反比例函数与图形面积
浙教版八年级下专题九 反比例函数与图形的面积
专题九反比例函数与图形的面积(教材P147作业题第3题)已知反比例函数y=kx(k≠0)的图象上一点的坐标为(-1,-4),求这个反比例函数的表达式,并画出它的图象.解:y=4x,图略.【思想方法】反比例函数k的几何意义:反比例函数图象上的点(x,y)的横,纵坐标之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴分别作垂线,两条垂线与两坐标轴所围成的矩形的面积为常数,即S=|k|.一反比例函数与矩形的面积[2011·漳州]如图1,点P(x,y)是反比例函数y=3x的图象在第一象限分支上的一个动点,P A⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积(A)图1A.不变B.增大C.减小D.无法确定[2012·丹东]如图2,点A是双曲线y=kx在第二象限分支上的任意一点,点B,C,D分别是点A关于x轴,坐标原点,y轴的对称点.若四边形ABCD的面积是8,则k的值为(D)图2A.-1B.1C.2D.-2【解析】先判定出四边形ABCD是矩形,再根据反比例函数的系数的几何意义,用k表示出四边形ABCD的面积.∵四边形ABCD的面积是8,∴4×|-k|=8,解得|k|=2,又∵双曲线位于第二、四象限,∴k<0,∴k=-2.[2012·黔东南州]如图3,点A是反比例函数y=-6x(x<0)的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为(C)图3A.1 B.3 C.6 D.12【解析】过点A作AE⊥OB于点E.变形3答图因为矩形ADOE的面积等于AD·AE,平行四边形ABCD的面积等于AD·AE,所以▱ABCD的面积等于矩形ADOE的面积,根据反比例函数k的几何意义可得:矩形ADOE的面积为6,即可得平行四边形ABCD的面积为6.故选C.如图4,A、B是双曲线y=kx上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k值为(C)图4A.1 B.2 C.3 D.4如图5,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为9,则k的值为(C)图5A .1B .2C .3D .4【解析】 由题意,得点E 、M 、D 位于反比例函数图象上,则S △OCE =|k |2,S△OAD =|k |2.过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k |, 又∵点M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S 矩形ONMG =4|k |.∵函数图象在第一象限,∴k >0,则k 2+k2+9=4k ,解得k =3.故选C.[2013·泸州]如图6,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x >0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是__(3+2,3-2)__;点P n 的坐标是__(n +n -1,n -n -1)__(用含n 的式子表示).图6二 反比例函数与三角形的面积[2012·毕节]如图7,双曲线y =kx (k ≠0)上有一点A ,过点A 作AB ⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为__y=-4x__.图7如图8,点A,B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)图8A.S=2B.S=4C.2<S<4 D.S>4【解析】设点A的坐标为(x,y),则B为(-x,-y),xy=2.∴AC=2y,BC=2x.∴△ABC的面积为2x·2y÷2=2xy=2×2=4.[2012·岳阳]如图9,一次函数y1=x+1的图象与反比例函数y2=2x的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连结AO,BO.下列说法正确的是(C)图9 A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1,y2都随x的增大而增大正比例函数y=x与反比例函数y=1x的图象相交于A、C两点.AB⊥x轴于点B,CD⊥x轴于点D(如图10),则四边形ABCD的面积为(C)图10A.1 B.5 2C.2 D.2 5三反比例函数与其他几何图形如图11,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2),若反比例函数y=kx(x>0)的图象经过点A,则k的值为(D)图11 A.-6B.-3C.3D.6[2012·荆门]如图12,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-3x的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则S▱ABCD为(D)图12A.2 B.3 C.4 D.5【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x ,得b=2x,则x=2b,即A的横坐标是2b;同理可得B的横坐标是-3b.则AB=2b -(-3b)=5b.则S▱ABCD=5b·b=5.如图13,已知函数y=2x和函数y=kx的图象交于A、B两点,过点A作AE⊥x轴于点E.若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是__P1(0,-4),P2(-4,-4),P3(4,4)__.图13[2012·丽水]如图14,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D,已知等边△OAB的边长为4.图14(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.解:(1)过点C作CG⊥OA于点G.∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=3,∴点C的坐标是(1,3).由3=k1,得k=3,∴该双曲线所表示的函数解析式为y=3x.(2)过点D作DH⊥AF于点H,设AH=a,则DH=3a,∴点D的坐标为(4+a,3a).上的点,由xy=3,得∵点D是双曲线y=3x3a(4+a)=3,即a2+4a-1=0,解得a1=5-2,a2=-5-2(舍去),∴AD=2AH=25-4.∴等边△AEF的边长是(45-8).。
反比例函数求面积公式大全
反比例函数求面积公式大全《反比例函数求面积公式大全》引言:反比例函数是数学中的一种特殊函数,其特点是当自变量x增加时,因变量y会以相反的趋势减小。
在数学和实际应用中,使用反比例函数可以描述许多重要的关系,尤其是与面积相关的问题。
本文将为读者提供一份反比例函数求面积的公式大全,帮助读者更好地理解和应用反比例函数。
一、长方形1. 长方形的面积与其长度(l)和宽度(w)成反比例关系,即S = k/(l×w),其中k为常数。
二、正方形1. 正方形的面积与其边长(s)的平方成反比例关系,即S = k/s²,其中k为常数。
三、圆1. 圆的面积与其半径(r)的平方成反比例关系,即S = πr²,其中π为圆周率,约等于3.14159。
四、椭圆1. 椭圆的面积与其长轴(2a)和短轴(2b)的乘积成反比例关系,即S = πab,其中a和b分别为长轴和短轴的半长。
五、三角形1. 三角形的面积与其底(b)和高(h)的乘积成反比例关系,即S = (1/2)bh。
六、平行四边形1. 平行四边形的面积与其底(b)和高(h)的乘积成反比例关系,即S = bh。
七、等腰梯形1. 等腰梯形的面积与其上底(a)、下底(b)和高(h)的关系为S = (a + b)h/2。
八、圆环1. 圆环的面积与其外半径(R)、内半径(r)和π的关系为S = π(R² - r²)。
结论:通过反比例函数求面积的公式大全,读者可以更加方便地计算各种几何形状的面积。
这些公式对于数学学习、几何推导以及实际生活中的建模和计算都具有重要意义。
希望读者能够掌握这些公式,并在实际中运用自如,提高数学应用的能力和解决问题的水平。
反比例函数关系式中k与图形面积的关系
作EB、FC、GD垂直于x轴,垂足分别为B、C、D,且 OB=BC=CD,△OBE的面积记为S1,△BCF的面积记为S2, △CDG的面积记为S3,若S1+S3=2,则S2= .
