热电偶的标定
热电偶标定实验
热电偶标定实验一、概述:温差热电偶(简称热电偶)是目前温度测量中应用最广泛的温度传感元件之一,是以热电效应为基础的测温仪表。
它用热电偶作为传感器,把被测的温度信号转换成电势信号,经连接导线再配以测量毫伏级电压信号的显示仪表来实现温度的测量。
热电偶测温的优点是结构简单、制作方便、价格低廉、测温范围宽、热惯性小、准确度较高、输出的温差电信号便于远距离传送、实现集中控制和自动测试。
流体、固体及其表面温度均可用它来测量,所以在工业生产和科学研究、空调与燃气工程中应用广泛。
二、实验目的1.学习使用毫伏表测定温差电动势及热电偶工作原理。
2.掌握热电偶定标曲线的绘制规则。
3.学习用热电偶设计温度计4.学习用直线拟合方法处理实验数据。
三、实验原理1、温差电现象。
导体中存在着与热现象有关的非静电力和电动势,称为温差电动势,依其产生的机理不同而有两种具体形式。
一种称为汤姆孙电动势。
金属导线两端如果温度不同,高温端的自由电子好像气体分子一样向低温端扩散,并在低温端堆积起来,从而在导线内形成电场。
由电子热扩散不平衡建立的电场反过来又阻碍不平衡热扩散的进行,最终达到动态平衡,使导线两端形成一稳定的电势差。
若把两种金属导线两端连接起来,并把接点置于不同温度中,使两种不同材料的金属连接成闭合回路,因两个汤姆孙电势不相等,两段导线中即形成恒定电流。
回路中相应的电动势称为汤姆孙电动势。
温差越大,汤姆孙电动势也越大。
另一种称为珀耳帖(J.C.A.Peltier,1785——1845)电动势。
两种不同金属连接起来,由于接触面两侧金属内自由电子浓度不同,电子将从浓度大的一侧向浓度小的一侧扩散,在接触面间形成电场,从而在两种金属间形成电位差。
显然,两种金属连成回路,并把接点置于相同温度中,两接触面间将建立相等而相反的电动势,因而也形不成恒定电流。
只有两接点温度不同,两个珀耳帖电动势不等,才会形成电动势。
而且温差越大,形成的电动势也越大。
如何标定热电偶
实验一热电偶和测温系统的标定一、实验目的1. 学习热电偶的焊接方法;2. 了解热电偶冷端补偿的重要性;3. 熟悉热电偶的特性和标定方法;4. 了解测温系统的组成和温度校准过程。
二、基本原理图1-1为温度测试的实验装置, 各部分的作用为:图1-1 测温系统方框图热源功率为300w, 能产生高达500℃的温度;热电偶: FU-2作标准热电偶;EA-2作被校准电偶;冰点槽: 用作热电偶的冷端处理;数字电压仪: 为热电势标准测量仪;动圈式仪表: 指示热源的温度;定温调节定温调节过程:图1-2为动圈仪表的面板。
当旋动“定温控制”旋钮时, 红色定温指针将指示预定的温度, 黑色指示指针随热源温度的上升向右移动, 逐渐靠近红色指针, 此时绿灯亮, 表明加热电源接通。
当红色指示灯亮时, 表明电源切断。
由于热惯性, 黑色指示将继续上升, 并超过红色指针指示的温度, 以后温度慢慢下降, 至红色指针附近, 继而绿灯又亮, 电源接通, ……如此反复多次, 当红灯和绿灯的指示时间相等且两灯指示之间和为(40±10)秒时, 黑色指针基本对准红色指针, 可认为热源温度已基本控制在定温点。
图1-2 动圈仪表面板利用上述装置, 可对热电偶和测温系统进行标定。
1. 热电偶的标定热电偶使用时, 是按照电偶标准分度值来确定温度的, “标定”就是对所使用的热电偶进行校验, 确定误差大小。
本实验用EU-2作为标准热电偶, EA-2作为被校热电偶, 数字电压表作电势的标准测量仪器, 动圈式仪表作定温控制作用, 使两支热电偶在相同温度时, 由数字电压表分别读出相应的电势值, 并由分度表查得相应的温度值, 然后以EU-2热电偶的温度标准, 来判断热电偶EA-2的误差。
2、以热源、热电偶EU-2和数字电压表组成标准测温系统, 用以测定热源的温度.热电偶EA-2与热电偶EU-2处于同一热点, 它与动圈式仪表组成被校测温系统, 以EU-2输出的数字电压表读数为基准, 分析被校测温系统的误差。
热电偶的定标与测温思考题
热电偶的定标与测温思考题
热电偶是一种常见的检测温度的仪器,它是由两种不同的金属线
或金属片构成的电阻有序组合,其开关电源在恒温条件下的电阻值比
较稳定,在受热时电阻变化很大。
它可以直接感知,迅速反映对应物
体表面的温度,因此被广泛应用于工业温度检测中。
热电偶的定标和测温分为三个步骤:
第一步:将标定设备上的两个电阻接入测量装置,经过延时电路,形成抗输入到比较环节,以准确测量电阻变化;
第二步:建立标定曲线,计算热电偶的对数函数关系;
第三步:以标定温度和标定热电阻的比值,预测温度随热电阻变
化的规律,并实施校准。
