适当变形是解题的关键.三、解答题21.(1)8点;(2)9点;13米;(3)乙;(4)12点;(5)甲8时骑车从家出发,3小时后改乘汽车;乙骑摩托车9时开始追赶,12时追上甲.【分析】从图象可知:甲做变速运动,8时到11时走了20千米,速度为每小时208,11时到12时走了20千米,速度为每小时20千米;乙做的是匀速运动,9时到12时走了40千米,速度是每小时403千米,结合图表的信息即可得到答案;【详解】解:根据图象信息可知:(1)甲8点出发;(2)乙9点出发,到10时他大约走了13千米;(3)到10时为止,乙的速度快;(4)在12时时,两人路程一样,故两人最终在12时相遇;(5)甲8时骑车从家出发,3小时后改乘汽车,乙骑摩托车9时开始追赶,12时追上甲.【点睛】本题主要考查从图像得到信息,图中反映的是甲乙两人行驶的路程与时间之间的关系,甲的速度有变化,乙是匀速运动的,能看懂图中的信息是解题的关键.22.(1)反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)见解析;(4)见解析【分析】(1)根据横坐标和纵坐标进行判断即可;(2)根据图象进行判断即可;(3)根据图象进行判断即可;(4)根据图象写出一个实际情境即可.【详解】(1)由图象可得,该图象反映速度与时间的关系;(2)A 点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)当时间在0~3分钟时,速度随时间的增加而增大,当时间在3~6分钟时,速度保持40千米/时不变,6到7.5分钟时速度从40千米/时增加到60千米/时,7.5到9分钟时保持60千米/时,9到10.5分钟时,从60千米/时降到40千米/时,10.5到12分钟时,保持40千米/时,12到15分钟时,速度从40千米/时降到0;(4)小明从家开车到图书馆借书,汽车从启动到速度为40km/h 用了3分钟,此后3分钟匀速行驶,然后用了1.5分钟加速到60km/h ,然后再匀速行驶1.5分钟,随后用1.5分钟减速到40km/h ,然后再匀速行驶1.5分钟,最后用3分钟减速行驶到停止.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.23.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.24.∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.26.284y xy .【分析】原式根据平方差公式和完全平方公式将括号展开,然后再合并同类项即可得到答案.【详解】解:()()()2222x y y x x y -+-- 2222444x y x y xy =---+284y xy =-+.【点睛】此题主要考查了整式的四则运算,熟练掌握平方差公式和完全平方公式是解答此题的关键.。
【鲁教版】初一数学下期中试卷带答案
一、选择题1.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( )A .2个B .3个C .4个D .5个6.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )A .287.2B .28.72C .13.33D .133.3 7.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个8.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - 9.如图,将直角边长为a (a >1)的等腰直角三角形ABC 沿BC 向右平移1个单位长度,得到三角形DEF ,则图中阴影部分面积为( )A .a -12B .a -1C .a +1D .a 2-110.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°11.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .312.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180°二、填空题13.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.14.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.15.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根.16.已知213a -=,31a b -+的平方根是4±,c 是43的整数部分,求3a b c ++的平方根.17.计算:3612516-+-+=____.18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.19.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?22.在平面直角坐标系中,有 A (-2,a +1), B (a -1,4), C (b - 2,b )三点. (1)当 AB// x 轴时,求 A 、 B 两点间的距离;(2)当CD ⊥ x 轴于点 D ,且CD = 1时,求点C 的坐标.23.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=24.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2)若332x -与35x +的值互为相反数,求12x -的值. 25.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.26.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限,故选D .2.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.-,∵点()3,4-在第二象限,∴点()3,4故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).3.C解析:C【分析】平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.4.B解析:B【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B.【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.5.B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】=-,是有理数;43.14是有限小数,是有理数;22是分数,是有理数;7,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B.本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C解析:C【分析】【详解】==≈⨯=.1.3331013.33故答案为:C.【点睛】本题考查了立方根的定义,正确变形、熟练掌握立方根的概念是关键.7.C解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31=小数点后的428571是无限循环的,属于有理数,4.4285717=-属于有理数,3=-⋯,共有3个,则无理数为π故选:C.【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.8.B解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2.故选:B.本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.9.A解析:A【分析】直接根据平移的性质得到DE=AB=a ,EF=BC=a ,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a ,EF=BC=a ,EC=a-1,∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=- 故选:A .【点睛】本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容. 10.B解析:B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 11.B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B .【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A .∠A =∠BDF ,由同位角相等,两直线平行,可判断DF ∥AC ;B .∠2=∠4,不能判断DF ∥AC ;C .∠1=∠3由内错角相等,两直线平行,可判断DF ∥AC ;D .