变式:如图,直线 和双曲线 交于A、B亮点,P是线段AB上的
点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足 分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、 △BOD面积是S2、△POE面积是S3、则S1,S2,S3的大小 关系是( )
双曲线在第一象限内的图象如图所示作一条平行于y轴的直线分别交双曲线于ab两点连接oaob则aob的面积为12yyxx??和1saof2在一次函数反比例函数的图象组合图形的面积计算要注意选择恰当的分解方法
专题习题课
反比例函数关系式中k与 图形面积的关系
k 点P为反比例函数 y 上任意一点,求 x S矩形OAPB
当堂检测:
1.如图,A是反比例函数图象上一点,过点A作 轴于点B,点P在x 轴上,△ABP面积为2,则这个反比例函数的解析式为 。
当堂检测:
2.双曲线 在第一象限内的图象如图所示,作一条平 行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则 △AOB的面积为( ) 3.如图,在直角坐标系中, A点 是 轴正半轴上的一个定点, 3 点 B是双曲线 y 上的一个动点,当点B 的横坐标逐渐增大时, x △OAB的面积将会( ) A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小
5、根据面积求k值要注意图象的象限、K值的符号.;
x
2.如图,A、B两点在双曲线y= 4 上,分别经过A、B两点向轴作 )
热身运动
3.如图,点A、B在反比例函数 (k>0,x>0)的图象上,过点 A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C, 若OM= MN= NC,△AOC的面积为6,则k的值为
反比例函数与图形面积
计算定积分
利用定积分的几何意义, 计算直线与双曲线所围成 的图形面积。
注意事项
在计算过程中,需要注意 积分上下限的确定以及被 积函数的正负问题。
参数方程在面积计算中应用
参数方程表示
对于某些复杂图形,使用 参数方程表示更为方便。
面积元素计算
根据参数方程,计算面积 元素并对其进行积分。
注意事项
在使用参数方程计算面积 时,需要确保参数范围选 取合适,且要注意参数方 程的正负问题。
02
圆形面积计算:根据圆形面积公式$S = pi r^2$(其中$r$为圆形半径), 计算圆形区域的面积。
03
反比例函数图像面积计算:通过极坐 标下的定积分计算反比例函数图像在 圆形区域内的面积,即 $int_{theta_1}^{theta_2} int_{r_1(theta)}^{r_2(theta)} frac{k}{r} rdrdtheta$(其中$k$为反 比例函数的常数,$theta_1$和 $theta_2$为交点极角,$r_1(theta)$ 和$r_2(theta)$为交点极径)。
指数函数图像与 $x$ 轴围成的封闭 图形面积可以通过定积分
$int_{x_1}^{x_2} a^x dx$ 来计算, 其中 $x_1$ 和 $x_2$ 是指定的积分
上下限。
对数函数 $y = log_a x$($a > 0, a neq 1$)的图像是一个对数曲线。 当 $a > 1$ 时,曲线上升;当 $0 < a < 1$ 时,曲线下降。
在每个象限内,随着 $x$ 的增大,$y$ 的值逐渐减小。
当 $k > 0$ 时,反比例函数的图像位于 第一、三象限;当 $k < 0$ 时,反比例 函数的图像位于第二、四象限。
反比函数图像上四种三角形的面积
反比函数图像上的四种三角形的面积函数是解决实际生活问题的重要模型,在近几年各省市的考题中,对于函数的考查比例占有相当重的份量,绝大部分是考查考生对其基本概念、图象性质的理解和应用,甚至成为中考压轴题的大类。
反比例函数的图像经常与三角形的面积联系在一起,下面就举例说明。
结论1、过反比例函数图像上一点,向x 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。
设P (a ,b )是反比例函数y=xk(k ≠0)图像上的一点,过点P 作PA ⊥x轴,垂足为A ,三角形PAO 的面积是S ,则S k 2=结论2、过反比例函数图像上一点,向y 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。
设P (a ,b )是反比例函数y=x k(k ≠0)图像上的一点,过点P 作PB ⊥y 轴,垂足为B ,三角形PBO 的面积是S ,则S k 2=。
结论3、正比例函数y=k 1x (k 1>0)与反比例函数y=xk(k >0)的图像交于A 、kx 襄樊市第四十七中学 熊沙 图(1)2)B 两点,过A 点作AC ⊥x 轴,垂足是C ,三角形ABC 的面积设为S ,则S=|k|,与正比例函数的比例系数k 1无关。
证明:I因为,正比例函数y=k 1x (k 1>0)与反比例函数y=x k(k >0)的图像交于A 、B 两点,所以,x k xk1=,所以,x=±111k kk k k =, 当x=11k kk 时,y= k 1x=1kk ,所以,点A 的坐标是(11k kk ,1kk ),当x =-11k kk 时,y= k 1x =-1kk ,所以,点B 的坐标是(-11k kk ,-1kk ),所以,OC 的长度是11k kk ,三角形ABC 的面积=三角形AOC 的面积+三角形BOC 的面积=21×OC ×AC+21×OC ×BD =21×11k kk ×1kk +21×11k kk ×|-1kk | =21k+21k=k 。
例析反比例函数与三角形面积的关系
例析反比例函数与三角形面积的关系
函数与三角形面积的关系是一个重要的数学研究领域,深入了解它们之间的联系有助于我们更好地理解微积分或几何学中复杂的函数概念。
反比例函数是定义在实数集合上的函数,通常使用y = k/x 来表示它,其中k是常数,x是变量。
该函数的图
像是一条直线,当x的增加时,y的减少与它成反比。
也就是说,增加一个x的值将减少k/x 的值,这就是反比例函数的性质。
三角形的面积是指由三点构成的一个正多边形中的面积,可以使用“海伦-勾股定理”来计算它,由a,b,c三边
表示为:
面积= 根号(s(s-a)(s-b)(s-c))
其中s= (a+b+c)/2 。
反比例函数和三角形面积是有关联的,它们都可以用于
描述相关性。
例如,“海伦-勾股定理”中,如果一个三
角形的边长a增加,则边长b和c的大小将使面积降低。
因此,这两个值之间的联系是以反比例函数来表示的。
另外,在几何学中,反比例函数也可以用来描述两个三角形之间的关系,例如,当一个三角形的边长增加时,另一个三角形的边长将减少,这也能以反比例函数形式表示。
总之,反比例函数与三角形面积之间有着很多有趣的关系,它可以用于几何和数学问题的研究,从而帮助我们理解更多关于微积分和几何的知识。
26反比例函数图像与面积
S矩形OAPB=k
B
P(m,n) A
o
x
图象上的面积
☞
PB⊥y轴于点B,直线PC经过原点。
sPBC k
P、C两点关于原点对称, PO CO S PBO S PBC 1 S CBO k 2 S PBO S CBO k
(2)如图2,P1、P2、P3是双曲线上的三点.过这 三点分别作y轴的垂线,得到三个三角形P1A10、 P2A20、P3A30,设它们的面积分别是S1、S2、S3,则 ( ). A.S1<S2<S3 B.S2<S1<S3
C.S1<S3<S2 D.S1=S2=S3
图2
小试牛刀
A N
M D C O B x
例: (2007荆州市中考题) 如图,D是反比例函数
k y (k 0) 的图像上一点, x
F
D E
y C O A B x
过D作DE⊥x轴于E,DC⊥y轴 于C,一次函数y=-x+2与x轴交 于A点,四边形DEAC的面积 为4,求k的值.
x
F分别是BC、AB的中点,若四边形OFBE的面积 . S 2 ,则 k 的值是
四边形OFBE
y
E
C
B F
O
A
图4
x
例题
☞
8 例已知如图, 反比例函数y 与一次函数y x 2的 x 图像交于A,B两点。 y 求(1) A,B两点的坐标; (2)AOB的面积。
(1)试确定上述反比例函数和一次函数的表达式; (2)求⊿AOB的面积. y
A
O
C
D
B
x
随堂巩固
反比例函数与面积法
反比例函数与面积法反比例函数是一种特殊的函数关系,其函数表达式为y=k/x,其中k 为比例常数。
在反比例函数中,x与y的值呈现一种相反的关系,即当x 增大时,y会减小;当x减小时,y会增大。
在数学中,反比例函数又被称为倒数函数或反函数。
反比例函数在物理学、经济学、工程学等领域中都有广泛的应用。
在物理学中,常见的反比例函数包括牛顿万有引力定律和欧姆定律等。
在经济学中,反比例函数可以用于描述一些经济现象,如供求关系中的价格与需求量、成本与产量等。
在工程学中,反比例函数可以用于描述一些工程问题,如水泵流量与水压、管道截面积与流体速度等。
反比例函数的图像呈现一种特殊的形状,即双曲线。
当k为正数时,双曲线的两个分支分布在第一象限和第三象限;当k为负数时,双曲线的两个分支分布在第二象限和第四象限。
双曲线的特点是无限趋近于两条渐近线,并且在y轴和x轴上都有一个特殊点,称为顶点或极限点。
在反比例函数中,极限点为(0,k)。
与反比例函数相关的重要概念是比例常数k,它决定了函数图像的形状和位置。
比例常数k的绝对值越大,函数图像的曲线就越陡峭;比例常数k的正负决定了函数图像的位置,正值使双曲线的两个分支分布在第一象限和第三象限,负值使双曲线的两个分支分布在第二象限和第四象限。
面积法是一种使用反比例函数求解面积的方法。
通过将要求解的面积拆分成若干个小矩形,然后使用反比例函数计算每个小矩形对应的y值,最后将所有小矩形的y值相加得到总面积。
面积法的基本思想是通过将复杂的图形分解成简单的图形,使用基本图形的面积公式计算每个小矩形的面积,再将所有小矩形的面积相加得到总面积。
面积法的具体步骤如下:1.将要求解的面积分解成若干个小矩形,矩形的宽度可以任意选择,但必须保证宽度足够小,以保证面积的计算准确。
2.计算每个小矩形的宽度,通常选择将整个区域分成n个宽度相等的小矩形,即宽度为Δx。
3.使用反比例函数计算每个小矩形的高度y,即将每个小矩形的宽度代入反比例函数的表达式y=k/x中,得到每个小矩形对应的y值。
专题:反比例函数中的面积问题
微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE
或
BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB
=
1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO
=
1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作
反比例函数与面积问题
课堂小结
反比例函数与 面积问题
根据反比例函 数求图形面积
根据面积求反 比例函数
y P(m,n)
oAx
y
B P(m,n) oAx
y o P(m,n) P/ A x
典例精讲
例:在平面直角坐标系中,若一条平行于x轴的
直线l分别交双曲线������
=
−
������ ������
和
������
=
������������于A,
B两点,P是x轴上的任意一点,则△ABP
的面积等于 .
典例精讲
S矩形ACBD
典例精讲
类型二: 根据图形面积求反比例函数解析式
例: 如图,双曲线������ = ������
点,QB垂直于y轴,垂足为B,直线MO上是否存
在这样的点Q,使得△OBQ的面积是△OPA的面
积的2倍?如果存在,请求出点Q的坐标,如果不
存在,请说明理由.