最后,将热电偶定标和测温的结果存储起来,作为检验与调试的
参考数据。
从以上的定标与测温过程可以看出,对于热电偶的正确使用,需
要保证其定标曲线的准确性,调试完成后,要定期进行校准,以保证
它的检测准确性。
此外,定标过程中,需要将热电偶与标定温度机紧
密联系,尽量避免在测温布线过程中受到外部影响所造成的偏差,这
要求操作者有一定的经验。
热电偶标定
热电偶标定
热电偶标定是检测相标定后电极-热电偶的信号和温度关系的一种方法。
它主要有以下注意事项:
1、接线正确:热电偶接线应正确,不要接反,否则会影响测量结果。
2、热电偶电源:热电偶输入电源要求是一定的,不可变动,否则将影响测量结果。
3、校准工具准备:标定前,应准备准确的温度控制表进行标定,需要确保其准确度。
4、校准的方法:标定的方法通常是将仪器的电极-热电偶放入精确温度模拟室中,调节它的温度,并记录相应的信号和温度。
5、取样:标定的重点是获取校准点的数据,要确保数据的准确性,此外,应根据不同的设备及其应用需求,取样,来确定测量范围。
6、校准结果分析:校准完毕后,分析校准结果,对其进行复核、比较,如果不满意,可以再次校准。
7、校准报告:记录标定信息,并根据该信息准备校准报告,这个报告将作为实际应用中热电偶准确性的证明文件。
热电偶标定是确保热电偶测量准确性的关键步骤,在操作前应对上述注意事项进行更详细的了解,以准确地完成标定工作。
热电偶制作与标定
1 热电偶制作与标定(实验序号03030012)所用仪器:1.HY30D 数字电位差计;2.CS501恒温水浴,冰瓶;3.电烙铁,焊锡丝,铜-康铜导线 一、实验目的:1.掌握热电偶的焊制方法与标定方法。
2.熟悉和掌握热电偶的测温原理和测温方法。
绘制热电偶的E ~t 曲线。
二、实验原理:1.热电偶制作分为两种方法:①一种是利用碳棒电弧熔接法。
碳棒接直流电源的正级。
将热电偶丝的铜和康铜导线两端分别磨光对齐绞接在一起,然后接到直流电源负极。
用热电偶接头轻轻打击碳棒即可引弧使热电偶接头熔接在一起而成。
这种方法是利用高温电弧将热偶丝熔化连接在一起的。
这样制作的热电偶适用于高温测量。
②另一种制作方法是焊接法。
将热电偶丝的两根导线的两端分别磨光对绞接在一起,然后用银焊或锡焊连接而成。
这种方法是利用熔化焊料连接而成。
银焊或锡焊的热电偶只适于低温范围(300℃以下)。
AAB A BB绞焊法 平行焊 埋入法2.测温原理:如图一电势E 是两端温度t,t0的函数,t0不变时,)(t f EAt △tB恒温水浴 电位差计 冰瓶图一 图二3.热电偶的标定:如图二将热电偶冷端置于冰瓶中(0℃),热端置于恒温水浴中,水浴温度由标准温度计指示读出,以电位差计测量热电偶两端间电势E 0,改变水浴温度,可测得不同温度下对应的电动势,从而得出E ~t 曲线,热电偶校验系统与热电偶标定系统相同。
三、实验步骤:1.热电偶的制作:①将铜—康铜热偶丝两端分别用砂纸磨光、对齐、拧在一起(不超过3周)。
②按图接线路系统后,接通电源,将调压器调到一定电压(低于36伏)。
③将拧在一起的热电偶一端很快插入锡铂纸内,然后快速取出,会看到有火花出现。
④检验接头,如果呈光亮圆形即为合格,然后再以同样方法焊制另一端。
⑤重复上述步骤,每人做2~3对热电偶,做好后,断开电源。
2.热电偶的标定:①将做好的热电偶分组编号。
②将要标定的一组热电偶的热端置于恒温水浴内,将冷端置于冰瓶内,并将各热电偶按编号分别接在转换接线板上,按图示线路连接好电位差计。
热电偶定标实验误差分析
热电偶定标实验误差分析热电偶是一种常用的测量温度的仪器,它可以准确、可重复地测量温度,可以在低、中、高温条件下进行测量,所以它被广泛应用于工业生产、科学研究及医疗技术等领域。
热电偶定标实验是对热电偶进行标定的实验,是热电偶的一个重要的环节,它能确保热电偶的测量精度、可靠性和稳定性,以及确保热电偶的准确性。
热电偶定标实验的误差分析,涉及到温度校准、热电偶精度、温差误差、温度背景偏移、接线精度、电源电压误差等多个方面。
热电偶定标实验误差分析过程中,可以根据热电偶原理和精度标准,分析温度传感器精度是如何影响热电偶定标实验的准确度的,以及热电偶定标实验是否达到预期的精度要求。
这样的分析可以帮助在用户使用热电偶时,确保热电偶的准确性和可靠性,并及时发现故障,以便及时处理和解决问题。
为了进行热电偶定标实验,首先需要选择一个高精度的温度控制设备,这样才能确保温度的精度和稳定性。
其次,我们还需要使用热电偶,热电偶的精度应符合国家规定的标准,以确保热电偶定标实验可以准确有效地进行。
