基带信号眼图实验
通信原理课程教案实验四数字同步及眼图
实验四数字同步及眼图实验(理论课:教材第13章P404)实验内容1.位定时、位同步提取实验2.信码再生实验3.眼图观察及分析实验4.仿真眼图观察测量实验一、实验目的1.掌握数字基带信号的传输过程。
2.熟悉位定时产生与提取位同步信号的方法。
3.学会观察眼图及其分析方法。
二、实验电路工作原理(一)、眼图概念一个实际的基带传输系统,尽管经过十分精心的设计,但要使其传输特性完全符合理想情况是不可能的。
码间干扰是不可能完全避免的,码间干扰问题与信道特性、发送滤波器、接受滤波器特性等因素有关。
因而计算由于这些因素所引起的误码率就十分困难,尤其是在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。
在码间干扰和噪声同时存在的情况下,系统性能的定量分析,就是想得到一个近似的结果都是十分繁杂的。
那么,怎样来衡量整个系统的传输质量呢? 眼图,就是一种可以直观地、方便地估价系统性能一种方法。
这种方法具体做法是:用一个示波器接在接受滤波器的输出端,然后调整示波器水平扫描周期,使其与接受码元的周期同步。
这时就可以从示波器显示的图形上,观察出码间干扰和噪声的影响,从而估计出系统性能的优劣程度。
所谓眼图是指示波器显示的这种图像。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像一只人的眼睛而得名。
如图4-3所示。
(二)、同步信号的作用与电路工作原理数字通信系统能否有效地工作,在相当大的程度上依赖于发端和收端正确地同步。
同步的不良将会导致通信质量的下降,甚至完全不能工作。
通常有三种同步方式:即载波同步、位同步和群同步。
在本实验中主要位同步。
实现位同步的方法有多种,但可分为两大类型:一类是外同步法。
另一类是自同步法。
所谓外同步法,就是在发端除了要发送有用的数字信息外,还要专门传送位同步信号,到了接收端得用窄带滤波器或锁相环进行滤波提取出该信号作为位同步之用。
所谓自同步法,就是在发端并不专门向收端发送位同步信号,而收端所需要的位同步信号是设法从接收信号中或从解调后的数字基带信号中提取出来。
基带信眼图实验m精编b仿真
基带信眼图实验m精编b仿真文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]数字基带信号的眼图实验——m a t l a b 仿真一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。
二、实验预习要求1、复习《数字通信原理》第七章节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。
三、实验原理和电路说明 1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1 基带系统的分析模型抑制码间干扰。
设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。
其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。
由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。
在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。
这种滤波器克服了拖尾太慢的问题。
(完整word版)使用matlab绘制眼图.docx
使用 matlab 绘制数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉 MATLAB语言编程。
二、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该a n t nT s基带传输a n h t nT sn n抽样判决H ( )图 3-1基带系统的分析模型抑制码间干扰。
设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过n基带传输系统后的输出码元为a n h t nT s。
其中nh(t )1H ()e j t d(3-1 )2理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:,k 0h( kT s)(3-2)0,k为其他整数频域应满足:T s,T s(3-3)H ( )0,其他H ( )T sT sT s图 3-2 理想基带传输特性此时频带利用率为2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。
由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。
在一般情况下,只要满足:2 i H2 2 ,(3-4)HH ( ) HT s iT sT sT sT s基带信号就可实现无码间干扰传输。
这种滤波器克服了拖尾太慢的问题。
从实际的滤波器的实现来考虑,采用具有升余弦频谱特性H ( ) 时是适宜的。
1 sinT s ( ) , (1 ) (1 )2T sT sT sH ( )1, (1 ) 0(3-5)T s0,(1 )T s这里称为滚降系数,1。
所对应的其冲激响应为:sin tcos( t T s )h(t )T s (3-6)t 1 4 2t 2 T s 2T s此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。
实验二 信道与眼图实验
实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。
2、掌握信道与眼图模块的使用方法。
二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。
2、数字基带传输信道观测眼图。
三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。
伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。
由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。
目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。
我们把这种周期序列称为伪随机序列。
通常产生伪随机序列的电路为一反馈移存器。
它又可分为线性反馈移存器和非线性反馈移存器两类。