∠A +∠ADF =180°,由同旁内角互补,两直线平行,可判断DF ∥AC ;故选:B .【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.二、填空题13.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.14.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.15.【分析】根据算术平方根的定义得到3a+1=16可解得a 值根据3<<4可得c=3再根据立方根的定义可得可解得b 然后将abc 的值代入计算即可【详解】解:根据题意可得:∴∵∴即的平方根为【点睛】本题考查了解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据34,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,3==±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 16.【分析】根据求出a 的值根据3a+b-1的平方根是±4求出b 的值根据c 是的整数部分求出c 的值把求得的值代入a+b+3c 然后求出入a+b+3c 的平方根即可【详解】∵∴解得:∵的平方根是∴解得:∵是的整数解析:5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键. 17.5【分析】先化简绝对值求立方根和算术平方根再加减即可【详解】解:==5故答案为:5【点睛】本题考查了绝对值立方根算术平方根的运算准确运用法则是解题关键解析:5【分析】先化简绝对值、求立方根和算术平方根,再加减即可.【详解】解:6-,+-+,=6(5)4=5,故答案为:5.【点睛】本题考查了绝对值、立方根、算术平方根的运算,准确运用法则是解题关键.18.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.20.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)见解析;(2)见解析;(3)8.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据S△A′B′C =S△ABC代入三角形公式计算即可.【详解】(1)如图,A B C'''即为所求;(2)如图,线段CD和线段AE即为所求;(3)1144822A B C ABCS S BC AE'''==⋅⋅=⨯⨯=【点睛】本题考查的是平移变换,掌握图形平移但图形的形状不变是解答本题的关键.22.(1)4;(2)(-1,1)或(-3,-1)【分析】(1)根据平行于x轴的直线上的点的纵坐标相等求出a值,进而求得A、B点的坐标,即可求出两点距离;(2)根据垂直于x轴的直线上的点的横坐标相等得到D(b﹣2,0),再由CD=1得∣b∣=1,进而求得b即可.【详解】(1)∵AB∥x轴,∴点A、B两点的纵坐标相等,∴a+1=4,解得:a=3,∴A(-2,4),B(2,4)∴点A、B两点的距离为∣2-(-2)∣=4;(2)∵CD ⊥x轴于点D∴点C、D的横坐标相等,∴D (b-2,0)∵CD=1,∴∣b ∣=1解得:b=±1,当b=1时,点C 的坐标为(-1,1),当b=-1时,点C 的坐标为(-3,-1),综上,点C 的坐标为(-1,1)或(-3,-1).【点睛】本题考查坐标与图形、两点间的距离,熟练掌握平行(或垂直)于坐标轴的点的坐标特征是解答的关键.23.(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.24.(1)见解析;(2)13-=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.25.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.26.BC ∥DE ;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE =∠BED ,再根据平行线的判定即得结论.【详解】解:BC ∥DE ;理由如下:因为BE 平分ABC ∠,所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE=∠BED,所以BC∥DE.【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.。
【鲁教版】初一数学下期中试卷及答案
(2)在图中画出 ;
(3) 的面积=______.
23.对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,loga(M•N)=logaM+logaN.
14.如果点P(a﹣1,a+2)在x轴上,则a的值为_____.
15.求下列各式中 的值:
(1) ;
(2) .
16.把下列各数的序号填入相应的括号内①-3,② ,③ ,④-3.14,⑤ ,⑥0,⑦ ,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”).
整数集合{ …},
20.如图,直线 ,直角三角板的直角顶点落在直线 上,若 ,则 等于_______.
三、解答题
21.在平面直角坐标系中,已知 , , .
(1)在给出的平面直角坐标系中画出 ;
(2)已知 为 轴上一点,若 的面积为 ,求点 的坐标.
22.如图所示,在平面直角坐标系中,点 为原点,点 , ,将 向右平移2个单位,再向上平移3个单位得到 ,点 的对应点是 ,点 的对应点是
所以,第2016个点的横坐标为45.
故选:B.
5.A
解析:A
【分析】
根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.
【详解】
A、正数的算术平方根一定是正数,故选项正确;
B、如果a表示一个实数,那么-a不一定是负数,例如a=0,故选项错误;
C、和数轴上的点一一对应的数是实数,故选项错误;
【鲁教版】初一数学下期中试题(附答案)(1)
一、选择题1.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 2.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 3.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列各数中比3-小的数是( ) A .2- B .1- C .12- D .06.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,④8,⑤39. A .1个 B .2个C .3个D .4个 7.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 8.81的平方根是( )A .9B .-9C .9和9-D .819.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 10.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 11.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 12.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒二、填空题13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.14.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________15.已知290x ,310y +=,求x y +的值. 16.计算:(1()2325273-. (2)()2411893⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦. 17.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.18.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;19.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.20.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____.三、解答题21.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.22.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A 1B 1C 1,若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P 1的坐标是 . (3)在x 轴上存在一点D ,使△DB 1C 1的面积等于3,求满足条件的点D 的坐标. 23.