北京市西城区2016-2017学年八年级上学期期末考试数学试题
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
北京西城初二年级下学期期末考试数学试题 含答案
北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 函数11y x =+中,自变量x 的取值范围是( ).A. x ≠1-B. x ≠1C. x >1-D. x ≥1- 2. 一次函数+3y x =的图象不经过...的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,30OCB ∠=︒,如果OE =2,那么对角线BD 的长为( ).A. 4C. 8D. 105. 如果关于x 的方程220x x k --=有两个相等的实数根,那么以下结论正确的是( ).A. 1k =-B. 1k =C. k >1-D. k >16. 下列命题中,不正确...的是( ). A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分7. 北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是( ).A. 32 C. 308. 如图,在Rt△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于( ).A. 150°B. 90°C. 60°D. 30°9. 教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为万人,而2016年各类留学回国人员总数为万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. 36.48(1)=43.25xx++ B. 36.48(12)=43.25C. 2x36.48(1)=43.25-36.48(1)=43.25+ D. 2x路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是().二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 如果关于x的方程2320-++=有一个根为0,那么m的值等于 .x x m12. 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于2cm.13. 在平面直角坐标系xOy中,直线24=-+与x轴的交点坐标为,y x与y轴的交点坐标为,与坐标轴所围成的三角形的面积等于 .14.如图,在Y ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果1=70ADC∠∠,那么=∠°.ABC∠︒,=3215.如图,函数2=-的图象交于点P,那y kx=+与函数1y x b么点P的坐标为_______,关于x的不等式12->+的解集kx x b是.16. 写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,2)-的点. 你写出的解析式为 .17. 如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_______cm.18. 利用勾股定理可以在数轴上画出表示图,并保留画图痕迹:第一步:(计算)=,使其中a,b都为正整数.你取的正整数a=____,b= ;以第一步中你所取的正整数a,b为两条直第二步:∠︒,则斜边OFOEF=90请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)M,并描述第三步:第三步...的画图步骤:.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. 解方程:2610--=.x x20.如图,在四边形ABCD中,AD21.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为尺,线段DF的长为尺;(2)求户斜多长.22. 2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表 1 学农1班所抽取酸奶添加蔗糖克数统计表(单位:克)表 2 学农2班所抽取酸奶添加蔗糖克数统计表(单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示.表3 两班所抽取酸奶的统计数据表根据以上材料回答问题:(1)表3中,x=:(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体..口感较优?请说明理由.23. (1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点(1,2)A -向上平移3个单位后的对应点A '的坐标为 ,过点A '的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线2y x =-向右平移1个单位,平移后直线的解析式为 ,另外直接将直线2y x =-向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次..“斜平移”. 求将直线2y x =-进行两次..“斜平移”后得到的直线的解析式.(3)解:24.(1)画图-连线-写依据:先分别完成以下画图..(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线..,并写出判定依据(只将最后一步判定特殊平行..........四边形的依据......填在横线上).①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.(2)请从图1、图2的结论中选择一个进行证明.证明:25. 如图所示,在平面直角坐标系x O y中,B,C两点的坐标分别为(4,0)B,(4,4)C,CD⊥y轴于点D,直线l 经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出45∠=︒,从而证明结论.CFB思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.……请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为.(2)①补全图形.②直线BF与直线l的位置关系是.③证明:北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学 附 加 题试卷满分:20分一、填空题(本题6分)1. 如图,在平面直角坐标系xOy 中,点1(2,2)A 在直线y x =上,过点1A 作11A B ∥y 轴,交直线12y x =于点1B ,以1A 为直角顶点,11A B 为直角边,在11A B 的右侧作等腰直角三角形111A B C ;再过点1C 作22A B ∥y轴,分别交直线y x =和12y x =于2A ,2B 两点,以2A 为直角顶点,22A B 为直角边,在22A B 的右侧作等腰直角三角形222A B C ,…,按此规律进行下去,点1C 的横坐标为 ,点2C 的横坐标为 ,点 n C 的横坐标为 .