由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。
由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。
用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。
将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。
实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。
2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。
因此,码间干扰也就不可能避免。
我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。
眼图就是一种能够方便地估计系统性能的实验手段。
这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。
通信原理课程设计----基带信号眼图仿真
1 需求分析1.设基带传输系统响应是α=1的升余弦滚降系统,画出在接收端的基带数字信号波形及其眼图。
2.设定二进制数字基带信号 an ∈{+1,-1},g(t)= 1 0≤t ≤Ts ;t 为其他值时g(t)= 0。
系统加性高斯白噪声的双边功率谱密度为0。
画出:(1) 经过理想低通H(f)= 1 │f │≤5/(2 Ts) 后的眼图。
(2) 经过理想低通H(f)= 1 │f │≤1/ Ts 后的眼图。
(3) 比较分析上面图形。
在该部分中叙述:对题目中要求的功能进行的简单的叙述分析,把题目内容给介绍一下,还需要介绍分工情况。
2 概要设计1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图2-1 基带系统的分析模型抑制码间干扰。
设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。
其中1()()2j t h t H e d ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图2-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。
由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。
在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。
这种滤波器克服了拖尾太慢的问题。
从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。
实验四 光纤通信系统测量中的眼图分析方法测试实验
实验四 光纤通信系统测量中的眼图分析方法测试实验一、实验目的1、了解眼图的形成过程2、掌握光纤通信系统中眼图的测试方法二、实验仪器1、ZYE4301F 型光纤通信原理实验箱1台2、20MHz 模拟双踪示波器1台3、万用表1台三、实验原理眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。
眼图可以在时域中测量,并且可以用示波器直观的显示出来。
图1是测量眼图的系统框图。
测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。
这样,在示波器的屏幕上就可以显示出被测系统的眼图。
伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。
例如,由n=2比特长的4种不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。
如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。
分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度VV V ∆-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。
2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V∆增加,无畸变眼图的眼皮厚度应该等于零。
图1眼图的测试系统3、系统无畸变眼图交叉点发散角b T T∆应该等于零。
4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度-+-++-V V V V 应该等于零。
5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。
眼图观察测量实验
实验12 眼图观察测量实验一、实验目得1、学会观察眼图及其分析方法,调整传输滤波器特性。
二、实验仪器1、眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计与改善(通过调整)传输系统性能。
我们知道,在实际得通信系统中,数字信号经过非理想得传输系统必定要产生畸变,也会引入噪声与干扰,也就就是说,总就是在不同程度上存在码间串扰。
在码间串扰与噪声同时存在情况下,系统性能很难进行定量得分析,常常甚至得不到近似结果。
为了便于评价实际系统得性能,常用观察眼图进行分析。
眼图可以直观地估价系统得码间干扰与噪声得影响,就是一种常用得测试手段。
什么就是眼图?所谓“眼图”,就就是由解调后经过接收滤波器输出得基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示得波形称为眼图。
干扰与失真所产生得传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人得眼睛故称眼图。
在图12-1中画出两个无噪声得波形与相应得“眼图”,一个无失真,另一个有失真(码间串扰)。
图12-1中可以瞧出,眼图就是由虚线分段得接收码元波形叠加组成得。
眼图中央得垂直线表示取样时刻。
当波形没有失真时,眼图就是一只“完全张开”得眼睛。
在取样时刻,所有可能得取样值仅有两个:+1或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许得噪声电平就减小了。
换言之,在随机噪声得功率给定时,将使误码率增加。
“眼睛”张开得大小就表明失真得严重程度。
为便于说明眼图与系统性能得关系,我们将它简化成图12-2得形状。