计算:2(3)216--24.计算:(182(22)-+(2()238272-25.如图,已知直线l 1//l 2,l 3、和l 1、l 2分别交于点A 、B 、C 、D ,点P 在直线l 3或上且不与点A 、B 、C 、D 重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在线段DC延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.26.试用举反例的方法说明下列命题是假命题.例如:如果ab<0,那么a+b<0.反例:设a=4,b=-3,ab=4⨯(-3)=-12<0,而a+b=4+(-3)=1>0,所以这个命题是假命题.(1)如果a+b>0,那么ab>0.(2)如果a是无理数,b也是无理数,那么a+b也是无理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】线段AB∥x轴,A、B两点横坐标相等,B点可能在A点上边或者下边,根据AB长度,确定B点坐标即可.【详解】∵AB∥y轴,∴A、B两点横坐标都为-5,点A的坐标为(-4,3),又∵AB=5,∴当B点在A点上边时,B(-4,8),当B点在A点下边时,B(-4,-2);故选:C.【点睛】本题考查了坐标与图形的性质,平行于y轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.2.B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.C解析:C【分析】以将向右平移1个单位,向上平移2个单位为坐标原点建立平面直角坐标系,然后写出炮的坐标即可.【详解】解:建立平面直角坐标系如图,炮(-2,1).故选C.【点睛】本题考查了坐标确定位置,准确确定出原点的位置是解题的关键.4.D解析:D【解析】解:点P的坐标为(3,﹣1),那么点P在第四象限,故选D.5.A解析:A【分析】根据实数比较大小的方法分析得出答案即可.A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.6.C解析:C 【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数. 7.C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※,所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.8.C解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=, 81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型. 9.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a ,b 被直线c 所截,∠1与∠2是同位角.故选:A .【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.10.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A 错误.B.∠2=∠4,内错角相等,两直线平行,所以B 正确.C. ∠2+∠3=180°,不能证明a ∥b ,故C 错误.D.虽然∠1=∠3,但是不能证明a ∥b ;故D 错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.11.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 12.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
【鲁教版】七年级数学下期中试题(附答案)
一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 5.-18的平方的立方根是( ) A .4 B .14 C .18 D .1646.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×2014 7.下列实数中,属于无理数的是( )A .3.14B .227C .4D .π8.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±99.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm10.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4 11.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D . 12.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和二、填空题13.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.14.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.15.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|12|1232⎛⎫-+--⨯- ⎪⎝⎭ 16.若2x =,29y =,且0xy <,则x y -等于______.17.计算:(1)﹣12+327-﹣(﹣2)×9(2)3(3+1)+|3﹣2|18.如图,在ABC 中,D ,E ,F 分别是BC AC AB ,,上的点,且CDE B ∠=∠.FD 把BFE ∠分成2:3的两部分.3180FDE AFE ∠+∠=︒,则BFE ∠的度数是__________.19.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.20.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.三、解答题21.已知点()32,24A a a +-,试分别根据下列条件,求出a 的值并写出点A 的坐标. (1)点A 在x 轴上;(2)点A 与点8'4,3A ⎛⎫-- ⎪⎝⎭关于y 轴对称;(3)经过点()32,24A a a +-,()3,4B 的直线,与x 轴平行;(4)点A 到两坐标轴的距离相等.22.如图,在平面直角坐标系中,四边形ABCD 的顶点都在格点上,其中A 点坐标为(﹣2,﹣1),C 点坐标为(3,3).(1)填空:点B 到y 轴的距离为 ,点B 到直线AD 的距离为 ;(2)求四边形ABCD 的面积;(3)点M 在y 轴上,当△ADM 的面积为12时,请直接写出点M 的坐标.23.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=24.计算:()223228432-----⨯+ 25.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)26.如图,直线AB ,CD 相交于O ,OE ⊥CD 于O ,OF 是∠BOE 的平分线,∠DOF =25°. 求∠AOC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.2.A解析:A【分析】根据把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度可直接得到答案.【详解】将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比向上平移3个单位;故选:A .【点睛】此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.3.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解.【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B .【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.4.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA 4n =2n 知OA 2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 由题意知OA 4n =2n ,∵2020÷4=505,∴OA 2020=2×505,则△OA 2A 2020的面积是12×1×2×505=505m 2, 故选:B .【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 5.B解析:B【分析】先根据题意列出代数式,然后再进行计算即可.【详解】14==. 故答案为B .【点睛】本题考查了平方和立方根,弄清题意、根据题意列出代数式是解答本题的关键. 