(用含n 的式子表示,n 为正整数)二、操作题(本题6分)2.如图,在由边长都为1个单位长度的小正方形组成的66⨯正方形网格中,点A ,B ,P 都在格点上.请画出以AB 为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件: 条件1:点P 到四边形的两个顶点的距离相等; 条件2:点P 在四边形的内部或其边上; 条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个Y ABCD , 使点P 在所画四边形的内部; (2)在图②中画出符合条件的一个四边形ABCD ,使点P 在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.三、解答题(本题8分)3.如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.解:①②北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)题号12345678910答案A D B C A B A C C D二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分)14. 60. 15.(1,2)-(2分),x<1(1分).16. 答案不唯一,如2=-等.(只满足一个条件的y x得2分)17. 2.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步:如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M. ………………………………………………………4分第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M. ………………………………………………………………………………………… 5分说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. (本题5分) 解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分(6)6322--±±===所以原方程的根为13x =+,23x =-………………………………………… 5分20.(本题5分)解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8,∴222AC BC AB. ……………………… 1分+=∴△ABC是直角三角形,=90∠︒.……2分ACB(2)∵AD==90∠∠︒…………………………………………………………… 3分CAD ACB∵在Rt△ACD中,=90∠︒,AC=AD=8,CAD∴CD=…………………………………………………………… 4分=………… 5分21.(本题7分)解:(1)4,2.…………………………………………………………………………………2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,BC BE CE x=-=-,(x>4)4=-=-.(x>2)2CD CF DF x又在Rt△BCD中,=90∠︒,BCD由勾股定理得222BC CD BD.+=所以222(4)+(2)=x x x--.………………… 4分整理,得212200x x-+=.因式分解,得(10)(2)=0x x--.解得110x=,22x=.……………………………………………………………… 5分因为x> 4 且x>2,所以2x=舍去,10x=.…………………………………… 6分答:户斜为10尺.…………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分(2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.……………………5分23.(本题7分)解:(1)(1,1),y x=-+.…………………………………………………………………… 2分23(2)22=-+,上,2.(各1y x 分)…………………………………………………………5分(3)直线2=-上的点(1,2)A-进行一次“斜平移”后的对应点的坐标为y x(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2=-+.y x b 将(3,4)点的坐标代入,得234-⨯+=.b解得10b=.所以两次“斜平移”后得到的直线的解析式为210=-+.y x……………………… 7分说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形.∵ D 为矩形ABEN 对角线的交点,∴ AE=BN ,12DE AE =,12DN BN =.∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =.同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形.∵ 四边形ABFG 是菱形,∴ AF ⊥BG .∴90∠=︒.AHB∴118090∠=︒-∠=︒.AHB∴2180190∠=︒-∠=︒.∴平行四边形DEMN是矩形. ………………………………………………………7分25.(本题8分)解:(1)(0,4).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC DC OD∵CE⊥直线l,CM⊥CF,45∠=︒,ECF可得△CEF,△CEM 为等腰直角三角形,=45∠∠=︒,CMD CFECF=CM.①∵=90∠︒-∠,DCM DCFBCF DCF∠︒-∠,=90∴=∠∠.②BCF DCM又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴∠∠=︒.……………………………………………………7分CFB CMD=45∴=90∠∠+∠=︒.BFE CFB CFE∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC CD OD∵CE⊥直线l,BN⊥CE,∴90BNC CED∠=∠=︒.①∴1390∠+∠=︒.∠+∠=︒,2390∴12∠=∠.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵45∠=︒,ECF可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵180BNE NED∠+∠=︒,∴BN∥FE.∴四边形BFEN为平行四边形.又∵90CEF∠=︒,∴平行四边形BFEN为矩形.…………………………………………………7分∴=90BFE∠︒.∴BF⊥直线l.