由此图可以瞧出:(1)最佳取样时刻应选择在眼睛张开最大得时刻;(2)眼睛闭合得速率,即眼图斜边得斜率,表示系统对定时误差灵敏得程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区得垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区得间隔垂直距离之半就是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交得区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息得解调器有重要影响。
基带系统眼图课程设计
基带系统眼图课程设计一、教学目标本课程的教学目标是使学生掌握基带系统眼图的基本概念、原理和应用方法。
通过本课程的学习,学生应能够:1.描述基带系统眼图的定义、组成部分和作用;2.解释基带系统眼图的参数,如眼高、眼宽、眼深等;3.分析基带信号的传输特性,并利用眼图进行评估;4.运用眼图技术解决实际通信系统中的问题。
二、教学内容本课程的教学内容主要包括以下几个部分:1.基带系统眼图的基本概念:介绍基带系统眼图的定义、组成部分和作用,以及与通信系统性能评估的关系;2.眼图参数及其含义:讲解眼图的主要参数,如眼高、眼宽、眼深等,并分析它们对通信系统性能的影响;3.基带信号传输特性分析:探讨基带信号在不同传输介质和系统中的传输特性,并利用眼图进行评估;4.眼图技术的应用:介绍眼图技术在实际通信系统中的应用案例,如误码率分析、信号质量评估等。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:教师通过讲解基带系统眼图的基本概念、原理和应用,引导学生掌握相关知识;2.讨论法:学生进行小组讨论,探讨眼图参数的含义和实际应用,提高学生的思考和分析能力;3.案例分析法:分析实际通信系统中的眼图案例,让学生更好地理解眼图技术的应用;4.实验法:安排实验环节,让学生亲自动手进行眼图测量和分析,增强实践能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选择合适的教材,为学生提供系统、科学的理论知识;2.参考书:推荐相关参考书籍,拓展学生的知识视野;3.多媒体资料:制作课件、演示文稿等多媒体资料,提高课堂教学效果;4.实验设备:准备眼图测试仪等实验设备,为学生提供实践操作的机会。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:通过课堂参与、提问、讨论等环节,记录学生的平时表现,占总成绩的30%;2.作业:布置适量的作业,检查学生对知识点的掌握情况,占总成绩的20%;3.考试:进行期中和期末考试,测试学生对课程知识的全面理解,占总成绩的50%。
眼图观察实验
眼图观察实验实验九眼图观察实验实验内容1、PN码/CMI码的眼图。
2、噪声、码间干扰对眼图的影响。
3、眼图的垂直张开度与水平张开度。
一、实验目的1、熟悉基带信号的眼图观察方法。
2、学会用眼图判断数字信道的传输质量。
3、分析眼图的垂直张开度与水平张开度。
二、眼图观察电路眼图是在同步状态下,各个周期的随机信码波形,重叠在一起所构成的组合波形。
其形状类似一只眼睛故名眼图。
其形成是由于人眼的视觉暂留作用把随机信号在荧屏上反复扫描的波形复合起来。
眼图是用来观察数字传输系统是否存在码间干扰的最简单、直观的方法。
将示波器置于外同步状态,平台的输出时钟接往示波器的通道1,伪随机码接往示波器的通道2,缓慢调整示波器的“同步”旋钮,当时钟与信码的相位同步时即可在示波器屏幕上观察到眼图。
眼图的垂直张开度反映信码幅度的变化量,可用来表示系统的抗噪声能力,垂直张开度越大,抗噪声能力越强。
水平张开度则反映信码的码间干扰。
水平张开度越大,表示信码的码间干拢越小。
垂直张开度与水平张开度越大,越有利于信码再生器的判决,还原出来信码的误码率就越小。
Vt11垂直张开度E= 水平长开度E1= 0tV22V V 12 t 1 t 2图9-1 模型化眼图平台上专门设置有眼图观察电路,它是一级由运算放大器和RC网络组成的低通滤波器,把输入数字信号的高频分量滤除,得到一个模拟的升余弦波,以获得眼图观察效果。
输入的PN码数字信号由U101 CDLD可编程模块二内的数字信号产生电路产生,经过 U101 CPLD可编程模块二 70 CMI码 34 产生电路 35 5 36 31 PN2 2KB/S PN 32 码产生电路CMIOUTCMI MCMI 数字信号眼图FCMI 测试点测试点TP902 TP903 HPN2 FPN2 眼 HPN2 CMI码 1 图 HPN32 2 PN32 3 K02 观 FPN32 察 HC1 1KHz方波电产生电路 FC1 路 HC2 FC2 32KHz方波产生电路 U301 U302 FPGA可编程模块一 39 CMI码产生电路 47 2KB/S PN 码产生电路 48 32KB /S PN 码产生电路 ? ? ? ? 图9-2 眼图观察方框图 ? ? FPGA/CPLD模块选择开关K01和PN码/CMI码选择开关K02的3~2送入眼图观察电路。
通原实验 基带传输及眼图观测
实验17 基带传输及眼图观测一、实验目的1.掌握眼图观测方法;2.学会用眼图分析通信系统性能;二、实验原理1.什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人的眼睛故称眼图。
在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。
我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。
在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于评价实际系统的性能,常用观察眼图进行分析。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
在下图眼图示意图中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
在图中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就表明失真的严重程度。
图17-1 无失真及有失真时的波形及眼图(a) 无码间串扰时波形;无码间串扰眼图(b) 有码间串扰时波形;有码间串扰眼图2.眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。
眼图的张开度受噪声和码间干扰的影响,当信道信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以评估系统干扰的大小。