此外,我们还需要考虑温度背景偏移,这是一种热电偶定标实验中容易出现的误差,一旦出现温度背景偏移,就会影响热电偶定标实验的准确性,因此,我们还需要在定标实验中考虑温度背景偏移的影响。
对热电偶定标实验的误差分析,还要考虑电源电压的误差,电源电压也会影响热电偶测量的准确性。
此外,还要注意接线精度,热电偶定标实验中,接线精度要保证它们能够准确地传递信号,以保证热电偶定标实验的准确性。
最后,还要注意温差误差的分析,热电偶的温差误差会对定标实验的准确性产生影响,因此要分析温差误差的程度,以确保热电偶定标实验的准确度。
通过分析热电偶定标实验的误差,可以使热电偶测量温度的精度得到保障,以便正确地测量温度,确保精度和可靠性。
只有经过精确的定标实验和误差分析,才能使热电偶保持准确和可靠,从而提高其应用效果。
热电偶的标定
热电偶的标定
热电偶是利用热电效应测量温度的一种传感器,它多用于测量热电器、过热器、焊接
设备和热力等中温度。
由于它有极低的热电阻、数毫秒的响应时间、恒定的温度范围,热
电偶比其他温度测量传感器更为通用和可靠。
每个热电偶都具有不同的特性,它们应该得到正确的标定才能提供准确的测量结果。
热电偶标定既包括使用模拟技术的标定,也包括使用数字器件的标定。
一般来说,对热电
偶的标定主要包括校准和测粗度。
校准是一种使用来自几个标准温度源的参考温度把热电偶精确地校准到测量值与参考
值一致的过程,当温度变化时,热电偶测量值也会随之变化,这种变化称为精度变化,校
准的目的是将其精度提高。
测粗度是确定热电偶的热电粗度的过程,热电粗度可以理解为两个相邻测量点之间的
温度差,它用来衡量测量的精确性。
热电偶测量的精度值要求在一定的温度范围内,测粗
度能够反映出不同温度下热电偶的测量精度,以确定热电偶的测量准确性。
根据热电偶安装类型,可以采用固定式或可移式安装方式,对于固定式热电偶,一般
使用直接安装在探头上,首先在未安装热电偶前确定目标温度,然后根据特定测量点温度
值检查热电偶,并将热电偶安装到探头上,完成校准和测粗度过程,最后将安装完成的热
电偶验证无误并录入校准报告。
对于可移式安装的热电偶,首先确定温度值,然后将热电
偶放置到探头上完成校准和测粗度,最后将测量值写入校准报告中,校准完成。
热电偶标定是要求热电偶各个温度测量点准确无误的校准过程,只有在此过程中,热
电偶才能提供准确可靠的温度测量数据。
因此,在应用热电偶之前,必须完成热电偶标定,以确保热电偶的温度测量准确度。
热电偶标定实验报告
热电偶标定实验报告
热电偶标定实验报告
本报告由XXX技术部门提供,旨在记录本次热电偶标定实验过程中测量所得的数据以及记录实验过程中发现的问题、改进措施等内容,依据标定任务和实验程序进行实测,得出以下实验结论:
1. 实验目的
本次实验的目的是对热电偶进行标定,确定热电偶在不同温度下的电压和电流输出,以及温度与电压电流间的关系,为后续测量与校准工作提供数据。
2. 实验设备
本次实验使用了高精度电源、计算机和被测热电偶,温度采用液体温度计进行测量。
3. 实测结果
我们对热电偶在20~100℃范围内进行标定,结果表明:热电偶在-20.1 到101.8℃之间的电压输出为-700.1~700.1mV,电流输出在2.2~2.4 mA之间。
同时,热电偶的温度测量精度达到±0.2℃。
4. 发现问题
在本次实验过程中,未发现问题。
5. 改进措施
为了确保实验的可靠性,我们建议:1.在每次标定之前都要检查设备的质量;2.使用高精度设备,提高实验精度。
综上所述,本次热电偶标定实验结果满足要求,未发现问题,同时也建议采用改进措施,以确保实验的可靠性和准确性。
最终,祝该实验一切顺利!。
热电偶的定标
热电偶的标定一、实验目的1、加深对温差电现象的理解;2、了解热电偶测温的基本原理和方法;3、了解热电偶定标基本方法。
二、实验仪器铜――康铜热电偶、YJ-RZ-4A 数字智能化热学综合实验仪、保温杯、数字万用表等。
三、实验原理1、温差电效应在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。
其优点是不仅使测量方便、迅速,而且可提高测量精密度。
温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。
本实验是研究一给定温差电偶的温差电动势与温度的关系。
如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。
图12、热电偶两种不同金属串接在一起,其两端可以和仪器相连进行测温(图2)的元件称为温差电偶,也叫热电偶。