典例精讲
解:(1)∵y=kx过(﹣1,2)点,∴k=﹣2, ∴y=﹣2x.∵y=������������ 过(﹣1,2)点,∴m=﹣2 .∴y=﹣������������ ; (2)∵△OPA的面积是������������ m=1,Q点的坐标为 (x,﹣2x),∴������������ •|x|•|﹣2x|=2,x=± ������ , 因为在第二象限所以Q点的坐标为(﹣ ������ , 2 ������ ),或( ������,﹣2 ������).
初中数学知识点精讲课程
反比例函数与面积问题
反比例函数面积问题的几种形式:
图示一:
y
P(m,n) oA x
y A P(m,n)
o
x
例谈与反比例函数有关的图形面积问题
2022年8月下半月㊀解法探究㊀㊀㊀㊀例谈与反比例函数有关的图形面积问题◉湖北省建始县教学研究室㊀李翠芝㊀㊀摘要:反比例函数是初中数学的重点内容,也是中考考点之一.其中与反比例函数有关的图形面积问题又是重中之重,几乎年年考.有关解决反比例函数与图形面积问题的两种常用方法,一是直接利用反比例函数解析式中k 的几何意义求解,二是利用反比例函数关系式巧设点的坐标求解,这也是数形结合思想在初中数学中最直观的运用.关键词:反比例函数;图形面积;数形结合1引言反比例函数的学习是初中数学的一大难点,也是重点,是每年必考的内容.而数形结合思想是解决初中数学问题最重要㊁最基础的数学思想方法.如,借助数轴求不等式组的解集㊁借助画线段图解行程问题等都是运用数形结合思想.解决与反比例函数有关的图形面积问题时,如果我们也能运用数形结合思想,往往可以使复杂的问题简单化.下面举例说明.2基础题型引例㊀如图1,双曲线y =kx上点P 的坐标为(a ,b ),过点P 分别作x 轴,y 轴的垂线,垂足分别为M ,N .则有下列结论:①S 矩形P M O N =a b =a b =k ;②连接P O ,则S әP O M =S әP O N =12k.图1㊀㊀㊀图23简单应用例1㊀如图2,已知反比例函数y =6x和反比例函数y =3x在第一象限内的图象分别是C 1和C 2,点P 在C 1上,P A 垂直于x 轴于点A ,交C 2于点B ,则әP O B 的面积为㊀㊀㊀.解析:S әP O B =S әP O A -S әB O A=12ˑ6-12ˑ3=32.故填:32.变式㊀如图3,直线A B 平行于x 轴,与函数y =k 1x (k 1>0,x >0)的图象交于点A ,与y =k 2x(k 2>0,x >0)的图象相交于点B ,点A 在点B 的右侧,与y 轴交于点D ,点C 为x 轴上的一个动点,若әA B C 的面积为3,则k 1-k 2的值为㊀㊀.图3图4图5解析:如图4,连接O A ,O B ,则S әA B C =S әA B O =S әA O D -S әB O D=12k 1-12k 2=12(k 1-k 2)=3.所以,k 1-k 2=6.故填:6.例2㊀如图5,已知双曲线y 1=1x(x >0),y 2=4x (x >0),点P 为双曲线y 2=4x 上的一点,且P A 垂直于x 轴于点A ,P B 垂直于y 轴于点B ,P A ,P B 分别交双曲线y 1=1x于D ,C 两点,则әP C D 的面积为㊀㊀㊀.解析:设点P 的坐标为a,4a æèçöø÷,则点C 的坐标为a 4,4a æèçöø÷,点D 的坐标为a ,1a æèçöø÷.所以,S әP C D =12P D P C=124a -1a æèçöø÷a -a 4æèçöø÷=98.故填:98.4常考类型与中点相关这类题主要是利用线段的中点得到图形之间的35Copyright 博看网 . All Rights Reserved.解法探究2022年8月下半月㊀㊀㊀面积关系,一般只需直接应用k 的几何意义求解,但有时设坐标求解也比较简单.图6例3㊀如图6,A ,B 是双曲线y =kx上的两点,过点A 作A C 垂直于x 轴,交O B 于点D ,垂足为点C .若әA D O 的面积为1,D 为O B 的中点,则k 的值为(㊀㊀).A.43㊀㊀㊀B .83㊀㊀㊀C .3㊀㊀㊀D.4图7分析:如图7,过点B 作x 轴的垂线,垂足为E .由条件可知,S әC O D =14S әB O E =14ˑ12k =18k =18k ,而S әA O C -S әC O D =S әA O D ,即12k -18k =1,所以k =83.故选:B .点评:此题也可以设A ,D ,B 中任意一点的坐标,表示出另外两点的坐标,再根据面积求解.图8拓展㊀如图8,四边形O A B C 是矩形,边O A 在x 轴上,边O C 在y 轴上,双曲线y =kx与边B C 交于点D ,与对角线O B 交于点E ,且E 是O B 的中点,若әO B D 的面积为5,则k 的值是㊀㊀.解析:如图9,过点E 作E F 垂直于y 轴于点F.图9易证әO E F ʐәO B C .由中点条件易得S әB O C =4S әE O F =4ˑ12k =-2k .S әB O C -S әC O D =S әB O D ,即-2k -12ˑ(-k )=5.解得,k =-103.故填:-103.图10提升㊀如图10,在平面直角坐标系中,矩形A B C D 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx(k >0,x >0)的图象经过顶点D ,分别与对角线A C ,边B C 交于点E ,F ,连接E F ,A F ,若E 为A C 的中点,әA E F 的面积为2,则k 的值为(㊀㊀).A.245B .3C .4D.6分析:此题的矩形和三角形顶点都不在原点,不能直接用k 值表示图形面积,适合设坐标求解.解析:设A (a ,0).由四边形A B C D 是矩形,点D 在y =k x 上,得D a ,k a æèçöø÷,则点C 的纵坐标为k a .因为E 为A C 的中点,所以点E 的纵坐标为k2a,E 2a,k 2a æèçöø÷.于是,C 3a ,k a æèçöø÷,F 3a ,k 3a æèçöø÷.由әA E F 的面积为2,A E =E C ,得S әA C F =4,即12ˑk a -k 3a æèçöø÷ˑ2a =4,解得k =6.故选:D .5直击中考综合题举例图11例4㊀如图11,在平面直角坐标系中,坐标原点O 是R t әA O B的直角顶点,øO A B =30ʎ,若点A 在反比例函数y =12x(x >0)的图象上.(1)求经过点B 的反比例函数解析式;(2)设点B 的坐标为(-2,a ),过点B 作B E 平行于x 轴,与反比例函数y =12x(x >0)交于点E ,求әA O E 的面积.图12分析:(1)如图12,分别过点A 和点B 作x 轴的垂线,垂足分别为D ,C .易证әA O D ʐәO B C ,于是S әO B C ʒS әA O D =(O B ʒO A )2=(1ʒ3)2=1ʒ3.所以,S әO B C =13S әA O D =13ˑ12k =16ˑ12=2.因此,经过点B 的反比例函数的解析式为y =-4x.(2)先求点B 的纵坐标,由此可得点E 的纵坐标,再把点E 的纵坐标代入y =12x可求得点E 的坐标,利用A ,E 的坐标可求әA O E 的面积.点评:第(1)问也可设点A 的坐标,利用三角形相似,由线段之间的关系表示出点B 的坐标再求函数关系式.写反比例函数关系式时要注意k 值的正负.第(2)问的解答要过点E 作x 轴的垂线,关键是把求三角形的面积转化成直角梯形的面积问题.6结语综上所述,在解与反比例函数有关的图形面积问题时,一般有两种途径:一是直接利用反比例函数解析式中k 的值求解;二是利用函数解析式和图形中的点之间的特殊关系巧设点的坐标求解.即要解决形的问题,我们抓住形的特征,以及形和数之间的特殊关系,把形的问题直接转化成数的问题来求解.这里转化的桥梁就是反比例函数图象上点的坐标.Z45Copyright 博看网 . All Rights Reserved.。
反比例函数常见的面积类型
反比例函数常见的面积类型
反比例函数是数学中的一种基本函数类型。
在实际应用中,反比例函数常常涉及到面积问题。
下面列举一些常见的反比例函数面积类型。
1. 长方形面积
如果一个长方形的宽是固定的,而长度是随着宽的增加而减小的,那么它的面积就可以用反比例函数来表示。
设长方形宽为x,长度为y,则长方形面积为S=xy,即S与x成反比例关系,S=k/x。
其中,k 为比例常数。
2. 圆形面积
圆的半径和面积之间也存在反比例关系。
设圆的半径为r,圆的面积为S,则圆的面积可以表示为S=k/r^2。
其中,k为比例常数。
3. 梯形面积
如果一个梯形的高是固定的,而底边长度是随着高的增加而减小的,那么它的面积也可以用反比例函数来表示。
设梯形的高为h,上底为a,下底为b,则梯形面积为S=(a+b)h/2,即S与h成反比例关系,S=k/h。
其中,k为比例常数。
4. 等腰三角形面积
如果一个等腰三角形的底边长度是固定的,而高是随着底边长度增加而减小的,那么它的面积也可以用反比例函数来表示。
设等腰三角形的底边长度为b,高为h,则等腰三角形面积为S=bh/2,即S与b成反比例关系,S=k/b。
其中,k为比例常数。
综上所述,反比例函数在实际应用中常常涉及到面积问题,这些常见的反比例函数面积类型包括长方形面积、圆形面积、梯形面积和等腰三角形面积。
反比例函数与几何图形的面积
反比例函数图象与几何图形的面积 签名_______一. 反比例函数与矩形面积 1. 如图,P 是反比例函数y kxk =≠()0的图象上一点,过P 点分别向x 轴、y 轴作垂线,所得到的图中阴影部分的面积为6,求这个反比例函数的解析式。
二. 反比例函数与三角形面积 2.如图,点A 在反比例函数y kxk =≠()0的图象上,AB 垂直于x 轴,若S AOB ∆=4,那么这个反比例函数的解析式为_____________。
评析:如图,若A 点是反比例函数y k xk =≠()0图象上的任意一点,且AB 垂直于x 轴,垂足为B ,AC 的垂直于y 轴,垂足为C ,则矩形面积=ABOC S ;三角形AOB 的面积=∆AOB S _____,常做的辅助线是过图像上的点做X 轴或者Y 轴的垂线构建矩形或者直角三角形。
1.如图,正比例函数y kx k =>()0与反比例函数y x=1的图象相交于A 、C 两点,过A 点作x 轴的垂线交x 轴于B ,连结BC ,若∆ABC 面积为S ,则________.练习:1. (2010湖北孝感)如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上, 且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 . 2. 如图,A 、B 是函数y x=1的图象上关于原点O 对称的任意两点,AC 平行于y 轴,BC 平行于x 轴,∆ABC 的面积为S ,则( ) A. S =1 B. 12<<SC. S =2D. S >23、 如图,正比例函数y kx k =>()0与反比例函数y x=2的图象相交于A 、C 两点,过A 点作x 轴的垂线,交x 轴于B ,过C 作x 轴的垂线,交x 轴于D ,则四边形ABCD 的面积为____________。