基于SystemView仿真下的眼图分析
1基带传输的基本原理在实际的通信系统中,很难完全消除码之间的串扰。
这主要是由于传输过程中传输系统的信号不稳定所致,使得波形存在变形、展宽,而且之前波形会出现长的拖尾现象,到观察码元的抽样时间点上,识别器会对结果出现错误判决。
对误码率的影响现在还没有找到数学上能处理的统计规律,还无法在这方面进行针对性的计算。
码间串扰如图1所示。
为了在实验室中测量基带传输系统的性能,使用示波器观察接收信号的常用方法是将示波器连接到接收滤波器的输出端,然后调整示波器的水平扫描周期以匹配示波器的水平扫描周期,与接收的符号周期和持续效果同步。
用于扫描的示波器的波形重叠,并且示波器屏幕上显示的结果看起来像人眼,这就是将其称为“眼图”的原因。
分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
基带信号与眼图如图2所示。
眼图是通过在示波器上叠加特定的数字信号而显示的图,它包含很多信息。
噪声的影响以及符号之间的对话在眼图中可见。
这些效果反映了数字信号的一般属性,因此,评估了整个系统的优缺点。
所以眼图分析是高速互连系统信号完整性分析的核心。
此外,眼图还可以用于调整接收滤波器的属性,以减少符号之间的串扰效应,并改善整个通信系统的传输性能。
眼图张开的大小反映了码间串扰的强弱。
眼睛越大,眼图越正确,符号之间的距离越小,反之符号之间的距离越大。
如果发生噪声,则噪声会叠加在信号上,眼图的轨迹会变得模糊。
如果有拦截码,“眼睛”或多或少会张开。
与代码之间没有交集相比,原始的细轨道明显平滑且变成模糊的条纹,并且标准化程度不高。
噪声越大,轨道越宽、越深,代码之间的交点越大,眼图的校正越少。
眼睛中的图像包含大量有价值的信息,可用于衡量数字信号传输系统性能的好坏,它可以显示接收过滤器的设置,以减少代码之间的间隔。
眼图如图3所示。
①最佳采样时刻是眼睛张开最大的时间。
②对时间误差的敏感度可以通过图表的斜边斜率来确定。
③在采样期间,【作者简介】赵瑄(1983-),女,吉林磐石人,实验师,从事通信工程、电子信息工程研究。
基带信号眼图
计算机与信息技术学院综合性、设计性实验报告专业:通信工程 年级/班级:09级 2011—2012学年第二学期 课程名称 通信原理 指导教师 本组成员学号姓名实验地点 实验时间 第六周 项目名称 基带信号眼图 实验类型 软件一、实验目的1.了解数字基带传输系统的组成和实时工作过程;2.加深理解时域均衡系统的工作原理,基本特点及均衡器的主要作用; 3.学会按给定的均衡准则调整,观测均衡器的方法。
二、实验仪器或设备通信实验箱和数字示波器各一台 三、实验原理K可变 手调图1 数字基带传输系统的组成框图数字基带传输系统的组成框图如图1所示,它是一个较完整的数字基带传输系统。
信号源产生19.2 KHz 的基带信号时钟,经过乘4之后,提供均衡器所需的两个互补驱动时钟76.8 KHz 。
显然本实验系统的基带速率为19.2 Kbit/s 。
测试信号和信码发生器按19.2KHz 的时钟节拍,分别产生测试单脉冲波形及63位M 序列,两种码分别作为均衡的对象,通过开关K 予以选择。
可变信道滤波器是在实验室条件下用来模拟传输信道特性的,改变电位器即可改变滤波器的传输函数特性,进而模拟信道特性的变化。
均衡器是借助横向滤波器实现时域均衡的,它由延迟单元,可变系数电路和相加器三部分组成,如图2所示。
信号源时 钟 测试信号信 码信 道 均衡器 接收滤波器 取样判决4图2 横向滤波器图2中,横向排列的延迟单元是由电荷转移器件完成的。
本实验所采用的是国产斗链器件BBD (Bucret Brrgades Device ),它有32个延迟抽头输出端,因为我们抽样频率为76.8KHz 是基带信号19.2 Kbit/s 的4倍,故取6,10,14,18,22,26,30等七个抽头输出端。
理论上讲,抽头数目越多就越能消除码间串扰的影响,但势必会增加调整的难度。
且若变系数电路的准确度得不到保证,增加抽头数所获得的效益也不会显示出来。
实现Ci 调整的电路,称为变系数电路。
数字通信实验
实验一:数字基带传输系统眼图观察1.实验目的1.观察数字基带传输系统中的各模块的信号波形,深入理解奈奎斯特第一定理;2.观察发送端和接收端的眼图,理解眼图在数字基带传输系统中的作用2.实验原理数字基带传输系统模型数字基带信号的常用码型的形状常常画成矩形,而矩形脉冲的频谱在整个频域是无穷延伸的。
由于实际信道的频带是有限的而且有噪声,用矩形脉冲作传输码型会使接收到的信号波形发生畸变,所以这一节我们寻找能使差错率最小的传输系统的传输特性。
一个典型的数字基带信号传输系统模型如下图1:数字基带信号传输系统模型图 1 中,基带码型编码电路的输出是携带着基带传输的典型码型信息的δ脉冲或窄脉冲序列{an},我们仅仅关注取值:0、1 或± 1 ;发送滤波器又叫信道信号形成网络,它限制发送信号频带,同时将{an}转换为适合信道传输的基带波形;信道可以是电缆等狭义信道也可以是带调制器的广义信道,信道中的窄带高斯噪声会给传输波形造成随机畸变;接收滤波器的作用是滤除混在接收信号中的带外噪声和由信道引入的噪声,对失真波形进行尽可能的补偿(均衡);抽样判决器是一个识别电路,它把接收滤波器输出的信号波形 y(t)放大、限幅、整形后再加以识别,进一步提高信噪比;码型译码将抽样判决器送出的信号还原成原始信码。
3.实验步骤1.编程实现数字基带传输系统,通过调节升余弦滚降系数来观察系统中各个部分的信号波形。
2.观察发送端和接收端的眼图,并进行比较。
4.实验内容实验程序clear allglobal dt t f df N T %全局变量close allN=2^13; %采样点数L=64; %每码元的采样点数M=N/L; %码元数Rb=2; %码速率是 2Mb/sTs=1/Rb; %码元间隔dt=Ts/L; %时域采样间隔df=1/(N*dt); %频域采样间隔T=N*dt; %截短时间Bs=N*df/2; %系统带宽%alpha=0.5; %滚降系数=0.5Na=4; %示波器扫描宽度为 4 个码元t=linspace(-T/2,T/2,N); %时域横坐标f=linspace(-Bs,Bs,N); %频域横坐标db=input('请选择信噪比[0-15]:');b=input('采样偏差 b*Ts, b=[-0.5,+0.5]');alpha=input('滚降系数');Rt=input('占空比');if Rt==[],Rt=0.5;end;hr1=sin(pi*t/Ts)./(pi*t/Ts);hr2=cos(alpha*pi*t/Ts)./(1-(2*alpha*t/Ts).^2);hr=hr1.