温差电偶的温差电动势与二接头温度之间的关系比较复杂,但是在较小温差范围内可以近似认为温差电动势E t 与温度差)(0t t -成正比,即)(0t t c E t -= (1)图2 A 金属:铜 B 金属:康铜t 0 0t t >式中t为热端的温度,t为冷端的温度,c称为温差系数(或称温差电偶常量)单位为⋅Vμ℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即c =(k/e)ln(nA0/nB) (2)式中k为玻耳兹曼常量,e为电子电量,nA0和nB为两种金属单位体积内的自由电子数目。
如图3所示,温差电偶与测量仪器有两种连接方式:(a)金属B的两端分别和金属A焊接,测量仪器M插入A线中间(或者插入B线之间);(b)A、B的一端焊接,另一端和测量仪器连接。
图3在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A、B两种金属之间插入任何一种金属C,只要维持它和A、B的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A、B两种金属组成的温差电偶中的温差电动势一样。
热电偶标定实验结果分析
热电偶标定实验结果分析
热电偶标定实验是一种衡量热电偶精度的实验,它的实验结果可以用于热电偶的精度校准,有助于提高测温的准确性。
热电偶标定实验一般包括一系列的重复实验,以准确测量热电偶的温度范围和精度。
本文将对热电偶标定实验的结果进行分析,以期了解热电偶生产厂家提供的热电偶的准确性。
热电偶标定实验的样本是指定热电偶。
通常情况下,来自相同供应商的热电偶,被一次性提供给实验室,以用于对热电偶的精度进行测量和测试。
热电偶的样本将被安装在一个标定温度控制器中,同时测量热电偶,以记录温度变化。
为了准确衡量热电偶的精度,将连续地重复这种测量,以记录热电偶的温度变化,并计算出结果。
实验结果表明,试验中的热电偶具有较高的精度,可以准确测量目标温度。
实验结果显示,热电偶的精度在0.1℃的范围内,控制器的温度控制也符合要求。
另外,热电偶温度变化精度也表现良好,温度变化精度低于0.2℃。
以上可以说明,来自同一供应商的热电偶,可以满足普通测温需求。
此外,热电偶标定实验还对热电偶的可靠性进行了测试。
根据实验结果,热电偶在重复使用的情况下,温度变化仍保持稳定。
这表明,试用的热电偶拥有较高的耐用度。
总之,热电偶标定实验结果很好,表明所测热电偶在温度和精度方面均可以满足普通测温要求。
重复实验也表明,所测热电偶具有较高的可靠性和耐用度,为用户提供更高质量的测温解决方案。
因此,
购买来自同一供应商的热电偶,可以确保所测温度精度和可靠性,给用户带来更好的测温体验。
热电偶 标定 过程
热电偶标定过程嘿,咱今儿就来说说热电偶标定这档子事儿!热电偶啊,就像是温度世界里的小侦探,能精准地给咱反馈温度的信息呢。
那热电偶的标定过程是咋样的呢?就好比给这个小侦探进行一场严格的训练和考核。
首先呢,得准备好各种标准的温度源,这就像是给小侦探准备了一系列标准的案件场景。
然后呢,把热电偶放进去,就好像让小侦探去不同的场景里破案一样。
在这个过程中,可不能有一丝马虎呀!要仔细观察热电偶的反应,看看它给出的温度值和标准温度源是不是相符。
这就跟咱考试的时候要认真审题一样,稍有不慎就可能答错啦。
想想看,如果标定不准确,那热电偶以后工作起来不就乱套啦?就好像小侦探总是判断错误,那还怎么能指望它好好工作呢?这可不行,咱得对它负责呀!你说这标定是不是特别重要?就像盖房子得打好地基一样。
如果地基不牢,那房子能结实吗?热电偶的标定也是这个道理呀。
在标定的时候,还得注意环境的影响呢。
不能有干扰呀,不然就像小侦探在吵闹的环境里办案,肯定会分心的嘛。
而且操作的人也得专业,不能马马虎虎的,得像个经验丰富的老警察一样,认真对待每一个细节。
有时候我就想啊,要是没有这个标定过程,那热电偶得有多不靠谱呀。
就好比让一个没经过训练的人去执行重要任务,那能行吗?肯定不行呀!所以说呀,这标定过程可不能小瞧咯。
咱再想想,生活中不也有很多类似的事情吗?就像我们学习新知识,不也得经过反复的练习和检验才能真正掌握吗?这和热电偶的标定不是一个道理嘛。
总之呢,热电偶的标定过程是个细致活儿,需要我们认真对待,精心操作。
只有这样,才能让热电偶这个小侦探在温度的世界里大显身手,为我们提供准确可靠的温度信息呀!可别小看了它哦!。
实验报告-热电偶的制作及标定
实验一热电偶的制作及标定一、实验目的1、了解热电偶的结构,学习制作热电偶,掌握冰点法确定热电偶参比端的方法;2、掌握恒温水槽的使用方法;3、掌握使用高精度61/2位数字万用表测量热电偶的热电势和热电阻阻值的方法;4、了解热电偶的测量数据处理的方法。