4、如图,反比例函数y=xk(x>0)与矩形OABC 的边AB 、BC 交于F 、E 两点,且BE=CE ,四边形OEBF 的面积为2 ;求三角形OAF 的面积和k5、如图,双曲线)0(2>=x xy 经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .x。
反比例函数背景下的面积问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数
模型介绍一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。
如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。
但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。
【例1】.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是8.过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∴x=2时,y=3;x=6时,y=1,=S△OBD=3,故S△ACOS四边形AODB=×(3+1)×4+3=11,故△AOB的面积是:11﹣3=8.故答案为:8.变式训练【变1-1】.如图,点A在反比例函数(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若,△AOB的面积为12,则k的值为()A.4B.6C.10D.12解:如图,过点A作AD⊥x轴,垂足为D,∵OC∥AD,,∴,∴,k>0,∴k=12,故选:D.【变1-2】.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,=4,则k的值为16.若E是AB的中点,S△BEF解:设E(a,),则B纵坐标也为,∵E是AB中点,∴F点坐标为(2a,),∴BF=BC﹣FC=﹣=,=4,∵S△BEF∴a•=4,∴k=16.故答案是:16.【例2】.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解:解法一:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.解法二:同理知:BE=1,设A(a,6),则B(a+1,4),∴6a=4(a+1),∴a=2,∴k=2×6=12.故答案为12.变式训练【变2-1】.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是()A.9B.8C.7D.6解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,=S△BOE=×12=6,∴S△AOD=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∵S△OAB=(4+2)×(6﹣3)=9,∴S△AOB故选:A.【变2-2】.如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=a﹣.(结果用a,b表示)解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,=mn﹣b﹣b﹣(m﹣)(n﹣)∴阴影部分的面积S△AOB=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.1.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.2.如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB ∥x轴,则k的值是()A.18B.50C.12D.解:延长DA、交x轴于E,∵四边形ABCD是矩形,且AB∥x轴,∴∠CAB=∠AOE,∴DE⊥x轴,CB⊥x轴,∴∠AEO=∠ABC∴△AOE∽△CAB,∴=()2,∵矩形ABCD的面积是8,OC:OA=5:3,∴△ABC的面积为4,AC:OA=2:3,∴=()2=,=9,∴S△AOE∵双曲线y=经过点A,=|k|=9,∴S△AOE∵k>0,∴k=18,故选:A.3.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为()A.﹣8B.8C.﹣2D.﹣4解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故选:A.4.如图,点A(m,n),B(4,)在双曲线y=上,且0<m<n.若△AOB的面积为,则m+n=()A.7B.C.D.3解:∵点A(m,n),B(4,)在双曲线y=上,∴mn=4×=k,∴mn=k=6,∴双曲线为y=,∴n=,作AD⊥x轴于D,BE⊥x轴于E,=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB,∵S△AOB∴(+)(4﹣m)=,解得m1=1,m2=﹣16,∵0<m<n.∴m=1,∴n=6,∴m+n=7,故选:A.5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴=3,则S△于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCDAOC为()A.2B.3C.4D.6解:在Rt△BCD中,∵×CD×BD=3,∴×CD×3=3,∴CD=2,∵C(2,0),∴OC=2,∴OD=4,∴B(4,3),∵点B是反比例函数y=(x>0)图象上的点,∴k=12,∵AC⊥x轴,==6,∴S△AOC故选:D.6.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y 轴上的动点,则△ABC的面积为()A.k1﹣k2B.(k1﹣k2)C.k2﹣k1D.(k2﹣k1)解:由题意可知,AB=﹣,AB边上的高为x,=×(﹣)•x=(k1﹣k2),∴S△ABC故选:B.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线y=与边BC交于点D、与对角线OB交于中点E,若△OBD的面积为10,则k的值是()A.10B.5C.D.解:设E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是12,则k=()A.6B.9C.D.解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b)∵D、E在反比例函数的图象上,∴=k,设E的坐标为(a,y),∴ay=k∴E(a,),=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣••(b﹣)=12,∵S△ODE∴4k﹣k﹣+=12k=故选:D.9.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.10.如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为2.解:如图,过点P作x轴的垂线于M,∵△POQ为等边三角形,∴OP=OQ,OM=QM=OQ,∵反比例函数的图象经过点P,∴设P(a,)(a>0),则OM=a,OQ=OP=2a,PM=,在Rt△OPM中,PM===a,∴=a,∴a=1(负值舍去),∴OQ=2a=2,故答案为:2.11.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.则△OAP 的面积为5.解:过P作MN⊥x轴于M,交AB于N,过A作AD⊥x轴于D,∵A(4,3),∴AD=3,OD=4,∴AO==5,∵AB=AO,∴AB=5,∵AB∥x轴,点B的横坐标是4+5=9,纵坐标是3,即点B的坐标是(9,3),设直线OB的解析式是y=ax,把B点的坐标(9,3)代入得:3=9a,解得:a=,即y=x,∵AB∥x轴,∴MN⊥AB,把A(4,3)代入y=,得k=12,即y=,解方程组得:或,∵点P在第一象限,∴点P的坐标是(6,2),∵A(4,3),AB∥x轴,P(6,2),∴MN=AD=3,PN=3﹣2=1,﹣S△APB=3﹣=5,∴△OAP的面积是S△ABO故答案为:5.12.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为6.解:方法一:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.方法二:因为y=x+m斜率为1,且BC∥x轴,AC∥y轴,∴∠ABC=∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC=AB,=AC•BC=AB2,∴S△ABC当AB最小时,m=0,直线为y=x,联立方程,解得或,∴A(,),B(﹣,﹣),AB=×2=2,=×4×6=6.∴S△ABC最小故答案为:6.13.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO =AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C,且交线=6,则k的值为8.段AB于点D,连接CD,OD.若S△OCD解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,=S△AOD,∵S△COES△OCD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=6,∴(AD+CE)•AE=6,即(+)•(m﹣m)=6,∴m2=32,∴k==8,故答案为:8.解法二:作CE⊥OA于E,∵C为AB的中点,OA=AB,∠OAB=90°,=S△AOD=k,S△AOB=2k,∴S△OEC=k,∴S△BOD∵C为斜边OB的中点,=S△BCD=S△BOD=6,∴S△OCD∴×k=6,∴k=8.故答案为:8.14.如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为18.