6.A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=20152014201312015 2014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯,故选:A.【点睛】本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、3.14是小数,是有理数,故A选项错误;B、227是有限小数,是有理数,故B选项错误;C=2是整数,是有理数,故C选项错误.D、π是无理数,故D选项正确故选:D.【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x-=,∴29x=,∵2(39)±=,∴3x=±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.9.A解析:A【分析】由平移性质可得:BC=EF,CF=3,cm可得EC=EF-CF.【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.10.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB ∥CD ,∴∠1=∠4,故选 C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.12.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A 、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B 、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C 、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D 、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B .【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.二、填空题13.【分析】先找到所在的象限然后由该象限内点的规律特点求解即可【详解】解:根据题意得由可知在第二象限通过题中点的变化观察可知第二象限内点横纵坐标互为相反数且都为6的倍数由可知故答案为:【点睛】本题考查规 解析:()150,150-【分析】先找到99A 所在的象限,然后由该象限内点的规律特点求解即可.【详解】解:根据题意得,()46,6A --,()59,6A -,()69,12A ,()712,12A -,由994243=⨯+,可知99A 在第二象限,通过题中点的变化,观察可知第二象限内点()36,6A -、()712,12A -横纵坐标互为相反数且都为6的倍数, 由99161504+⨯=,可知()99150,150A - 故答案为:()150,150-.【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题. 14.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.16.5或-5【分析】先由绝对值和平方根的定义求得xy 的值然后根据xy <0分类计算即可;【详解】∵∴∵xy <0∴当x=2y=-3时x-y=2+3=5当x=-2y=3时x-y=-2-3=-5故答案为:5或-解析:5或-5【分析】先由绝对值和平方根的定义求得x 、y 的值,然后根据xy <0分类计算即可;【详解】∵ 2x =,29y =,∴ 2x =±,3=±y ,∵ xy <0,∴ 当x=2,y=-3时,x-y=2+3=5,当x=-2,y=3时,x-y=-2-3=-5,故答案为:5或-5【点睛】本题主要考查了平方根的定义、绝对值、有理数的减法,正确掌握知识点是解题的关键; 17.(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.18.或150°【分析】分∠BFD:∠DFE=2:3和∠DFE:∠BFD=2:3两种情况分别求解【详解】解:∵把分成的两部分∴①∠BFD:∠DFE=2:3时设∠BFD=2x∠DFE=3x∴∠AFE=180解析:180013︒或150°【分析】分∠BFD:∠DFE=2:3和∠DFE:∠BFD =2:3两种情况分别求解.【详解】解:∵FD把BFE∠分成2:3的两部分,∴①∠BFD:∠DFE=2:3时,设∠BFD=2x,∠DFE=3x,∴∠AFE=180-5x,∵∠CDE=∠B,∴DE∥AB,∴∠BFD=∠FDE=2x,又∵∠FDE+3∠AFE=180°,即2x+3(180-5x)=180,解得:x=360 13,∴∠BFE=5x=180013︒;②∠DFE:∠BFD =2:3时,设∠BFD=3x,∠DFE=2x,∴∠AFE=180-5x,∵∠CDE=∠B,∴DE∥AB,∴∠BFD=∠FDE=3x,又∵∠FDE+3∠AFE=180°,即3x+3(180-5x)=180,解得:x=30,∴∠BFE=5x=150°,综上:∠BFE的度数为180013︒或150°,故答案为:180013︒或150°.【点睛】本题考查了平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,分类讨论解决问题,属于中考常考题型.19.50或130【分析】由∠A与∠B的两边分别平行可得∠A=∠B或∠A+∠B=180°继而求得答案【详解】解:∵∠A与∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A与∠B的两边分别平行,可得∠A=∠B或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.20.4【分析】观察图象发现平移前后BE对应CF对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.三、解答题21.(1)2a =,A 点的坐标是()8,0;(2)23a =,A 点的坐标是84,3⎛⎫- ⎪⎝⎭;(3)4a =,A 点的坐标是()14,4;(4)当点A 在一,三象限夹角平分线上时,6a =-,A 点的坐标是()16,16--,当点A 在二,四象限夹角平分线上时, 25a =,A 点的坐标是1616,55⎛⎫- ⎪⎝⎭. 【分析】(1)根据x 轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据关于y 轴对称点的性质,横坐标互为相反数、纵坐标相同,可得方程,解方程可得答案;(3)根据平行于x 轴直线上的点纵坐标相等,可得方程,解方程可得答案;(4)根据点A 到两坐标轴的距离相等,可得关于a 的方程,解方程可得答案.【详解】解:(1)点A 在x 轴上,则240,a -=解得a =2,323228a +=⨯+=,故A 点的坐标是()8,0.(2)根据题意得,324a +=, 解得2.3a = A 点的坐标是84,.3⎛⎫- ⎪⎝⎭ (3)因为AB ∥x 轴,所以244,a -=解得a =4,3214.a +=A 点的坐标是()14,4.(4)当点A 在一,三象限夹角平分线上时,有3224,a a +=-解得6a =-3216.a +=-A 点的坐标是()16,16.--当点A 在二,四象限夹角平分线上时,有32240,a a ++-=解得25a = 16325a +=, A 点的坐标是1616,.55⎛⎫- ⎪⎝⎭ 【点睛】本题考查了点的坐标,x 轴上的点的纵坐标等于零;y 轴上的点的横坐标等于零;关于y 轴对称点的性质,横坐标互为相反数、纵坐标相同;平行于x 轴直线上的点纵坐标相等. 22.(1)1,3;(2)352;(3)M (0,﹣5),(0,3). 【分析】(1)根据图形即可得到结论;(2)根据矩形和三角形的面积公式即可得到结论;(3)根据三角形的面积列方程即可得到结论.【详解】解:(1)根据图形可知,B (﹣1,2),∴点B 到y 轴的距离为1,点B 到直线AD 的距离为3;故答案为:1,3;(2)四边形ABCD 的面积=6×4﹣12×3×1﹣12×4×1﹣12×1×4-1=352;(3)设点M 的坐标(0,m ),∵△ADM 的面积为12,∴12×6×|m+1|=12, ∴m =3或-5,∴M (0,﹣5),(0,3).【点睛】本题考查了三角形的面积,坐标与图形性质,正确的识别图形是解题的关键.23.(1)1x =-或5x =-;(2)32x =-.【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=,移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=,整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.24.8-【分析】先化简绝对值、立方根、算术平方根,然后进行加减运算即可.【详解】(22=2243--⨯+()=412-=8-【点睛】此题考查了实数的运算,熟练掌握算术平方根和立方根的性质是解本题的关键. 25.(1)见解析(2)90°+12α 【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE =180°,∠1+∠3=180°∴∠DFE =∠1,∴AB ∥EF ,∴∠CEF =∠EAD ;(2)∵AB ∥EF ,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.26.∠AOC=40°.【分析】利用垂直定义结合条件可得∠EOF=65°,然后再利用角平分线定义可得∠BOF=∠EOF=65°,然后再计算∠BOD的度数,进而可得∠AOC的度数.【详解】解:∵OE⊥CD于O,∴∠EOD=90°,∵∠DOF=25°,∴∠EOF=65°,∵OF是∠BOE的平分线,∴∠BOF=∠EOF=65°,∴∠BOD=65°﹣25°=40°,∴∠AOC=40°.【点睛】此题主要考查了垂线,关键是理清图中角之间和差的关系.。