……………………………………………………………… 8分北京市西城区2016-2017学年度第二学期期末试卷八年级数学附加题参考答案及评分标准一、填空题(本题6分)1.解:3,92,322n⎛⎫⨯ ⎪⎝⎭.(各2分)二、操作题(本题6分)2. 解:(1)答案不唯一,如:或其他.(2)答案不唯一,如:或其他.(3)说明:每图2分,答案不唯一时,其他正确答案相应给分.三、解答题(本题8分)3.解:(1)如图 1.由△OFF≌1△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分(2)①设点M 的坐标为(,)M x y .∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,可得点M 的坐标为(,)22a a . …………………………………………………… 5分 ∴ ,2.2a x a y ⎧=⎪⎪⎨⎪=⎪⎩消去a ,得y x =.所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分 而12M M =∴ 点M 所经过的路径的长为……………………………………………8分。
2016-2017学年北京159中八年级(上)期中数学试卷
2016-2017学年北京159中八年级(上)期中数学试卷一.选择题(每题3分,共30分):1.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.2.(3分)点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)3.(3分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等4.(3分)等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确5.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°6.(3分)已知:如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使△AOB≌△DOC,你补充的条件是()A.AC=DB B.BC=BD C.AB=CD D.∠AOB=∠DOC7.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于D,DE⊥AB于E.若DE=1cm,则BC=()cm.A.2 B.3 C.4 D.58.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=19.(3分)下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60°且是轴对称图形的三角形10.(3分)若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是()A. B.C.D.二.填空题(每题3分,共24分):11.(3分)分解因式:a3﹣ab2=.12.(3分)如图,如图△ABE≌△DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,那么DE=cm,EC=cm,∠C=°.13.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.若AB=5cm,BC=3cm,则△PBC的周长=.14.(3分)如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=cm.15.(3分)等腰三角形的一个角是80°,则它的另外两个角的度数是.16.(3分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=°.17.(3分)已知x+y=6,xy=﹣3,则x2y+xy2=.18.(3分)如图,A、B两点在直线l的同侧,在l上求作一点M,使AM+BM最小.小明的做法是:做点A关于直线l的对称点A',连结A'B,交直线l于点M,点M即为所求.请你写出小明这样作图的依据:.三.解答题(本题共5道小题,每题6分,共30分):19.(6分)(1)(m﹣3n)2(2)(y﹣3)2﹣2(y+2)(y﹣2).20.(6分)先化简,再求值:(x﹣1)(x﹣2)﹣x(x+3),其中x=.21.(6分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)22.(6分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.23.(6分)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣l,O),C(﹣1,2),△ABC 关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,在右面的坐标系中画出△A2B2C2,并写出它的三个顶点的坐标.四、解答题(本题6分)24.(6分)已知:如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.五、解答题(本题共10分,第23题5分,第24题5分)25.(5分)先作图,再证明.(1)在所给出的图形中完成一下作图(保留作图痕迹):①作∠ACB的平分线CD,交AB于D;②延长BC到E,使CE=CA,连接AE.(2)求证:CD∥AE.26.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.2016-2017学年北京159中八年级(上)期中数学试卷参考答案与试题解析一.选择题(每题3分,共30分):1.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称的定义.2.(3分)点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.(3分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等【分析】根据全等三角形的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、两个直角三角形只能说明有一个直角相等,其他条件不明确,所以不一定全等,故本选项错误;B、两个等腰三角形,腰不一定相等,夹角也不一定相等,所以不一定全等,故本选项错误;C、两个等边三角形,边长不一定相等,所以不一定全等,故本选项错误;D、它们的夹角是直角相等,可以根据边角边定理判定全等,正确.故选:D.【点评】本题主要考查全等三角形的判定,熟练掌握判定定理是解题的关键.4.(3分)等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确【分析】分别从若腰长为25cm,底边长为13cm与腰长为13cm,底边长为15cm,去分析求解即可求得答案.【解答】解:若腰长为25cm,底边长为13cm,则周长为:25+25+13=63(cm);若腰长为13cm,底边长为15cm,则周长为:25+13+13=51(cm);故它的周长是:63cm或51cm.