解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,∵▱OABC的面积为15,∴BM=,∴ND=BM=,∴A,D点坐标分别为(,3b),(,a+2b),∴•3b=(a+2b),∴b=a,∴k=•3b=•3×a=18,故答案为:18.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.解:(1)∵反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解方程组,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),=×6×4+×6×1=15;∴S△AOB(3)﹣4≤x<0或x≥1.17.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB==,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB18.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求反比例函数的解析式;(2)求点B的坐标;.(3)求S△OAB解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴a=×3=4,∴点A的坐标为(3,4),∴k=3×4=12,∴反比例函数解析式y=.(2)∵点B在这个反比例函数图象上,设点B坐标为(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴点B的坐标为(6,2).(3)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:2=6k,解得:k=,∴OB直线解析式为:y=x.过A点做AC⊥x轴,交OB于点C,如图所示:则点C坐标为(3,1),∴AC=3.S△OAB的面积=S△OAC的面积+S△ACB的面积=×|AC|×6=9.∴△OAB的面积为9.19.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比=4.例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB (1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与双曲线的另一交点为D点,求△ODB的面积.=•|x A|•y B,解:(1)由题意得:S△AOB即×2×y B=4,y B=4,∴B(2,4),设反比例函数的解析式为:y=,把点B的坐标代入得:k=2×4=8,∴y=,设直线AB的解析式为:y=ax+b,把A(﹣2,0)、B(2,4)代入得:,解得:,∴y=x+2;(2)由题意得:x+2=,解得:x1=﹣4,x2=2,∴D(﹣4,﹣2),=S△OAD+S△OAB=×2×2+4=6.∴S△ODB20.如图,在平行四边形OABC中,,点A在x轴上,点D是AB 的中点,反比例函数的图象经过C,D两点.(1)求k的值;(2)求四边形OABC的面积.解:(1)过点C作CE⊥x轴于E,∵∠AOC=45°,∴OE=CE,∴OE2+CE2=OC2∵OC=2,∴OE=CE=2,∴C(2,2),∵反比例函数的图象经过点C点,∴k=2×2=4;(2)过点D作DF⊥x轴于F,∵四边形OABC是平行四边形,∴AB=OC=2,∠DAF=∠AOC=45°,又∵点D是AB的中点,∴AD=,AF=DF,∴AF2+DF2=AD2,∴AF=DF=1,∴D点的纵坐标为1,∵反比例函数的图象过点D点,∴D(4,1),∴OF=4,OA=OF﹣AF=4﹣1=3,∴平行四边形OABC的面积S=OA•CE=3×2=6.21.如图,直线y=6x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标为2.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上的点,且点B的纵坐标是6,连接OB,AB,求△AOB的面积.解:(1)将x=2代入y=6x,得:y=12,∴点A的坐标为(2,12),将A(2,12)代入y=,得:k=24,∴反比例函数的解析式为y=;(2)在y=中y=6时,x=4,∴点B(4,6),而A(2,12),如图,过A作AC⊥y轴,BD⊥x轴,交于点E,则OD=4,OC=12,BD=6,AC=2,AE=2,BE=6,=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE∴S△AOB=4×12﹣×2×12﹣×4×6﹣×2×6=48﹣12﹣12﹣6=18.22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)若D(x,0)是x轴上原点左侧的一点,且满足,求x的取值范围.解:(1)∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数的表达式为y=﹣.∵A(﹣4,n)在y=﹣的图象上,∴n=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2)和B(2,﹣4),∴,解得∴一次函数的表达式为y=﹣x﹣2.(2)当y=﹣x﹣2=0时,解得x=﹣2.∴点C(﹣2,0),∴OC=2,=S△AOC+S△COB∴S△AOB=×2×2+×2×4=6.(3)根据函数的图象可知:若D(x,0)是x轴上原点左侧的一点,当﹣4<x<0时,满足kx+b﹣<0.23.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例函数y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).24.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b>0的解集.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b,得,解得,,∴直线EF的解析式为y=﹣x+5;﹣S△ODE﹣S△OBF﹣S△CEF(2)△OEF的面积=S矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式k2x+b﹣>0的解集为<x<6.25.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P,连结OP、OQ.求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),解得m=4,故反比例函数的表达式为y=.一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),所以,解得n=﹣1,b=﹣5.∴一次函数的表达式y=﹣x﹣5;(2)由,解得或.∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ=×5×4−×5×1=7.5.26.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3;(2)过点A 作AN ⊥OB ,垂足为N ,由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D (﹣,3)过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED =(+3)×(3﹣)=3,答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0,②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x +3+,∵y =mx +n 与直线y =x +3+平行,∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2且n .答:n 的取值范围为:0≤n ≤2+2且n ≠3+.。
八下 反比例函数与图形面积(平行四边形、三角形 分类全面)
__反比例函数与图形的面积__一反比例函数与四边形的面积(教材P156目标与评定第7题)若正方形AOBC的边OA,OB在坐标轴上,顶点C在第一象限,且在反比例函数y=1x的图象上,则点C的坐标是__(1,1)__.【解析】设点C的坐标为(x,y).∵四边形AOBC是正方形,∴OB=OA,即x=y.∵点C在第一象限且在反比例函数y=1x的图象上,∴x2=1,∴x1=1,x2=-1(不合题意,舍去),∴点C的坐标是(1,1).【思想方法】反比例函数中k的几何意义:反比例函数图象上的点(x,y)的横、纵坐标之积(xy=k)为常数,即过反比例函数图象上任意一点,向两坐标轴分别作垂线,两条垂线与两坐标轴所围成的矩形的面积为常数|k|.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图1所示的平面直角坐标系,反比例函数y =3x 经过点D ,则正方形ABCD 的面积是( D ) A.32 B .5 C .6D .12【解析】 由反比例函数中k 的几何意义可知, S 正方形ABCD =4×3=12.故选D.图1图2[2019·杭州期末]如图2所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( A ) A .2 B .2 2 C.32D .25【解析】 过D 作DE ⊥OA 于E , 设D ⎝ ⎛⎭⎪⎫a ,k a ,∴OE =a ,DE =k a ,∵点D 是矩形OABC 的对角线AC 的中点, ∴OA =2a ,OC =2k a , ∵矩形OABC 的面积为8, ∴OA ·OC =2a ·2ka =8,∴k =2.[2019·永康模拟]如图3,A ,C 分别是x 轴、y 轴上的点,反比例函数y =2x (x >0)的图象与矩形OABC 的边BC ,AB 分别交于E ,F ,若AF ∶BF =1∶2,则△OEF 的面积为( B ) A .2B.83 C .3D.103图3【解析】 设F 点的坐标为⎝ ⎛⎭⎪⎫t ,2t ,∵AF ∶BF =1∶2,∴AB =3AF ,∴B 点坐标为⎝ ⎛⎭⎪⎫t ,6t ,把y =6t 代入y =2x 得x =t 3,∴E 点坐标为⎝ ⎛⎭⎪⎫t 3,6t ,∴S △OEF =S 矩形ABCO -S △OEC -S △OAF -S △BEF =t ·6t -12×2-12×2-12⎝ ⎛⎭⎪⎫6t -2t ·⎝ ⎛⎭⎪⎫t -t 3=83.