【鲁教版】初一数学下期中试卷(含答案)
一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 3.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上 5.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,④8,⑤39. A .1个 B .2个 C .3个 D .4个6.下列各式中,正确的是( ) A .16=±4 B .±16=4 C .3273-=- D .2(4)4-=- 7.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68 8.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a>>- D .1a a a ->> 9.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40° B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°10.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm11.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒12.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3二、填空题13.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.计算题.(1)12(7)6(22)-+----(2)2312272⨯ (3316(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭16.比较大小:-3_______ -1.517.若()221210a b c -+++-=,则a b c ++=__________.18.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).19.把命题“两直线平行,同位角相等”改写成“若…,则…”__.20.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.三、解答题21.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点. (1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.22.如图,在平面直角坐标系中,点A ,B 的坐标分别为(2,0)A -,(4,0)B ,现将线段AB 平移到线段CD ,其中点C 坐标为(0,a),点D 坐标为(,4)b ,连接AC ,BD ,CD .(1)直接写出点C ,D 的坐标;(2)在x 轴上是否存在一点F ,使得SS ABC DFB ∆=,若存在,请求出点F 的坐标;若不存在,请说明理由.23.计算:2(3)216--24.3189124- 25.如图1,AB ∥CD ,直线AE 分别交AB 、CD 于点A 、E .点F 是直线AE 上一点,连结BF ,BP 平分∠ABF ,EP 平分∠AEC ,BP 与EP 交于点P .(1)若点F 是线段AE 上一点,且BF ⊥AE ,求∠P 的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请直接写出∠P 与∠AFB 之间的数量关系.26.如图,已知:AD BC ⊥于D,EG BC ⊥于G,AD 平分BAC ∠.求证:1E ∠∠=.下面是部分推理过程,请你填空或填写理由.证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG ( )∴21∠=∠( ),3∠= ( ).又∵AD 平分BAC ∠(已知),∴23∠∠=( ),∴1E ∠∠=( )【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】AB x轴,解://a≠-.∴=,15b故答案为C.【点睛】本题主要考查了坐标与图形,即平行于x轴的直线上的点纵坐标相同,平行于y轴的直线上的点横坐标相同.2.C解析:C【分析】线段AB∥x轴,A、B两点横坐标相等,B点可能在A点上边或者下边,根据AB长度,确定B点坐标即可.【详解】∵AB∥y轴,∴A、B两点横坐标都为-5,点A的坐标为(-4,3),又∵AB=5,∴当B点在A点上边时,B(-4,8),当B点在A点下边时,B(-4,-2);故选:C.【点睛】本题考查了坐标与图形的性质,平行于y轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.3.D解析:D【解析】解:点P的坐标为(3,﹣1),那么点P在第四象限,故选D.4.B解析:B【解析】分析:首先根据勾股定理得出公园A到超市B的距离为500m,再计算出∠AOC的度数,进而得到∠AOD的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A到超市B的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】 解:无理数有3π,8,39共3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数. 6.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A 、164=,此项错误;B 、164±=±,此项错误;C 、3273-=-,此项正确;D 、2(4)164-==,此项错误;故选:C .【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.7.C解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.9.C解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误.故选:C .【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 10.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm =,CF=3,cm所以EC=5-3=2(cm)故选:A考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.11.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++, 又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .12.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A 错误.B.∠2=∠4,内错角相等,两直线平行,所以B 正确.C. ∠2+∠3=180°,不能证明a ∥b ,故C 错误.D.虽然∠1=∠3,但是不能证明a ∥b ;故D 错误.故答案选:B.本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.二、填空题13.(32)(﹣32)(﹣3﹣2)或(3﹣2)【分析】根据点到x 轴的距离是纵坐标的绝对值点到y 轴的距离是横坐标的绝对值可得答案【详解】解:∵点到x 轴的距离是2到y 轴的距离是3∴该点的坐标是(32)(﹣3解析:(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2)【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,可得答案.【详解】解:∵点到x 轴的距离是2,到y 轴的距离是3,∴该点的坐标是(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2),故答案为:(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2).