二、实验原理热电偶两结点所产生的总的热电势等于热端热电势与冷端热电势之差,是两个结点的温差Δt的函数:E AB(T,T0)=e AB(T)-e AB(T0)图1热电偶热电势产生原理图三、实验步骤(一)热电偶制作由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。
热电偶在生产和使用过程中,新制热电偶或焊点处断裂都需要将测量端焊接起来,而焊接质量的好坏直接影响热电偶测温的可靠性。
对直径为0.5mm以下热电偶的焊接方法主要有直流电弧焊、交流电弧焊、对焊、盐水焊等。
本实验采用盐水焊和直流电弧焊。
1、盐水焊是目前贵金属热电偶测量端焊接较好的一种方法。
它的优点是设备简单、操作简便、盐水对测量端腐蚀轻,焊点光亮圆滑,能够满足对热电偶焊接质量的要求。
焊接装置由调压器(3—5kW),烧杯(500ml)和热电偶夹具等组成。
如图1所示。
图2盐水法热电偶焊接具体焊接方法如下:1)盐水配制:用氯化钠(或食用盐)与蒸馏水配制成饱和盐水,并置于烧杯中,液面离杯口不大于5mm,以便于观察插入深度和焊点大小。
2)焊接:一个鳄鱼夹夹住一根长100mm、直径为3mm的金属棒(或碳棒),放入饱和盐水中,接上调压器的输出端。
用竹镊夹住经整理齐直的热电偶丝,并与调压器的另一输出端接通。
根据热电偶丝的直径与材料调节调压器输出电压,约为110~160V,将热电偶垂直插入液面,其深度约为1mm。
插入液面的时间不宜过长,以焊点直径不超过 1.2mm为宜。
观察焊点是否圆滑光亮,如果不圆须再次插入液面并控制插入深度(应浅一些)和插入时间(应短一些)使焊点圆滑。
热电偶的定标实验报告
热电偶的定标实验报告热电偶是常用的测量温度的实验仪器,它的优势在于简单易用、分布均匀、体积小、重量轻、性能稳定等。
热电偶定标是指通过一定的实验,确定热电偶测温质量特性及对应关系,以便在实际运用中测量准确的温度,获得准确的热量数据。
本文将就热电偶的定标实验报告进行深入研究。
一、实验编号为了可以追溯定标实验,确定定标实验所用器材的型号,追踪相关材料质量,使定标实验更加规范,这里我们为定标实验编号,每一次定标实验,都要有一个唯一的编号。
二、实验材料1.电偶:热电偶是热电偶定标实验不可缺少的实验仪器,需要确保它的性能可靠,在定标实验中,热电偶是保证定标质量的重要因素。
2.度标定装置:为了保证定标实验的准确性,我们需要在定标实验中,使用精确的温度标定装置,这样可以更好的完成定标任务,保证定标精度。
3.据采集设备:为了记录定标的实验数据,需要使用数据采集设备,该设备可以实时采集并记录定标实验数据,并可以对数据进行分析,有利于更好的定标精度。
三、实验方法1.量热电偶电阻:首先,在定标前,我们需要知道所用热电偶的电阻值和输出电压,使用电路测量仪,测量热电偶的电阻值。
2.定温度:使用温度标定装置,连接热电偶,并调节相应温度,观察热电偶的输出电压,记录采集的数据。
3.准:根据定标实验数据,绘制电阻和电压之间的曲线,校正热电偶的特性系数,以保证热电偶的精度。
四、实验结果1.电偶电阻:定标实验中,我们测量了热电偶的电阻值,为100Ω。
2.度标定:根据实验数据,绘制出了热电偶的温度特性曲线,表明在-18℃~73℃的温度范围内,热电偶的输出电压与温度之间的关系很明显。
3.准:通过上述曲线,我们可以得出热电偶的特性系数,根据标准进行校准,实现热电偶的精度提升。
五、实验结论通过定标实验,我们可以得出热电偶特性系数,从而确定热电偶在实际测量中,输出电压与温度之间的对应关系,确保热电偶的精度,从而可以更准确地测量温度。
根据定标实验,我们得出以下结论:1.电偶的定标实验可以更准确的测量温度,提高实验的准确性;2.据定标实验,可以确定温度范围内热电偶的特性系数,使热电偶的精度得到改善;3.量前必须编号,追踪器材的型号,质量,保证定标实验的质量;4.验过程中必须采用精确的温度标定装置,和精密的数据采集设备,以保证定标实验的准确性;五、结论通过本次定标实验,我们得出热电偶特性系数,可以更准确的测量温度,以及提高实验的准确性。
热电偶温度计的制作与标定
热电偶温度计的制作与标定实验学时:4实验类型:设计实验要求:选修一、实验目的:(1)了解热电偶的测温原理;(2)掌握设计制作热电偶的温度计一般技能;(3)掌握热电偶温度计的标定方法;(4)学会使用热电偶温度计进行实际测量温度及数据处理。
二、实验内容制作一根热电偶温度计再给以标定,并用该热电偶温度计进行实际测量温度。