[2018·盐城]如图4,点D 为矩形OABC 的边AB 的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k =__4__. 【解析】 设点D 的坐标为(x ,y ),∵点D 为AB 的中点,且点D ,E 均在y =kx 上, ∴点E 的坐标为⎝ ⎛⎭⎪⎫2x ,12y .∵S △BDE =12BD ·BE =12·x ·12y =1, ∴k =xy =4.图4[2018·烟台]如图5,反比例函数y =kx 的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k =__-3__.图5【解析】 (法一)如答图①,连结OP , ∵C ,D 在坐标轴上,BD ⊥DC , ∴BD ∥y 轴,∴S △OPD =S △APD .∵▱ABCD 对角线的交点P ,▱ABCD 的面积为6, ∴S △APD =64=32.又∵S △OPD =S △APD =32=|k |2,∴|k |=3.又∵反比例函数的图象在第二象限, ∴k <0,∴k =-3.变形5答图①变形5答图②(法二)如答图②,过P点作PH⊥y轴于H,∵BD⊥DC,∴∠PDO=∠DOH=∠OHP=90°,∴四边形PDOH是矩形,又AB∥CD,=6,∴S▱ABCD=S矩形ABDO∵BP=DP,∴S=3=|k|,矩形PDOH又∵k<0,∴k=-3.如图6,在平面直角坐标系中,一次函数y =mx +n (m ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第一、三象限内的A ,B 两点,与y 轴交于点C ,过点B 作BM ⊥x 轴,垂足为M ,BM =OM ,OB =22,点A 的纵坐标为4. (1)求该反比例函数和一次函数的表达式;图6(2)连结MC ,求四边形MBOC 的面积. 解:(1)在Rt △OMB 中,BM =OM ,OB =22, ∴BM 2+OM 2=()222,解得OM =BM =2, ∴B 点的坐标为(-2,-2).∵反比例函数y =kx (k ≠0)的图象经过点B (-2,-2), ∴k =(-2)×(-2)=4, ∴该反比例函数表达式为y =4x ,∵反比例函数y =4x 经过A 点,而A 点的纵坐标为4, ∴4=4x ,解得x =1,∴A 点坐标为(1,4). 将点A (1,4)和B (-2,-2)代入一次函数,得⎩⎨⎧m +n =4,-2m +n =-2,解得⎩⎨⎧m =2,n =2, ∴一次函数的表达式为y =2x +2; (2)一次函数y =2x +2与y 轴交于点C , 当x =0时,y =2,∴C 点坐标为(0,2), ∴OC =2,∵BM =2,∴OC =BM , 又∵BM ⊥x 轴,∴OC ∥BM , ∴四边形MBOC 为平行四边形, ∴S 四边形MBOC =2×2=4.二反比例函数与三角形的面积(教材P156目标与评定第8题)如图7,点A在反比例函数y=kx(k>0)的图象上,AM⊥x轴于点M.若△AMO的面积为3,则k=__6__.图7【解析】∵△AMO的面积为3,∴|k|=2×3=6.又∵k>0,∴k=6.【思想方法】反比例函数图象上任意一点与原点所连的线段、坐标轴以及过该点向坐标轴作的垂线所围成的直角三角形的面积S是个定值,且S=1 2|k|.[2018·宁波]如图8,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1-k2的值为(A)A.8 B.-8C.4 D.-4图8变形1答图【解析】 设点A 的坐标为(x A ,y ),点B 的坐标为(x B ,y ),点C 的坐标为(x C ,0), 如答图,过点C 作CD ⊥AB 交AB 的延长线于点D , ∵AB =x A -x B ,CD =y , ∴S △ABC =12AB ·CD =12(x A -x B )y =12(x A y -x B y )=12(k 1-k 2), 即4=12(k 1-k 2),∴k 1-k 2=8.[2018·郴州]如图9,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( B )图9A .4B .3C .2D .1【解析】 ∵A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A (2,2), 当x =4时,y =1,即B (4,1).过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,答图略, 则S △AOC =S △BOD =12×4=2.∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD +AC )·CD =12×(1+2)×2=3,∴S △AOB =3.[2018·龙东地区]如图10,平面直角坐标系中,点A 是x 轴上任意一点,BC ∥x 轴,分别交y =3x (x >0),y =kx (x <0)的图象于B ,C 两点,若△ABC 的面积为2,则k 的值为( A ) A .-1 B .1 C .-12D.12图10变形3答图【解析】 如答图,连结OB ,OC ,设BC 与y 轴交于点D , ∵BC ∥x 轴,∴S △OBC =S △ABC =2, ∵点B 在反比例函数y =3x 的图象上, ∴S △OBD =32,∴S △OCD =2-32=12, 又∵点C 在反比例函数y =kx 的图象上, ∴|k |=1,k =±1.∵反比例函数y =kx 的图象经过第二象限, ∴k <0,∴k =-1.故选A.如图11,直线y =2x 与反比例函数y =kx (k ≠0,x >0)的图象交于点A (1,a ),B 是此反比例函数的图象上任意一点(不与点A 重合),BC ⊥x 轴于点C . (1)求k 的值; (2)求△OBC 的面积.图11解:(1)将点A (1,a )的坐标代入y =2x ,得a =2×1,解得a =2,将点A (1,2)的坐标代入y =kx ,得2=k1,解得k =2;(2)由(1)可知,反比例函数的表达式为y =2x , ∴S △OBC =|k |2=22=1.三 反比例函数与几何图形的综合(教材P156目标与评定第9题)如图12,在反比例函数y =2x (x >0)的图象上有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4,分别过这些点作x 轴与y 轴的垂线.图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=__32__.图12【解析】 由题意,可知点P 1,P 2,P 3,P 4的坐标分别为(1,2),(2,1),⎝ ⎛⎭⎪⎫3,23,⎝ ⎛⎭⎪⎫4,12. 解法一:∵S 1=1×(2-1)=1, S 2=1×⎝ ⎛⎭⎪⎫1-23=13,S 3=1×⎝ ⎛⎭⎪⎫23-12=16,∴S 1+S 2+S 3=1+13+16=32;解法二:∵图中所构成的阴影部分的总面积正好是从点P 1向x 轴,y 轴引垂线构成的长方形面积减去最下方的长方形的面积,即1×2-12×1=32.【思想方法】 (1)反比例函数y =kx 中k 的几何意义:过函数图象上任意一点引x 轴、y 轴的垂线,所得矩形面积为|k |;(2)注意运用数形结合的思想,解答此类题一定要正确理解k 的几何意义.如图13,A ,B 两点在反比例函数y =4x 上,分别经过A ,B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2的值为( D )图13A .2B .3C .4D .6【解析】 ∵A ,B 是反比例函数y =4x 上的点,分别经过A ,B 两点向x 轴,y 轴作垂线段,则根据反比例函数中k 的几何意义,得两个矩形的面积都等于|k |=4,∴S 1+S 2=4+4-1×2=6.故选D.[2018·温州]如图14,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =kx (k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( B )图14A .4B .3C .2D.32【解析】 ∵点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2,∴点A 的坐标为(1,1),点B 的坐标为⎝ ⎛⎭⎪⎫2,12,∵AC ∥BD ∥y 轴,∴点C ,D 的横坐标分别为1,2,∵点C ,D 在反比例函数y =kx (k >0)的图象上, ∴点C 的坐标为(1,k ),点D 的坐标为⎝ ⎛⎭⎪⎫2,k 2,∴AC =k -1,BD =k 2-12=k -12,∴S △OAC =12(k -1)×1=k -12,S △ABD =12·k -12×(2-1)=k -14, ∵△OAC 与△ABD 的面积之和为32, ∴k -12+k -14=32,解得k =3.[2018·广东改编]如图15,已知等边三角形OA 1B 1,顶点A 1在双曲线y=3x (x >0)上.过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边三角形B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边三角形B 2A 3B 3…以此类推,则点B 6的坐标为__(26,0)__.图15变形3答图【解析】 如答图,过点A 1作A 1E ⊥x 轴,设OE =m ,则A 1E =3m ,由点A 1(m ,3m )在y =3x 图象上,得m ·3m =3,解得m =1(负值舍去),∴B 1(2,0),过A 2作A 2F ⊥x 轴于点F ,设B 1F =a ,则F (2+a ,0),∵△B 1A 2B 2是等边三角形,∴A 2(2+a ,3a ),将A 2点代入y =3x ,解得a =2-1(负值舍去),∴B 2(22,0),类似求得B 3(23,0),故B6(26,0).第2课时 反比例函数的性质1.[2018·衡阳]对于反比例函数y =-2x ,下列说法不正确的是( D ) A .图象分布在第二、四象限 B .当x >0时,y 随x 的增大而增大 C .图象经过点(1,-2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2【解析】 A .∵k =-2<0,∴它的图象在第二、四象限,故本选项正确; B .k =-2<0,当x >0时,y 随x 的增大而增大,故本选项正确;C .把x =1代入y =-2x 中,得y =-21=-2,∴点(1,-2)在它的图象上,故本选项正确;D .