【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值是解题关键.14.(x-3)()【分析】关于x 轴对称点的坐标特点是横坐标相同纵坐标互为相反数即可求解【详解】解:∵线段AB 的端点为线段CD 与线段AB 关于x 轴轴对称∴线段CD 的端点为∴线段CD 上任意一点的坐标可表示为(解析:(x ,-3)(1x 1-≤≤).【分析】关于x 轴对称点的坐标特点是横坐标相同,纵坐标互为相反数,即可求解.【详解】解:∵线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称, ∴线段CD 的端点为()1,3--,()1,3-,∴线段CD 上任意一点的坐标可表示为(x ,-3)(1x 1-≤≤).故答案为:(x ,-3)(1x 1-≤≤).【点睛】此题主要考查利用关于x 轴对称点的坐标特点来解题,正确理解轴对称的性质是解题关键.15.(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算(2)先进行平方和开方在进行乘法和减法的运算(3)先进行开方和平方在由左至右进行除法和乘法的运算(4)首先去括号内的绝对值解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2(4)13248()243-⨯-+- 1248()43=-⨯-+ 54812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.16.<【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:(−)2=3(-15)2=225∵3>225∴-<-15故答案为:<此题主要考查了实数大小解析:<.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:)2=3,(-1.5)2=2.25,∵3>2.25,∴-1.5.故答案为:<.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.17.【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用等知识点熟练掌握绝对值算术平方根偶次方的 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 18.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.19.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.20.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.三、解答题21.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y轴上点的坐标特征得到b﹣2=0,求出b得到C点坐标;(2)利用与x轴平行的直线上点的坐标特征得到a+1=4,求出a得到A、B点的坐标,然后计算两点之间的距离;(3)利用垂直于x轴的直线上点的坐标特征得到|b|=1,然后求出b得到C点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征. 22.(1)C (0,4),D (6,4);(2)(10,0)或(-2,0)【分析】(1)根据平移的性质和已知条件可求出a 、b 的值,进而可得结果;(2)根据三角形的面积公式可求出BF 的长,进一步即可求得答案.【详解】解:(1)∵将线段AB 平移到线段CD ,∴AB ∥CD ,AB=CD ,∵(2,0)A -,(4,0)B ,∴AB=6=CD ,∵点C 坐标为(0,a ),点D 坐标为(,4)b ,∴a=4,b=6,∴点C 坐标为(0,4),点D 坐标为(6,4);(2)∵SS ABC DFB ∆=, ∴1164422BF ⨯⨯=⨯,∴BF=6, ∴存在点F 满足条件,且点F 的坐标是(﹣2,0)或(10,0).【点睛】本题考查了平移的性质和图形与坐标,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.23.1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.24.1+【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 25.(1)45°;(2)当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB 【分析】(1)过点P 作PQ ∥AB ,过点F 作FH ∥AB ,由平行线的性质得∠ABP +∠CEP =∠BPE ,∠ABF +∠CEF =∠BFE ,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F 在EA 的延长线上时,点F 在线段AE 上时,点F 在AE 的延长线上时,分别进行探究便可.【详解】解:(1)过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PQ ∥FH ,∴∠ABP =∠BPQ ,∠CEP =∠EPQ ,∠ABF =∠BFH ,∠CEF =∠EFH ,∴∠ABP +∠CEP =∠BPQ +∠EPQ =∠BPE ,∠ABF +∠CEF =∠BFH +∠EFH =∠BFE , ∵BF ⊥AE ,∴∠ABF +∠CEF =∠BFE =90°,∵BP 平分∠ABF ,EP 平分∠AEC ,∴∠ABP +∠CEP =12(∠ABF +∠CEF )=45°, ∴∠BPE =45°;(2)①当点F在EA的延长线上时,∠BPE=12∠AFB,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠CEP﹣∠ABP=∠EPQ﹣∠BPQ=∠BPE,∠CEF﹣∠ABF=∠EFH﹣∠BFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP﹣∠ABP=12(∠CEF﹣∠ABF)=12∠BFE=∠AFB,∴∠BPE=12∠AFB;②当点F在线段AE上(不与A点重合)时,∠BPE=90°﹣12∠AFB;理由如下:如备用图2,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF),∴∠BPE=12∠BFE∴∠BFE=180°﹣∠AFB,∴∠BPE=90°﹣12∠AFB;③当点F在AE的延长线上时,∠BPE=90°﹣12∠AFB,理由如下:如备用图3,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,180°﹣∠ABF=∠BFH,∠AEC=∠EFH,∴∠CEP+∠ABP=∠EPQ+∠BPQ=∠BPE,∠BFH﹣∠EFH=180°﹣∠ABF﹣∠AEC=∠AFB,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ), ∴∠BPE =90°﹣12∠AFB ; 综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB . 【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.26.同位角相等,两直线平行;两直线平行,内错角相等;∠E ;两直线平行,同位角相等;角平分线的定义;等量代换.【分析】根据垂直的定义、平行线的判定与性质、角平分线的定义以及等量代换进行解答即可.【详解】证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG (同位角相等,两直线平行)∴21∠=∠(两直线平行,内错角相等),3∠=∠E (两直线平行,同位角相等).又∵AD 平分BAC ∠(已知),∴23∠∠=(角平分线的定义),∴1E ∠∠=(等量代换).【点睛】本题主要考查了垂直的定义、平行线的判定与性质和角平分线的定义等知识点,灵活应用平行线的判定与性质成为解答本题的关键.。
【鲁教版】初一数学下期中试卷附答案