*hr2;HR=abs(t2f(hr));GT=sqrt(HR);GR=GT;EP=zeros(size(f))+eps;EPr=zeros(size(f))+eps;['信噪比为',num2str(db),'dB, 采样偏差为',num2str(b),'*Ts'] for loop1=1:16Eb_N0(loop1)=(loop1-1); %分贝值变为真值eb_n0(loop1)=10^(Eb_N0(loop1)/10);Eb=1;n0=Eb/eb_n0(loop1); % 信道噪声谱密度sita=n0*Bs; % 噪声功率n_err=0; % 误码计数for ii=1:20code=sign(randn(1,M));imp=zeros(1,N); % 产生冲击序列imp(L/2:L:N)=code/dt;IMP=t2f(imp);Sa=IMP.*GT; % 升余弦信号的傅氏变换sa=f2t(Sa); %升余弦信号的时域变换sa=real(sa);P=Sa.*conj(Sa)/T; % 升余弦信号的功率谱EP=(EP*(ii-1)+P)/ii;n_ch=sqrt(sita)*randn(size(t));% 信道噪声nr=real(f2t(t2f(n_ch).*GR)); %输出噪声Sr=Sa.*GR; %接收信号频谱sr=real(f2t(Sr))+nr;% 接收信号y=sign(sr(L*(.5):L:N)); %抽样判别n_err=n_err+length(find(y~=code));% 误码数Pr=Sr.*conj(Sr)/T; % 平均功率EPr=(EPr*(ii-1)+Pr)/ii;tt=[0:dt:Na*L*dt];if loop1==db+1[' 画眼图 '];for jj=1:Na*L:N-Na*Lfigure(2);hold on;subplot(2,1,1);grid on;plot(tt,sa(jj:jj+Na*L));% 画发送眼图title(' 发送眼图 ');xlabel('t (us)')ylabel('s(t) (V)')axis([0,2,-2.3,2.3]);hold on;subplot(2,1,2);grid on;plot(tt,sr(jj:jj+Na*L));% 画接受眼图title(' 接收眼图 ');xlabel('t (us)')ylabel('s(t) (V)')axis([0,2,-2.3,2.3]);endendendif loop1==db+1[' 画波形图 '];s=zeros(1,N);s=reshape(code(ones(1,L),:),1,L*M);yo=zeros(1,N);yo=reshape(y(ones(1,L),:),1,L*M);figure(1)subplot(2,3,1);plot(t,s,'LineWidth',2);% 画发送码型grid on;axis([-10,+10,1.5*min(s),1.5*max(s)])xlabel('t (us)')ylabel('s(t) (V)')title(' 发送码型 ');subplot(2,3,2);plot(t,sa);% 画生成波形grid on;axis([-10,10,1.5*min(sa),1.5*max(sa)]);xlabel('t (us)')ylabel('s(t) (V)')title(' 发送生成波形 ');subplot(2,3,3)plot(f,30+10*log10(EP));% 画功率谱grid on;axis([-.05*Bs,.05*Bs,min(30+10*log10(EP))/3,1.5*max(30+10*log10(EP))]);xlabel('f (MHz)')ylabel('Ps(f) (dBm/MHz)')title(' 发送生成波形 ');subplot(2,3,4);plot(t,yo,'LineWidth',2); % 画接受码grid on;axis([-10,+10,1.5*min(yo),1.5*max(yo)])xlabel('t (us)')ylabel('s(t) (V)')title(' 发送功率谱 ');subplot(2,3,5);plot(t,sr);% 画接受波形grid on;axis([-10,10,1.5*min(sr),1.5*max(sr)]);xlabel('t (us)')ylabel('sr(t) (V)')title(' 接收码型 ');subplot(2,3,6)plot(f,30+10*log10(EPr+eps),'*');% 画接受功率谱grid on;axis([-.05*Bs,.05*Bs,min(30+10*log10(EPr+eps))/2,1.5*max(30+10*log10(EPr+ep s))]);xlabel('f (MHz)')ylabel('Ps(f) (dBm/MHz)')title(' 接收功率谱 ');end;Pe(loop1)=n_err/(M*ii)+eps; % 平均误码率endfigure(3)semilogy(Eb_N0,Pe,'b');eb_n0=10.^(Eb_N0/10); % 还原为真值hold onsemilogy(Eb_N0,0.5*erfc(sqrt(eb_n0)),'r');% 理论误码率曲线axis([0,9,1e-5,1])title(' 误码率曲线 ');xlabel('Eb/N0')ylabel('Pe')legend(' 实验值 ',' 理论值 ');pause(0.001);%endfunction X=t2f(x)global dt df N t f TH=fft(x);X=[H(N/2+1:N),H(1:N/2)].*dt;endfunction x=f2t(X)global dt df t f T NX=[X(N/2+1:N),X(1:N/2)];x=ifft(X)/dt;end实验结果图2:频谱图图3:发送和接收眼图实验总结图3眼图是在信噪比为8dB, 采样偏差为0.2*Ts的条件下测得,由于信号在信道中传输时引入了噪声,接收眼图的质量相比发送眼图出现了大幅的下降。
通信原理5.5数字基带信号传输—眼图
研究问题:码间串扰和噪声的估计 研究对象:眼图 研究目的:如何用实验的方法来减小码
间串扰和噪声的影响 研究方法:定性分析,实验观察
5.4眼图:问题提出
实际应用的基带数字信号传输系统,不可能完 全做到无码间串扰的要求;
可能影响码间串扰性能的因素:发送滤波器特 性、信道特性、接收滤波器特性,而计算由于 这些因素所引起的误码率非常困难,甚至得不 到一种合适的定量分析方法。
在实际应用时要通过实验的方法估计和通过调 整以改善传输系统的性能,使码间串扰的影响 尽量减小。
眼图正是实验方法的一个有用的工具。
5.4眼图:什么是眼图?