点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =-2x 的图象上,若x 1<0<x 2,则y 1>y 2,故本选项错误.2.[2018·湖州]如图6-2-10,已知直线y =k 1x (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( A )图6-2-10A .(-1,-2)B .(-1,2)C .(1,-2)D .(-2,-1)【解析】 ∵点M ,N 都在反比例函数的图象上,且两点的连线经过原点,∴M ,N 关于原点对称.∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A.3.[2018·天津]若点A (x 1,-6),B (x 2,-2),C (x 3,2)在反比例函数y =12x 的图象上,则x 1,x 2,x 3的大小关系是( B ) A .x 1<x 2<x 3 B .x 2<x 1<x 3 C .x 2<x 3<x 1D .x 3<x 2<x 1【解析】 把点A (x 1,-6),B (x 2,-2),C (x 3,2)分别代入y =12x 可得x 1=-2,x 2=-6,x 3=6,即可得x 2<x 1<x 3,故选B.4.[2018·临沂]如图6-2-11,正比例函数y 1=k 1x 与反比例函y 2=k 2x 的图象相交于A ,B 两点,其中点A 的横坐标为1,当y 1<y 2时,x 的取值范围是( D )图6-2-11A .x <-1或x >1B .-1<x <0或x >1C .-1<x <0或0<x <1D .x <-1或0<x <1【解析】 由反比例函数图象的中心对称性,正比例函数y 1=k 1x 与反比例函y 2=k 2x 的图象交点A 的横坐标为1,得另一个交点B 的横坐标为-1,结合图象知,当y 1<y 2时,x 的取值范围是x <-1或0<x <1,故选D.5.[2018·无锡]已知点P (a ,m ),点Q (b ,n )都在反比例函数y =-2x 的图象上,且a <0<b ,则下列结论一定正确的是( D ) A .m +n <0 B .m +n >0 C .m <nD .m >n【解析】 ∵k =-2<0,∴反比例函数y =-2x 的图象位于第二、四象限,∵a <0<b ,∴点P (a ,m )位于第二象限,点Q (b ,n )位于第四象限, ∴m >0,n <0,∴m >n .6.已知A (x 1,y 1),B (x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( B ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【解析】 ∵当x 1<x 2<0时,y 1>y 2,∴k >0,∵一次函数y =kx -k 的图象经过点(1,0)和点(0,-k ),-k <0, ∴一次函数的图象不经过第二象限.故选B.7.已知反比例函数y =6x ,当x >3时,y 的取值范围是__0<y <2__.【解析】 在坐标系内作出反比例函数y =6x 的函数图象,找到x >3对应的图象部分,确定其函数取值范围为0<y <2.8.[2018·台州]如图6-2-12,函数y =x 的图象与函数y =kx (x >0)的图象相交于点P (2,m ).图6-2-12(1)求m ,k 的值;(2)直线y =4与函数y =x 的图象相交于点A ,与函数y =kx (x >0)的图象相交于点B ,求线段AB 的长.解:(1)把点P (2,m )代入y =x ,得m =2, ∴P (2,2),把点P (2,2)代入y =kx ,得k =4;(2)当y =4时,代入y =x 得x =4,∴A (4,4),代入y =4x 得x =1,∴B (1,4),∴AB =4-1=3;9.[2019·拱墅区模拟]已知直线l :y =kx +b (k ,b 为常数,k ≠0)与函数y =2x 的图象交于点A (-1,m ). (1)求m 的值;(2)当k =__1__时,直线l 经过第一、三、四象限(任写一个符合题意的值即可); (3)求(2)中的直线l 的表达式和它与两坐标轴围成的三角形面积. 解:(1)把A (-1,m )代入y =2x 中,得m =-2;(2)由(1)知m =-2,∴A (-1,-2),把A (-1,-2)代入y =kx +b 中,得-2=-k +b , ∴b =k -2,∵直线l 经过第一、三、四象限, ∴⎩⎨⎧k >0,b <0,即⎩⎨⎧k >0,k -2<0, 解得0<k <2,∴k 可以取1; (3)由(2)知k =1,b =k -2=-1, ∴直线l 的表达式为y =x -1,∴直线l 与坐标轴的交点坐标为B (0,-1),C (1,0), ∴OB =1,OC =1, ∴S △OBC =12×1×1=12.10.[2018·绵阳]如图6-2-13,一次函数y =-12x +52的图象与反比例函数y =kx (k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的表达式;(2)在y 轴上求一点P ,使P A +PB 的值最小,并求出其最小值和P 点坐标.图6-2-13第10题答图解:(1)∵反比例函数y =k x (k >0)的图象过点A ,且△AOM 面积为1,∴12|k |=1, ∵k >0,∴k =2,故反比例函数的表达式为y =2x ;(2)如答图,作点A 关于y 轴的对称点A ′,连结A ′B ,交y 轴于点P ,则P A +PB 最小.由⎩⎪⎨⎪⎧y =-12x +52,y =2x,解得⎩⎨⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =12,∴A (1,2),B ⎝ ⎛⎭⎪⎫4,12,∴A ′(-1,2),最小值A ′B =(4+1)2+⎝ ⎛⎭⎪⎫12-22=1092. 设直线A ′B 的表达式为y =mx +n , 则⎩⎪⎨⎪⎧-m +n =2,4m +n =12,解得⎩⎪⎨⎪⎧m =-310,n =1710, ∴直线A ′B 的表达式为y =-310x +1710, ∴x =0时,y =1710,∴P 点坐标为⎝ ⎛⎭⎪⎫0,1710.11.如图6-2-14,一次函数y =k 1x +b (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于点A (-1,2),B (m ,-1).图6-2-14(1)求这两个函数的表达式;(2)在x 正半轴上是否存在点P (n ,0),使△ABP 为等腰三角形?若存在,求n 的值;若不存在,请说明理由.解:(1)把A (-1,2)代入y =k 2x ,得k 2=-2, ∴反比例函数的表达式为y =-2x .∵B (m ,-1)在反比例函数的图象上,∴m =2. 由题意得⎩⎨⎧-k 1+b =2,2k 1+b =-1,解得⎩⎨⎧k 1=-1,b =1,∴一次函数的表达式为y =-x +1; (2)存在.易求得AB =32,①当P A =PB 时,(n +1)2+4=(n -2)2+1,解得n=0,∵n>0,n=0不符合题意,舍去;②当P A=AB时,(n+1)2+4=(32)2,解得n=-1+14(负值舍去);③当BP=BA时,1+(n-2)2=(32)2,解得n=2+17(负值舍去).∴当n=-1+14或2+17 时△ABP为等腰三角形.。
反比例函数求面积
反比例函数求面积反比例函数是数学中一种常见的函数形式,其表达式为y =k/x,其中k为常数。
反比例函数具有一定的特点,其中最常见的应用就是求解面积相关问题。
在几何学中,很多问题可以通过反比例函数来求解面积,以下将介绍几个常见的例子。
1. 矩形的面积:可以将矩形的长记为x,宽记为y,则矩形的面积为S = xy。
如果已知矩形的面积S和宽y,可以通过反比例函数求解矩形的长x。
我们知道xy = S,对上式两边同时取倒数,得到yx = 1/S,可以看到yx符合反比例函数的形式,因此可以通过反比例函数求解矩形的长。
2. 圆的面积:圆的面积公式为S = πr²,其中r为圆的半径。
如果已知圆的面积S,可以通过反比例函数求解圆的半径r。
我们知道S = πr²,对这个式子两边同时取倒数,得到1/S = 1/(πr²),可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解圆的半径。
3. 三角形的面积:三角形的面积公式为S = 1/2bh,其中b为底边的长度,h为高的长度。
如果已知三角形的面积S和底边长度b,可以通过反比例函数求解高h。
我们知道S = 1/2bh,对这个式子两边同时取倒数,得到1/S = 2/bh,可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解三角形的高。
在实际问题中,反比例函数也有着广泛的应用。
例如,汽车行驶的时间和速度之间就存在着反比例关系。
假设一辆汽车行驶的距离为d,速度为v,行驶的时间为t。
根据定义,速度等于距离除以时间,即v = d/t。
如果我们已知汽车行驶的距离d和行驶的时间t,可以通过反比例函数求解汽车的速度v。
在数学教育中,反比例函数也是一个重要的概念,它可以帮助学生理解函数的性质和图像的变化。
学生可以通过绘制函数图像、计算函数的值等方式来探究反比例函数的特点,并且可以通过实际应用问题来加深对反比例函数的理解。
综上所述,反比例函数是求解面积问题常用的数学工具之一。
与反比例函数的图象有关的面积问题
1
解析 由反比例函数的图象关于原点对称的性质
知 : 图中两个阴影部分 面积的和 恰好 是一个 圆的面 积 ,
而已知圆与 x轴相切 , A点纵坐标为 2,即 圆的半径为 2, 所求面积 = 22π = 4π.
例 3 ( 07年荆州 中考 ) 如图 3,边 长为 4 的正 方形
AB CD 的对称中心是坐标原点 O, AB ∥x轴 , BC∥y轴 , 反
足为 C , 过 点 B 作 y 轴 的 垂 线 , 垂 足 为 D. 记 △AOC , △BOD 的面积分别为 S1 和 S2 ,则 S1 和 S2 的大小关系怎 样?
解析 在如图 1 中 ,设点 A ( x1 , y1 ) , B ( x2 , y2 ) ,则
S1
=
1 2
x1 y1 , S2
=
Rt△AOD中 , 因为 ∠AOD = 30°,所 以 , AO = 2 y,根 据勾 股
定理得 :
AO2 = OD2 + AD2 ,即 4 y2 = x2 + y2 ,即 x2 = 3 y2
①
由点
A ( x,
y) 在双曲线
y
=
3 x;
( x > 0 ) 上知 : xy =
3,
于是 x2 y2 =3,
8, 选 D.