一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 3.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 4.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤15.观察下列各等式: 231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133616 )A .2B .4C .2±D .-47.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407 8.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数9.用反证法证明“若⊙O 的半径为r ,点P 到圆心O 的距离d<r ,则点P 在⊙O 的内部”,第一步应假设( )A .d r ≥B .点P 在⊙O 的内部C .点P 在⊙O 上D .点P 在⊙O 上或⊙O 外部10.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75° 11.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD的周长为( )A .8B .9C .10D .11 12.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是() 已知:如图,∠BEC =∠B+∠C ,求证:AB ∥CD证明:延长BE 交__※__于点F ,则∠BEC =__⊙__+∠C又∵∠BEC =∠B+∠C ,∴∠B =▲∴AB ∥CD (__□__相等,两直线平行)A .⊙代表∠FECB .□代表同位角C .▲代表∠EFCD .※代表AB二、填空题13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)14.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.15.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +与3b -互为相反数. 16.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.17.比较大小:3- _______-2.(填“>”“=”或“<”)18.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A 1B 1C 1,若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P 1的坐标是 . (3)在x 轴上存在一点D ,使△DB 1C 1的面积等于3,求满足条件的点D 的坐标. 22.如图,在平面直角坐标系中有一个△ABC .(1)将△ABC 向右平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1.(2)写出△A 1B 1C 1,三个顶点的坐标.23.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.24.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;25.已知:如图,DE ∥BC ,BE ∥FG .求证:∠1=∠2.26.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.【详解】将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比向上平移3个单位;故选:A.【点睛】此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.2.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n 为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D .【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.3.A解析:A【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可.【详解】解:∵230,40x y -=-=∴x=±3,y=±2∵点(,)M x y 在第二象限∴x <0,y >0∴x=-3,y=2∴M 点坐标为(-3.2).故答案为A .【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键. 4.B解析:B【分析】根据题意得出除了点C 外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB 上,从而求出a 的取值范围.【详解】解:∵点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,∴a <4﹣a ,解得:a <2,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A ,B ,C 的坐标分别是(0,a ),(0,4﹣a ),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.5.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;=;第三行:239=;第四行:2416……第n行:2n;∴第11行:2=.11121∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.6.A解析:A【分析】【详解】解:∵,∴=2.故选:A.【点睛】.7.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.8.D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D .【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.9.D解析:D【分析】用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.【详解】解:命题“若⊙O 的半径为r ,点P 到圆心的距离d 大于r 则点P 在⊙O 的外部”的结论为:点P 在⊙O 的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P 在⊙O 上或点P 在⊙O 内.故选:D .【点睛】本题考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.10.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.11.D解析:D【分析】根据平移的基本性质,得出四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.【详解】解:根据题意,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,∴AD=2,BF=BC+CF=BC+2,DF=AC ;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.12.C解析:C【分析】延长BE 交CD 于点F ,利用三角形外角的性质可得出∠BEC =∠EFC+∠C ,结合∠BEC =∠B+∠C 可得出∠B =∠EFC ,利用“内错角相等,两直线平行”可证出AB ∥CD ,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.二、填空题13.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC∥BD,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.14.(12)【分析】根据平面直角坐标系的特点建立坐标系即可确定C点的坐标【详解】解:∵点A 的坐标(-23)点B 的坐标是(3-2)故平面直角坐标系如图所示:故答案为:(12)【点睛】本题主要考查了坐标与图解析:(1,2)【分析】根据平面直角坐标系的特点建立坐标系,即可确定C 点的坐标.【详解】解:∵点A 的坐标(-2,3)点B 的坐标是(3,-2),故平面直角坐标系如图所示:故答案为:(1,2).【点睛】本题主要考查了坐标与图形,解题的关键是根据两个已知点,确定直角坐标系. 15.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +3b -∴3b -,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.16.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 17.>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.18.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.19.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.20.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC∥DE,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a∥b,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)画图见解析,C(1,1);(2)画图见解析,(a+2,b-1);(3)D(1,0)或(5,0)【分析】(1)根据点A、B的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A、B、C向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点P的对应点P1的坐标;(3)根据三角形的面积求出C1D的长度,再分两种情况求出OD的长度,然后写出点D的坐标即可.