基带传输系统接收滤波器的输出信号加到示波器的垂直轴 调示波器的水平扫描周期,使它与信号码元的周期同步 此时可以从示波器上显示出一个像人眼一样的图形,从这个称为眼图的
信道噪声:为0 信道带宽:
1000Hz
5.4眼图:眼图的实验
有噪声时
信道噪声:均值 为0,S/N=10db 的AWGN
信道带宽: 4000Hz
输入信号: 10010110,双极 性非归零码
5.4眼图:眼图的实验
有噪声时
信道噪声:均值 为0,S/N=3db的 AWGN
信道带宽: 4000Hz
2Tb
3Tb
4Tb
5Tb
6Tb
原来清晰端正的细线,变成了比较模糊的带状的线,而且不很端正 噪声越大,线条越宽,越模糊
5.4眼图:眼图的模型
最佳抽样时刻应选择眼图中“眼睛”张开最大的时刻; 对定时误差的灵敏度,由斜边斜率决定,斜率越大,对定时误差就越灵敏; 图中阴影区的垂直高度表示信号幅度畸变范围; 在抽样时刻上,上下两阴影区的间隔距离的一半为噪声容限,噪声瞬时值
基带信号眼图实验 (2)
实验三 数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。
二、实验预习要求1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。
三、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1基带系统的分析模型抑制码间干扰。
设输入的基带信号为()nsna t nT δ-∑,sT 为基带信号的码元周期,则经过基带传输系统后的输出码元为()nsna h t nT -∑。
其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。
由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。
在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。
这种滤波器克服了拖尾太慢的问题。
从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。
(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。
完整版眼图观测实验
武夷学院实验报告课程名称:通信原理实验项目名称:眼图观测实验姓名:专业:通信工程班级:一班学号:同组成员:匚-、实验准备[1L:实验目的1、掌握眼图观测的方法。
2、掌握相关眼图的测量方法。
实验内容1、观测眼图。
2、测量沿途的判决电平、噪声容限。
实验模块1、通信原理11号模块2、双踪示波器模块实验原理在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。
二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。
眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。
最佳抽样时刻最大信号失真量噪声容限■ ————————— 1^——_可以抽样的时间过零点失真图23-1 眼图的一般描述在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。
当有码间串扰时,波形失真,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用图7.6所示的图形来描述。
由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2 )眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。
基带信号眼图
t=-3*Ts:dt:3*Ts;%产生双极性数字信号
d=sign(randn(1,N_data)); %从初值1开始到1000的随机一个数取出
=sigexpand(d,N_sample);%基带系统冲击响应(升余弦)
ht=sinc(t/Ts).*(cos(alpha*pi*t/Ts))./(1-4*alpha^2*t.^2/Ts^2+eps);
xlabel('t/Ts');
%横坐标轴t/Ts
实验原理
ylabel('基带信号');
k=3:50
ss=st(k*N_sample+1:(k+eye_num)*N_sample); %从初值开始调整示波器的水平扫描周期为码元间隔的整数倍
plot(ttt,ss);%图形描点
hold on; %图形保持
%接收信号表达式
st=conv(dd,ht);%将接收信号输入示波器的垂直放大器
tt=-3*Ts:dt:(N_data+3)*N_sample*dt-dt;%调整示波器的水平扫描周期为码元间隔的整数倍
figure(1)
%作眼图
ot(211)\plot(tt,st);%一行一列作眼图横坐标tt
axis([0 20 -1.2 1.2]); %坐标轴的绘制
2.掌握眼图观测的方法并记录研究
实验要求
小组合作,认真观察图像,思考实验结论
实验仪器
计算机
实验内容
clea
Ts=1; %样周期为1秒
N_sample=17;%采样值为17次
eye_num=7;%眼图的个数为7
alpha=1;
数字信号基带传输系统实现及眼图的观察
实验三数字信号基带传输系统实现及眼图的观察一、实验目的1、熟悉使用System View软件,了解各功能模块的操作和使用方法。
2、通过实验进一步掌握、了解数字基带传输系统的构成及其工作原理。
3、观察数字基带传输系统接受端的眼图,掌握眼图的主要性能指标。
二、实验内容用System View建立一个数字基带传输系统仿真电路,信道中加入高斯白噪声(均值为0,均方差可调),分析理解系统各个模块的功能,并通过观察眼图,判断系统信道中的噪声情况。
三、实验要求1、观察系统中各个模块的输出波形,并分析说明系统构成原理。
2、观察低通滤波器的输出波形的眼图,调节信道中噪声的大小,观察眼图变化。