三、热电偶温度计工作原理热电偶温度计具有结构简单、测量范围宽,准确度高,热惯性小、输出的电信号便于远传或信号转换等优点,所以目前应用十分广泛.图1—1图1-1热电偶测量温度的基本原理是热电效应(或温差效应),将两种不同材料的导体首尾相连接成闭合回路,如图1-1所以。
如两接点的温度不等,则在回路中就会产生热电动势,这种现象称之为热电效应(这一热电现象早在1821年就由塞贝克发现的,所以这一现象也称塞贝克效应)。
热电偶就是由两种不同的金属材料焊接而成。
使用时通常将一端(参考端)保持在一定的恒定温度(如0℃或100 ℃),当对另一端(测量端)加热时,在接点处有热电势产生。
如参考端温度恒定,其热电势的大小和方向只与两种金属材料的特性和测量端的温度有关,而与热电偶的粗细和长短无关。
当测量端的温度改变后,热电势也随之改变,并且温度和热电势之间有一固定的函数关系,利用这个关系就可以测量温度。
接触电势差的大小和相接处的两种金属的性质及接触处的温度有关,当量两种不同的材料的金属想成闭合回路时,按上述接触电势差的性质可以判定,,若两接触处的温度分别为T 和0T 时,闭合回路的电动势为)/()(/0b a n n Ln T T e k E -= 若0T T 不等于,则E 不等于0,这种电动势称为温差电动势。
在实际中,给出来的温差电动势都用下式表示:.........)()(200+-+-=t t b t t a E 式中,a,b.....是常数,称为温差系数,表示温差为C 01时的电动势,其大小取决于组成热电偶的材料;0t t 和是接触处的摄氏温度,0T 为冷端温度,T 为热端温度在温差不太大的情况下,可近似为:)(0t t a E -=可见,若常数和冷端温度已知,只要侧得温度电动势,就能得到热端温度(热端也称做测温端)三、热电偶温度计制作由两根不同质的导体熔接而成的闭合回路叫做热电回路, 当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。
热电偶检定规程
热电偶检定规程一、热电偶检定的定义1)热电偶测量可以利用热电偶来进行,它是一种采用温度信号进行测量的设备,它包含一对相对温度探针,它们会产生几种不同的输出信号,可用来测量温度;2)热电偶检定是指为了保证测量准确性,将热电偶经过精确的检定验证,以便验证它的测量精度。
二、热电偶检定的步骤1)热电偶测试准备:首先需要确定检定所需的普罗范德热电偶,检定标准温度、采用的温度计信号等;2)热电偶的接线:将热电偶正确接入温度计中,当温度计正常工作时,才有可能正确地进行热电偶检定;3)测量热电偶电阻:将温度导线与测量仪表接上并测量热电偶电阻,并用温度计将其与温度信息对比;4)实时记录:测量温度值时,必须及时将其记录下来,以便在实验结束时能得到可靠的测量结果;5)标定结果检查:在实验结束后,对测量出的温度值进行校核,核对和检查,确保温度值的准确性;6)验证检定结果:完成测量、校验、检查、验证之后,可以验证热电偶的检定结果,并鉴定其准确度、可靠性和性能。
三、热电偶检定的注意事项1)器材的保养:在检定前,应对器材进行完好的保养,以确保检定精度;2)环境条件:检定热电偶前,要确保环境条件相对稳定,以免受此种影响而使测试温度出现偏差;3)标准探头:必须使用定标探头检定,否则会影响检定的精度;4)规范的温度应用:检定过程中,温度应采用规范的方式进行检定,实验中应避免大幅度测量,否则会影响热电偶寿命;5)标定结果记录:在实验完成后,必须按照规定记录测量结果,以保证下次实验的有效性;6)热电偶检定前:还必须做出热电偶的参数保存,以备下次实验使用。
四、热电偶检定要求1)热电偶测量准确性:由于热电偶是一种带有对数特性的测量仪器,因此在实验的过程中,应注意测量的准确性;2)温度范围:热电偶检定的温度范围根据热电偶的规格和型号而定,一般是-200℃到1300℃的温度范围;3)测量精度:热电偶检定要求较高,测量精度一般为±0.5℃;4)测量记录:在正常实验过程中要及时记录测量结果,便于反复检验检定;5)常规检定:热电偶检定还应该定期进行常规检定,以重新确认误差值。
热电偶的标定
热电偶的标定法热电偶的定标【实验目的】I.加深对温差吃现徐的理解:2•了解热电偶測迅的基本原理和方法:3. 了解热电鹘定标基木方法^【实验仪器】铜一康铜热电YJ-RZ-4A数字帮能化热学综合实验仪.保緞杯•【实鲨康理】1•温差电效应在物理測虽中,经常将非电学蜃如湍度、时问.长度等转换为电学星邃行测虽这种方法叫做非电虽的电测法.其优点是不仅使测昼方便.迅速,而且可握為测显特密度.温差电糾是利川温差电效应制作的测温元件.在温度测屋与控制中有广泛的应用。