【详解】解:(1)直角坐标系如图所示,C点坐标(1,1);(2)△A1B1C1如图所示,点P1坐标(a+2,b-1);故答案为:(a+2,b-1);(3)设点D的坐标为(a,0),则:△DB1C1的面积=12C1D×OB1=3,即12|a-3|×3=3,解得:a=1或a=5,综上所述,点D的坐标为(1,0)或(5,0).【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(1)见解析;(2)A1(1,3),B1(-1,0),C1(2,1).【分析】(1)直接根据平移的性质确定A1、B1、C1点即可画图;(2)原三角形中点A、B、C的坐标已知,将△ABC向右平移3个单位后,横坐标变为x+3,而纵坐标不变,所以点A1、B1、C1的坐标可知.【详解】解:(1)(2)∵A(-2,3),B(-4,0),C(-1,1)∴A1(1,3),B1(-1,0),C1(2,1).【点睛】此题主要考查根据图形平移的性质画图,熟练利用平移的性质确定点的坐标是解题关键.23.(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.24.(1)-11;(2)x=1.【分析】(1)根据新运算的规则,把新运算转化成普通有理数的计算,再按有理数相关计算法则计算即可;(2)根据新运算的规则,把等式左边的新运算转化成普通有理数运算,从而把等式转化成一元一次方程,再解一元一次方程即可.【详解】(1)∵ a ∗b= 23a b -,∴ 2∗5=223541511-⨯=-=- ;(2)∵ a ∗b=23a b -,∴ (−3)∗x=()23393x x --=- 即936x -=解此方程得:1x =.【点睛】本题考察有关新运算的问题,首先要弄清把新运算转化为普通运算的规则,然后根据规则把新运算部分转化为普通运算,再按普通运算的相关计算法则计算即可.25.证明见解析.【分析】由//DE BC ,利用“两直线平行,内错角相等”可得出1CBE ∠=∠,由//BE FG ,利用“两直线平行,同位角相等”可得出2CBE,进而可证出12∠=∠.【详解】 证明://DE BC ,1CBE ∴∠=∠.//BE FG ,2CBE ,12∠∠∴=.【点睛】 本题考查了平行线的性质,牢记平行线的各性质定理是解题的关键.26.(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC ∥AD , ∵AF ∥DE ,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°, ∴∠GAD=∠CGF ,∴BC ∥AD .【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。
【鲁教版】初一数学下期中试题(及答案)
A.1B.3C.7D.9
6.在 , , , , , , 中,无理数的个数()
A.1B.2C.3D.4
7.对任意两个正实数 , ,定义新运算 ★ 为:若 ,则 ★ ;若 ,则 ★ .则下列说法中正确的有()
∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,
故B选项符合题意;
C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,
故C选项不符合题意;
D.∵AE∥BF,
∴∠EGF=∠AEC=110°(两直线平行,内错角相等),
∵EC∥FD,
∴∠BFD=∠EGF=110°(两直线平行,内错角相等),
12.如图,一副直角三角板图示放置,点 在 的延长线上,点 在边 上, , ,则 ()
A. B. C. D.
二、填空题
13.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P( ,﹣ )为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.
10.C
解析:C
【分析】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.
【详解】
A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;
B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;
C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级期中考试数学试题
一、选择题
1、下列方程中的二元一次方程组的是( )
A .321
41x y y z -=⎧⎨=+⎩
B .3232a b a =⎧⎨-=⎩
C .1
3124y x
x y
⎧+=⎪⎪⎨⎪+=⎪⎩
D .1
3mn m n =-⎧⎨+=⎩
2.二元一次方程5a -11b=21 ( )
A .有且只有一解
B .有无数解
C .无解
D .有且只有两解 3.如图所示,下列条件中,能判断AB ∥CD 的是( ) A.∠BAD=∠BCD B.∠1=∠2
C.∠3=∠4
D.∠BAC=∠ACD
4. 一个角的两边与另一个角的两边分别平行,则这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定 5.若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角
的2倍,则三角形各角的度数为( ).
A .45°,45°,90°
B .30°,60°,90°
C .25°,25°,130°
D .36°,72°,72° 6.下列四个命题中,真命题有( ).
(1)两条直线被第三条直线所截,内错角相等. (2)如果∠1和∠2是对顶角,那么∠1=∠2. (3)一个角的余角一定小于这个角的补角.
(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补. A .1个 B .2个 C .3个 D .4个
7、已知方程组2342x y ax by -=⎧⎨+=⎩与356
4x y bx ay -=⎧⎨+=-⎩有相同的解,则a 、b 的值为( )
A .2
1
a b =-⎧⎨=⎩
B .12
a b =⎧⎨=-⎩
C .12
a b =⎧⎨=⎩
D .12
a b =-⎧⎨=-⎩
8. 如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中 一个小长方形的面积为( ) A. 400 cm 2 B. 500 cm 2 C. 600 cm 2 D. 4000 cm 2
3
4
D
C B A
21
二、填空
11.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.12.
已知方程组
5
4
=
+
=
+
ay
bx
by
ax
解是
1
2
=
=
y
x
,则()2011
b
a-= 。
13.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为__________.
第13题图第14题图
14.如图所示,AB∥CD,∠1=115°,∠3=140°,则∠2=__________.
三、解答题
15、解下列方程组 (1)
2
23
2328
x y
x y
⎧
+=
⎪
⎨
⎪+=
⎩
(2)
5
34
11
34
x y x y
x y x y
+-
⎧
-=
⎪⎪
⎨
+-
⎪+=
⎪⎩
16. 一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,
袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是0.25 .(1)取出白球的概率是多少?
(2)如果袋中的白球有18只,那么袋中的红球有多少只?
17.如图所示,已知直线AB∥CD,∠AEP=∠CFQ,求证:∠EPM=∠FQM.
18.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.
19.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。
问本月原计划每组各生产多少个零件?
20.已知两直线y
1=2x-3,y
2
=6-x.
(1)求它们的交点A的坐标;
(2)求这两条直线与x轴所围成的三角形的面积.
21.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE 的反向延长线与∠CDO的平分线交于点F.
(1)当∠OCD=50°(图1),试求∠F.
(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.。