图 1 图 2
例 2 (改编题 ) 已知 ,如图 2,正比例函数 y = k1 x与
反比例函数
y=
k2 的图 象相交于 x
A, B 两点
( k1
> 0, k2
>
0) , A点坐标为 ( 4, 2) ,分别以 A、B 为圆心 的圆与 x轴相
切 ,则图中两个阴影部分面积的和为
例谈与反比例函数有关的图形面积计算
例谈与反比例函数有关的图形面积计算反比例函数y=(k≠0)的图象是双曲线,双曲线上任一点的横坐标与纵坐标的乘积是一定值k,所以过双曲线上任意一点向x轴(或y轴)引垂线,由该点、垂足和坐标原点所构成的三角形的面积都相等,等于│k│。
类似地,过双曲线上任一点分别向x轴和y轴引垂线,由垂线与两坐标轴所围成的矩形的面积为定值│k│。
反之,已知上述三角形或矩形的面积,求反比例函数的解析式,则应注意图象所在的象限;对于k值进行恰当的取舍,或应注意多解。
1题:如图1所示,在反比例函数y=(x>0)的图象上有三点a、b、c,经过此三点分别向x轴引垂线,交x轴于d、e、f三点,连接oa、ob、oc,记△oad、△obe、△ocf的面积分别为s1、s2、s3,则有()图1a、s1<s2<s3b、s1>s2>s3c、s1=s2=s3d、s3<s1<s2分析:∵s△oad=od·ad=xa·ya=1同理s△obe=s△ocf=s△oad=1答案:c2题:如图2,在反比例函数y=-(x<0)的图象上任取一点p。
过p分别作x轴、y轴的垂线,垂足分别为n、m,则四边形onpm的面积为___________。
图2分析:s矩形pnom=pn·on=│xp│·│yp│=│xp· yp│=6答案:63题.如图3所示,a、b是反比例函数y=的图象上关于原点o 对称的任意两点。
ac平行于y轴交x轴于d点,bc平行于x轴。
求:△abc的面积、△abd的面积、△bod的面积。
分析:由题意知,△abc是直角三角形,s△abc=bc·ac,因为a、b两点关于原点对称,所以,设a的坐标为(xa、ya)且(xa>0,ya>0)则b的坐标为(-xa、-ya)、c点坐标为(xa、-ya)线段ac=2ya bc=2xa因为点a、b在在反比例函数y=上;xa·ya=1所以,s△abc=bc·ac=·2xa·2ya=2xaya=2s△abd=s△abc-s△bcd=s△abc-·2 xa·ya=2-1=1或s△abd=s△aod+s△bod=×od·ad+×od·│yb│=│xa· ya│+│xa ·ya│=+=1s△bod=s△abd-s△aod=1-=或s△bod=×od·│yb│=│xa· ya│=解略拓展:若a、b是反比例函数y=(k≠0)的图象上关于原点对称的任意两点。
反比例函数面积问题
反比例函数面积问题
反比例函数面积问题通常是指与反比例函数相关的图形面积的计算
问题。
例如,给定反比例函数y=k/x的图像与坐标轴所围成的区域,要求该区域的面积。
解决这类问题通常需要应用积分学知识,因为反比例函数的图像通常是一个双曲线,与坐标轴围成的区域是一个不规则图形。
通过积分,我们可以求出这个不规则图形的面积。
具体地,如果要求反比例函数y=k/x在第一象限内与x轴、y轴所围成的区域面积,可以先求出该函数在第一象限内的图像与x轴之间的面积,然后再乘以2(因为反比例函数在第一、三象限内是对称的)。
这个面积可以通过定积分来计算,积分区间是从0到正无穷大,被积函数是y=k/x。
需要注意的是,由于反比例函数的图像在x轴和y轴上都趋于无穷大,
因此所求得的面积也是无穷大的。
但是,在某些特定情况下,例如给定一个特定的矩形区域,我们可以通过计算该矩形区域内反比例函数图像的面积来得到一个有限的数值。
总之,反比例函数面积问题需要根据具体情况进行具体分析,通常需要应用积分学知识和几何知识来解决。
以上是对于反比例函数面积问题5的回答,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
A.S1>S2 B.S1<S2
o S1 A
C.S1 = S2
S2
B
x
D.S1和S2的大小关系不能确定. C D
5.如图,在y 1 (x 0)的图像上有三点A, B,C, x
经过三点分别向x轴引垂线,交x轴于A1, B1, C1三点,
边结OA, OB, OC, 记OAA1, OBB1, OCC1的
以上几点揭示了双曲线上的点构成的几 何图形的一类性质.掌握好这些性质,对 解题十分有益.(上面图仅以P点在第一象 限为例).
做一做
1.如图,点P是反比例函数y 2 图象上 x
的一点,PD⊥x轴于D.则△POD的面积
为1 .
y
P (m,n)
oD
x
2.如图, P是反比例函数y k 图像上的一点,由P分别 x
面积分别为S1, S2 , S3,则有 _A_ .
y
A.S1 = S2 = S3
B. S1 < S2 < S3
A
C. S3 < S1 < S2 D. S1 > S2 >S3
解:由性质(1)得
S1
B C
S2 S3
o A1 B1 C1
x
11
11
S AOA1
2
|k
|
2 , SBOB1
2
|k
|
, 2
专题一 反比例函数与图形的面积
面积性质(一)
设P(m, n)是双曲线y k (k 0)上任意一点, x
(1)过P作x轴的垂线, 垂足为A, 则:
SOAP
1 2
OA
AP
1 2
|m
|
|
n
|
1 2
|k
|
y
y
P(m,n)
P(m,n)
o
Ax
oA
x
想一想
y
o
若将此题改为过P点作y轴 的垂线段,其结论成立吗?
S OOC1
1 2
|k
|
1 2
,即S1
S2
S3 , 故选A.
6.如图,四边形OABC是矩形,ADEF是正方形,点A、
D在 轴的正半轴上,点C在 轴的正半轴上,点F
在AB上,点B、E在反比例 函数 y k 的图象上,OA=1,
x
OC=6,则正方形ADEF的面
积为( B )
A.2
BA P(m,n)
o
x
SOAP
1 2
OA
AP
1 2
|
m|
|
n
|
1 2
|
k
|
面积性质(二)
(2)过P分别作x轴, y轴的垂线,垂足分别为A, B,
则S矩形OAPB OA AP | m | | n || k | (如图所示).
y
y
B
P(m,n)
o
Ax
变式 2.如图,点 A 是反比例函数 y=-6x(x<0)的图象上的一点,过点 A 作▱ABCD,使
点 B,C 在 x 轴上,点 D 在 y 轴上,则▱ABCD 的面积为( C )
A.1
B.3
C.6
D.12
二、反比例函数与三角形的面积
变式 6.反比例函数 y=kx的图象如图所示,点 M 是该函数图象上一点,MN 垂直于 x 轴,
A
(2)AOB的面积.
(3)当x为何值时,y1 y2或y1 y2? O
x
B
解:由y 8 知,当x 2时,y 4;当y 2时, x 4; x
2k b 4 4k b 2
解得bk
1 2
一次函数的解析式为:
y
A
y x 2
面积为 S, 则_C__.
y
A.S = 1 C.S = 2
B.1<S<2 D.S>2
解:由上述性质(3)可知, S△ABC = 2|k| = 2
o
B
A
x
C
4. 如图:A、C是函数
y
1 x
的图象上任意两点,
过A作x轴的垂线,垂足为B.过C作y轴的垂线,
垂足为D.记RtΔAOB的面积为 S1,
RtΔOCD的面积为 S2 , 则__C_.
向x轴, y轴引垂线,阴影部分面积为3,则这个反比例
函数的解析式是 ____ .
解: S矩形APCO | k |,| k | 3.
又图像在二、四象限,
y
PC
k 3 解析式为y 3 .
x
A ox
3.如图, A, B是函数y 1 的图 像上关于原点O对称 x
的任意两点 AC平行于y轴 , BC平行于x 轴 , ABC的
N M
O B (4,-x 2)
y2
一、反比例函数与矩形的面积
变式 1.如图,点 A 在双曲线 y=4x上,点 B 在双曲线 y=kx(k≠0)上,AB∥x 轴,分别过
点 A,B 向 x 轴作垂线,垂足分别为 D,C.若矩形 ABCD 的面积是 8,则 k 的值为( A )
A.12
B.10
C.8
D.6
垂足是点 N.如果 S△MON=2,则 k 的值为( D )
A.2
B.-2
C.4
D.-4
变式 7.如图,直线 x=t(t>0)与反比例函数 y=2x,y=-x1的图象分别交于 B,C 两点,A
为 y 轴上任意一点,则△ABC 的面积为( C )
A.3
3
3
B.2t
C.2
D.不能确定
B
P(m,n)
oA
x
面积性质(三)
(3)设P(m, n)关于原点的对称点是P(m,n),过P作x轴的垂线
与过P作y轴的垂线交于A点, 则
SΔPAP
1 2
|
AP
AP|
1 2
|
2m
|
|
2n
|
2
|
k
|
(如图所示).
y
o
P/
P(m,n)
x
A
y
o
P/
P(m,n)
x
y
o
P/
P(m,n)
x
O
x
B
(2)△AOB的面积
解:y2 x 2,当y 0时, x 2, M (2,0). y
A
OM 2.
N
作AC x轴于C, BD x轴于D.
MD
AC 4, BD 2,
CO
x
B
SOMB
1 2
OM
BD
1 2
22
2,
SOMA
1 2
OM
AC
1 2
2
4
4.
SAOB SOMB SOAM 2 4 6.
(3)当x为何值时,y1 y2或y1 y2?
解:
y
A(2,4), B(4,2).
A (-2,4)
由图象可知:
当-2<x<0或x>4时,y1>y2 y1 当x<-2或0<x<4时,y1<y2
D.12
7.正比例函数y=kx与反比例函数 y=2/x的图象交于A,C两 点,AB⊥X轴于B,CD⊥X轴于D,则 四边形ABC4D的面积是 。
8.如图,已知一次函数y kx b的图象与反比例函数
y 8 的图象交于A, B两点,且点A的横坐标和点B x
的纵坐标都是 2.
y
求 : (1)一次函数的解析式;