木实验是研究一给定温差电偶側湿差电动势与温反的关系.如果用入U两种不同的金風枸成-沏合电豁.并使两接点处于不间温度,如图1所示. 则电賂中将产生温差电动那并且有温差电流流过,迄种现線称为温差电效应。
t>to铜图I2•热电儁冏种不I可金帕串接在一起,其两端可以和仪醤相连进行测温(H2)的元件称为温差壯优也叫热电假。
温差电儕的温差电动势峙•接头温度之问的关系比较父杂,佃是在较小温差范围内可以近似认为温差电动势E与淋度差血。
)成1E匕期(I)代中t为热端的温匪%为冷端的温紙。
称为温差系数(或称温差电隅常血单位为八心.它表示二接点的沿度相差1它时所产生闾电动如其大小収决JW成温差电儁材料的性质,即C= (k/e) In <n ox Zn qB )犬中k为陂耳兹曼常為c为电子电絆S和n o为两种金回单位体积内的自由电子数乐如国3所示,盥差电偶与測壘仪器有两种连接方式:(a)金楓B的两端分别和金風A烬接'测晁仪器M插入A线中问;(b> A. B的一端焊接,另一端和测星仪器连接。
图3在使用温差电偶时,总要将温差电偶接入电势差计或数字电压轧这样除了构成温差电偶的两种金屈外.必将有第三种金局接入温差电偶电路中,理论上可氐证明,在仏8两种金诚之间栖入任何-・种金屈C,只娈维持它和笊B的耽接点在同一个温度,这个闭合电路中的温差电动势总見和只由从B两种金腐组成的温差电偶中的温差电动势一样.温差电偶的测温范F冋可以从4, 2K ( 268, 95-C>的滋低温直至2800^的繃4L必须注越不同的温工件差电儁所能測量的温度范国各不相同。
热电偶标定实验结果分析
热电偶标定实验结果分析
热电偶是一种测量温度的仪器,它的原理是通过一对将温度变化为电信号的对热电元件,从而测量温度。
热电偶标定是实验过程中的一项重要工作,它旨在校准热电偶的精度,以确保热电偶能准确地测量出实际温度。
标定实验结果可以用来评估热电偶的准确性,并检验它是否符合要求。
总体而言,标定实验结果表明,热电偶在准确度和精度方面具有较高水平。
经过标定实验,热电偶的准确性得到了很大改善。
标定实验通常使用校准仪和校准程序来检验热电偶的精度和准
确度。
校准仪的工作原理是,先使用正确的热电偶和它的测量点,仪器会根据校准仪的参数计算出热电偶的温度。
有了实际温度和校准仪计算出的温度,就可以比较热电偶的精度和准确性。
此外,标定实验还能够检测热电偶的漂移程度。
漂移是指热电偶的温度读数在一段时间内发生了显著变化,漂移可以通过测量热电偶的温度变化来检测。
如果热电偶的温度变化超过了一定的限度,就表明热电偶的漂移很严重,它可能无法准确地测量温度。
最后,还要说明的是,进行标定实验的过程中应该注意一定的安全措施。
热电偶是一种有电压的器件,在使用过程中应该注意安全,避免受电击。
同时,应该保证实验环境无干扰,以确保测量精度。
综上所述,热电偶标定实验是测量温度的重要环节。
标定实验能够检验热电偶的准确度,检测热电偶的漂移,确保热电偶能准确测量温度。
此外,在标定实验过程中还应该注意安全措施,以确保测量结
果的准确性。
热电偶标定实验思考题答案
热电偶标定实验思考题答案
温度、精确度和稳定性是标定热电偶的关键要素,本文讨论了如何通过有效的实验及校准方法,获得可靠的标定结果。
热电偶标定实验是一种常见的实验,用于精确测量温度。
它是一项在实际操作中易于理解的实验,但是要正确执行需要考虑一些关键问题。
下面列出一些需要考虑的思考题及答案:
一、为什么热电偶需要标定?
答:热电偶是用来测量流体温度的一种传感器,但它们本身并不能准确的测量温度。
因此,热电偶需要进行标定,以确保测量的结果准确无误。
二、标定之前应该做什么?
答:在开始标定之前,应该先确认热电偶是否已经正确安装,确认热电偶与外界有良好的接触,并且确保信号质量。
三、标定实验怎么进行?
答:标定实验一般分两步:首先,将温度计与热电偶接通,然后就可以进行标定实验。
在标定实验中,我们首先将热电偶加热到从低温到高温的范围内,然后测量热电偶的信号强度,并根据温度计的测量结果更新信号电压。
最后,根据测量结果,对热电偶进行精准校准。
四、标定之后应该怎么做?
答:在热电偶标定完成之后,应该进行定期维护,确保测量结果准确可靠。
同时,应该定期检查热电偶的状态,更换受损的热电偶,以确保准确的测量。
总之,热电偶标定实验是一项实用而又重要的实验。
在此实验中,参与者需要正确安装热电偶,然后进行精确的校准,定期检查热电偶,以确保测量结果准确可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
1.珀尔帖效应
A
+
-B
T eAB(T)
❖ 什么是珀尔帖效应呢? ❖ 通过上图你又能想到什么呢?