3、比较抽样判决后的输出码元与原始码元有何不同,说明原因。
4、调节噪声大小,分析系统中是否产生误码,说明原因。
四、电路构成模块说明:Sink0:产生原始码元波形Sink1:发送端基带信号形成器波形Sink19Sink20Sink21参数设置:Token4:Source――Noise/PN――Pn Seg(幅度1V,频率100HZ,电平数2,偏移0V,产生双极性不归零码,随机产生)Token18:在专业库中选择Comm——Processors——P shape(Select pulse Shape=Rectangular,Time offset=0,Width=0.01s,产生矩形脉冲基带信号)Token9:Source――Noise/PN――Gauss Noise(均值为0,均方差为0.01的高斯白噪声)Token11:Operator――Filters/systems――Liner Sys Filters(Analog,Butterworth,No. of Poles=3,Low Cutoff=100HZ,产生一个低通的Butterworth滤波器,用于对信道输出信号进行滤波)Token12:Operator――Sample/Hold――Sample(Sample rate=100HZ,用于对滤波后的波形进行抽样,抽样速率等于码元速率)Token13:Operator――Sample/Hold――Hold(Hold Value=Last Sample,Gain=1,对抽样后的值延时一段时间,得到恢复后的数字基带信号)Token14:Operator——Logic——Compare(Select comparison:a>=b True Output=1V,False Output=-1V,对抽样值进行判决比较,得到输出码元波形)Token15:产生正弦信号,作为比较器的另一个比较输入(振幅=0V,频率=0Hz)眼图参数设置:Sink Calculator――style――slice――start=0.01,Length=0.03,在窗口中选择需要观察眼图的波形,点击OK,观察其眼图系统定时设置:Start Time:0 ,Stop Time:0.5,Sample Rate:10000HZ五、实验结果1、原始基带信号图1 原始基带信号2、加入噪声后的基带信号(高斯白噪声,方差=0.01)图2 加入噪声后的基带信号3、经过低通滤波器后的输出波形图3 经过低通滤波器后的输出波形4、经过抽样判决后的输出波形图4 经过抽样判决后的输出波形5、经过低通滤波器后输出波形的眼图图5 经过低通滤波器后输出波形的眼图六、思考题1、观察低通滤波器的输出波形的眼图,调节信道中噪声的大小,观察眼图变化。
实验2 眼图观察测量实验
班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期实验2 眼图观察测量实验一、实验目的学会观察眼图及其分析方法,调整传输滤波器特性。
二、实验仪器1. 眼图观察电路2.时钟与基带数据发生模块,位号:G3.PSK调制模块,位号A4.噪声模块,位号B5.PSK解调模块,位号C6.复接/解复接、同步技术模块,位号:I7.20M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。
所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人的眼睛故称眼图。
在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1 或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就表明失真的严重程度。
眼图图2-1 无失真及有失真时的波形及眼图(a)无码间串扰时波形;无码间串扰眼图(b)有码间串扰时波形;有码间串扰眼图通信工程实验教学中心通信系统原理实验报告在图2-2中给出从示波器上观察到的比较理想状态下的眼图照片。
本实验主要是完成PSK 解调输出基带信号的眼图观测实验。
(a) 二进制系统 (b) 随机数据输入后的二进制系统图2-2实验室理想状态下的眼图四、各测量点和可调元件作用底板右边“眼图观察电路”W06:接收滤波器特性调整电位器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。
二、实验预习要求1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。
三、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1基带系统的分析模型抑制码间干扰。
设输入的基带信号为()nsna t nT δ-∑,sT 为基带信号的码元周期,则经过基带传输系统后的输出码元为()nsna h t nT -∑。
其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。
由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。
在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。
这种滤波器克服了拖尾太慢的问题。
从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。
(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。
所对应的其冲激响应为:()222sin cos()()14s s s stT t T h t t t T T παππα=-(3-6)此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。
换言之,若输入码元速率'1/s s R T >,则该基带传输系统输出码元会产生码间干扰。