10
❖ 将同温度的两种珀不尔同帖的效金应属互相接触。由
于不同金属内自由电子的密度不同,在两 金属A和B的接触处会发生自由电子的扩 散现象,自由电子将从密度大的金属A扩 散到密度小的金属B,使A失去电子带正 电.B得到电子带负电.直至在接点处建 立了强度充分的电杨,能够阻止电子扩散 达到平衡为止。两种不同金属的接点处产 生的电动势称为电势,又称接触电势。此 效应称为珀尔帖效应。
EAB (T0 ) — 冷端的分势电势
14
重要结论:
❖ (1)如果热电偶二个电极的材料相同,二个接点温度虽不同 不会产生电势;
❖ (2)如果二个电极材料不同.但两接点温度相同,也不会产 生电势;
❖ (3) 当 热 电 偶 二 个 电 极 的 材 料 不 同 , 且 A 、 B 固 定 后 , EAB(T,T0)便为二接点温度T和T0的函数,即: EAB(T,T0)=E(T)-E(T0)
11
根据电子理论:
E
' AB
(T
)
kT e
ln
nA nB
或EA'(B T0 )
k T0 e
ln
nA nB
温度为T,T0产生的接触电势方向相反,故回路的接触电势为:
EA' B (T )
EA' B (T0 )
kT e
ln
nA nB
k T0 e
ln
nA nB
k e
(T
T0 ) ln
nA nB
12
2.汤姆逊效应
❖ 假设在一匀质棒状导体的一 端加热,则沿此棒状导体有 温度梯度导体内自由电子将 从温度高的一端向温度低的 一端扩散,并在温度较低一 端积累起来,使棒内建立起 一电场。当这电场对电子的 作用力与扩散力相平衡时, 扩散作用即停止。电场产生 的电势称为汤姆逊电势或温
差电势。此效应称为汤姆
逊效应。
To A
温度有关。
如果材质不均匀,则当热电极上各处温度不同时.将产生附
加热电势,造成无法估计的测量误差,因此,热电极材料的均
匀性是衡量热电偶质量的重要指标之一。
2.中间导体定律
在热电偶回路中插入第三、四种导体,只要插入导体的两端
温度相等,且插入导体是匀质的,则无论插入导体的温度分布
如何,都不会影响原来热电偶的热电势的大小。
如果它们的前后位置互换,则热电势极性相反,如:
EAB(T,T0) =一EBA(T,T0) EAB(T,T0)=一EAB(T0 ,T)
判断热电势极性最可靠的方法是将热端稍加热,在冷端用直流 电表辨别。
16
二、热电偶的基本定律
1. 均质导体定律
两种均质金属组成的热电偶,其电势大小与热电极直径、长
度及沿热电极长度上的温度分布无关,只与热电极材料和两端
eA(T,To)
T 温差电势原理图
13
当匀质导体两端的温度分别 是T、T时,温差电势为:
EA(T,T0)
dT或EB
(T
,
T0
)
T
T0 BdT
对于导体A、B组成的热电偶回路,当接点温度T>T0时,回路的 温差电势等于导体温差电势的代数和,即:
T
T
EA(T,T0) EB (T,T0) T0 AdT T0 BdT T0 ( B )dT
7
热电效应
❖ 1823年塞贝克(Seebeck)发现.在两种不 同的金属所组成的闭合回路中,当两接触 处的温度不同时,回路中就要产生热电势, 称为塞贝克电势。这个物理现象称为热电 效应。
8
原理
EAB (T,T0 ) dT EAB (T ) EAB (T0 )
❖ 式中,αab为热电势率或塞贝克系数,其值随热 电极材料和两接点的温度而定;
综上所述,热电极A、B组成的热电偶回路,当接点温度T> T0时,其总热电势为:
EA(T ,T0
)
E
' AB
(T
)
EA' B
(T0 )
T
0 ( B )dT
[EA' B (T )
T T0
(
B
)dT ]
[EA' B
(T0
)
T0 0
(
B
)dT ]
EAB (T ) EAB (T0 ) EAB (T ) — 热端的分势电势
目录
❖ 简介 ❖ 热电偶 ❖ 热电阻 ❖ 晶体管和集成温度传感器 ❖ 本章小结
1
简介
❖ 什么是温度传感器? ❖ 分类
2
什么是温度传感器?
❖ 温度传感器是一种将温度变化转换 为电量变化的装置。
3
分类
❖ 三类: (1)热电偶是将温度变化转换为电势变化 (2)热电阻是将温度变化转换为电阻值的变
化。 (3)晶体管和集成温度传感器是将温度的变
因此,我们可以将毫伏表(一般为铜线)接入热电偶回路,并
保证两个结点温度一致.就可对热电势进行测量,而不影响热
电偶的输出。
17
3.中间温度定律 热 电 偶 在 接 点 温 度 为 T , T0 时 的 热
电势等于该热电偶在接点温度为T, Tn和Tn , T0时相应的热电势的代数和, 即:
❖ 当 T0 保 持 不 变 , 即 E(T0) 被 认 为 是 常 数 , 则 热 电 势 置 EAB(T,T0)便为热电偶热端温度T的函数: EAB(T,T0)=E(T)-C 由此可知, EAB(T,T0) 和T有单值对应关系,这是热电偶测 温的基本公式。
15
热电极的极性:测量端失去电子的热电极为正极,得到电子的 热电极为负极。在热电势符号EAB(T,T0) ,规定写在前面的A、 T分别为正极和高温,写在后面的B、 T0分别为负极和低温。
结构简单,使用方便,精度高.热惯性小,可测
局部温度和便于远距离传送与集中检测、自动记
录等优点。
5
热电偶
❖ 热电偶的基本原理 ❖ 热电偶的类型及结构 ❖ 热电势的测量及热电偶的标定 ❖ 热电偶的传热误差和动态误差
6
热电偶的基本原理
❖ 一、热电效应 ❖ 二、热电偶的基本定律 ❖ 三、热电偶冷端温度及其补偿
化转变为电压或电流的变化。 ❖ 这三种传感器目前在工业产生中已得到广
泛应用,并且有与其相配套的显示仪表与 记录仪表。
4
热电偶
❖ 热电偶是将温度量转换为电势大小的热电式传感 器。
❖ 自19世纪发现热电效应以来,热电偶被越来越广
泛地用来测量100~1300℃范围内的温度,根据
需要还可以用来测量更高或更低的温度。它具有