2、眼图所谓眼图就是将接收滤波器输出的,未经再生的信号,用位定时以及倍数作为同步信号在示波器上重复扫描所显示的波形(因传输二进制信号时,类似人的眼睛)。
干扰和失真所产生的畸变可以很清楚的从眼图中看出。
眼图反映了系统的最佳抽样时间,定时的灵敏度,噪音容限,信号幅度的畸变范围以及判决门限电平,因此通常用眼图来观察基带传输系统的好坏。
图3-3眼图示意图四、仿真环境Windows NT/2000/XP/Windows 7/VISTA ; MATLAB V6.0以上。
五、仿真程序设计1、程序框架图3-4 程序框架首先,产生M 进制双极性NRZ 码元序列,并根据系统设置的抽样频率对该NRZ 码元序列进行抽样,再将抽样序列送到升余弦滚降系统,最后画出输出码元序列眼图。
2、参数设置该仿真程序应具备一定的通用性,即要求能调整相应参数以仿真不同的基带传输系统,并观察输出眼图情况。
因此,对于NRZ码元进制M、码元序列长度Num、码元速率Rs,采样频率Fs、升余弦滚降滤波器参考码元周期Ts、滚降系数alpha、在同一个图像窗口内希望观测到的眼图个数Eye_num等均应可以进行合理设置。
3、实验内容根据现场实验题目内容,设置仿真程序参数,编写仿真程序,仿真波形,并进行分析给出结论。
4、仿真结果参考参考例程参数设置如下:无码间干扰时:Ts=1e-2; %升余弦滚降滤波器的理想参考码元周期,单位sFs=1e3; %采样频率,单位Hz。
注意:该数值过大将%严重增加程序运行时间Rs=50; %输入码元速率,单位BaudM=2; %输入码元进制Num=100; %输入码元序列长度。
注意:该数值过大将%严重增加程序运行时间Eye_num=2; %在一个窗口内可观测到的眼图个数。
图3-5(a) 仿真参考结果图(1)图3-5(b) 仿真参考结果图(2)图3-5(c) 仿真参考结果图(3)从眼图张开程度可以得出没有发生码间干扰,这是因为基带信号的码元速率Rs为50Baud,而升余弦滚降滤波器和FIR滤波器的等效带宽B=60Hz(Ts=10ms),Rs<2B,满足了奈奎斯特第一准则的条件。
有码间干扰时:Ts=5*(1e-2); %升余弦滚降滤波器的参考码元周期,单位sFs=1e3; %采样频率,单位Hz。
注意:该数值过大将%严重增加程序运行时间Rs=50; %输入码元速率,单位BaudM=2; %输入码元进制Num=100; %输入码元序列长度。
注意:该数值过大将%严重增加程序运行时间Eye_num=2; %在一个窗口内可观测到的眼图个数。
图3-5(d) 仿真参考结果图(4)眼图基本闭合,存在较为严重的码间干扰,这是因为码元速率Rs虽然仍为50Baud,但滤波器等效带宽已经变为12Hz(Ts=50ms),Rs>2B不再满足奈奎斯特第一准则。
多进制码元情况:图3-6 四进制NRZ码元眼图六、实验报告要求1、整理实验数据,画出相应的波形。
2、结合奈奎斯特第一准则,分析波形,表述出码间干扰ISI现象与滤波器的等效带宽设定值之间的关系,给出原因。
3、结合奈奎斯特第一准则,分析波形,表述出码间干扰ISI现象与滤波器的滚降系数设定值之间的关系,给出原因。
七、思考题1、自行编写升余弦滚降滤波器冲激响应函数,特别注意当公式中分子分母均为0时的特殊情况。
2、采用MATLAB自带眼图函数eyediagram来观察眼图。
八、参考程序close all;alpha=0.2; %设置滚降系数,取值范围在[0,1]Ts=1e-2; %升余弦滚降滤波器的参考码元周%期, Ts=10ms,无ISI。
% Ts=2*(1e-2); %Ts=20ms,已经出现ISI(临界点)% Ts=5*(1e-2); %Ts=50ms,出现严重ISIFs=1e3; %采样频率,单位Hz。
注意:该数%值过大将严重增加程序运行时间Rs=50; %输入码元速率,单位Baud% M=2;M=4; %输入码元进制Num=100; %输入码元序列长度。
注意:该数值%过大将严重增加程序运行时间。
Samp_rate=Fs/Rs %采样率,应为大于1的正整数,即%要求Fs,Rs之间呈整数倍关系% Eye_num=2; %在一个窗口内可观测到的眼图个数。
Eye_num=4; %在一个窗口内可观测到的眼图个数。
%产生双极性NRZ码元序列NRZ=2*randint(1,Num,M)-M+1;figure(1);stem(NRZ);xlabel('时间');ylabel('幅度');hold on;grid on;title('双极性NRZ码元序列');%对双极性NRZ码元序列进行抽样k=1;for ii=1:Numfor jj=1:Samp_rateSamp_data(k)=NRZ(ii);k=k+1;endend%基带升余弦滚降系统冲激响应[ht,a] = rcosine(1/Ts,Fs,'fir',alpha);%画出基带升余弦滚降系统冲激响应波形subplot(2,1,1);plot(ht);xlabel('时间');ylabel('冲激响应');hold on;grid on;title('升余弦滚降系统冲激响应,滚降因子\alpha=0.2');%将信号送入基带升余弦滚降系统,即做卷积操作st = conv(Samp_data,ht)/(Fs*Ts);subplot(2,1,2);plot(st);xlabel('时间');ylabel('信号幅度');hold on;grid on;title('经过升弦滚降系统后的码元')%画眼图,在同一个图形窗口重复画出一个或若干个码元figure(3);for k = 10:floor(length(st)/Samp_rate)-10%不考虑过渡阶段信号,只观测稳定阶段ss = st(k*Samp_rate+1:(k+Eye_num)*Samp_rate);plot(ss);hold on;endxlabel('时间');ylabel('信号幅度');hold on;grid on;title('基带信号眼图');% eyediagram(st,Samp_rate);% xlabel('时间');% ylabel('信号幅度');% grid on;% title('基带信号眼图');。