故选:C.【点评】此题考查了等腰三角形的性质.注意分两种情况去分析.5.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选:D.【点评】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.6.(3分)已知:如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使△AOB≌△DOC,你补充的条件是()A.AC=DB B.BC=BD C.AB=CD D.∠AOB=∠DOC【分析】题目中有条件∠A=∠D,对顶角∠AOB=∠COD,应添加一对对应边相等,可添加AB=CD可利用AAS判定△AOB≌△DOC.【解答】解:添加AB=CD,∵在△ABO和△DCO中,∴△ABO≌△DCO(AAS),故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.7.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于D,DE⊥AB于E.若DE=1cm,则BC=()cm.A.2 B.3 C.4 D.5【分析】根据角平分线性质求出CD的长,根据含30度角的直角三角形性质求出BD,代入BC=BD+CD求出即可.【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于E,∴CD=DE=1cm,∵∠B=30°,DE⊥AB于E,∴BD=2DE=2cm,∴BC=BD+CD=3cm,故选:AB.【点评】本题考查了含30度角的直角三角形的性质和角平分线性质的应用,求出CD和BD的长是解此题的关键.8.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1【分析】A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.【解答】解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选:D.【点评】此题考查了整式的有关运算公式和性质,属基础题.9.(3分)下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60°且是轴对称图形的三角形【分析】根据等边三角形的定义可知:满足三边相等、有一内角为60°且两边相等或有两个内角为60°中任意一个条件的三角形都是等边三角形.【解答】解:A、两个内角为60°,根据三角形的内角和为180°,可知另一个内角也为60°,所以该三角形为等边三角形.故不符合题意;B、两边相等说明是等腰三角形或等边三角形,而这两种三角形都满足“轴对称”的条件,所以不能确定该三角形是等边三角形.故符合题意;C、三边都相等的三角形当然是等边三角形.故不符合题意;D、“轴对称”说明该三角形有两边相等,且有一个角是60°,有两边相等且一角为60°的三角形是等边三角形.故不符合题意;故选:B.【点评】此题主要考查了等边三角形的判定,轴对称图形的定义,掌握等边三角形的判定是解本题的关键.10.(3分)若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是()A. B.C.D.【分析】拿正方形纸片先沿对角线向上翻折,再向右翻折,右下翻折,剪去上面一个等腰直角三角形,展开即可得到正确答案.【解答】解:动手操作后可得第二个图案.故选:A.【点评】本题主要考查了剪纸问题;主要是让学生学会动手操作能力.二.填空题(每题3分,共24分):11.(3分)分解因式:a3﹣ab2=a(a+b)(a﹣b).【分析】首先提取公因式a,进而利用平方差公式分解因式得出答案.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.(3分)如图,如图△ABE≌△DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,那么DE=2cm,EC= 1.2cm,∠C=48°.【分析】全等三角形的性质可求得答案.【解答】解:∵△ABE≌△DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,∴DE=AE=2cm,EC=EB=1.2cm,∠C=∠B=48°,故答案为:2;1.2;48.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.13.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.若AB=5cm,BC=3cm,则△PBC的周长=8cm.【分析】利用线段垂直平分线的性质、等腰三角形的性质将△PBC的周长转化为线段(AC+BC)的长度.【解答】解:∵AB的垂直平分线交AC于P点.∴AP=BP.又∵AB=AC,AB=5cm,BC=3cm,∴△PBC的周长=PB+PC+BC=AP+PC+BC=AB+BC=5+3=8cm.故答案是:8cm.【点评】本题考查了线段垂直平分线的性质、等腰三角形的性质.线段的垂直平分线上的点到线段的两个端点的距离相等.14.(3分)如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=8cm.【分析】根据角平分线性质求出CD=DE,根据全等求出BC=BE=AC,根据△ADE 的周长求出AD+DE+AE=AB,求出即可.【解答】解:∵BD平分∠CBA,DE⊥AB,∠C=90°,∴CD=DE,∠C=∠DEB=90°,∠CBD=∠EBD,在△DCB和△DEB中∴△DCB≌△DEB(AAS),∴BE=BC=AC,∵△ADE的周长为8cm,∴AD+DE+AE=AD+CD+AE=AC+AE=BE+AE=AB=8cm,故答案为:8.【点评】本题考查了角平分线性质,全等三角形的性质和判定的应用,注意:角平分线上的点到角的两边的距离相等.15.(3分)等腰三角形的一个角是80°,则它的另外两个角的度数是80°,20°或50°,50°.【分析】没有指明这个角是底角还是顶角,故应该分两种情况进行分析.【解答】解:①当这个角是底角时,另外两个角是:80°,20°;②当这个角是顶角时,另外两个角是:50°,50°.故答案为:80°,20°或50°,50°.【点评】此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用.16.(3分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=45°.【分析】根据当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC即可得出∠PCD的度数.【解答】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.故答案为:45°.【点评】此题主要考查了轴对称求最短路线问题,根据已知得出D点关于MN 的对称点,正好是A点是解题关键.17.(3分)已知x+y=6,xy=﹣3,则x2y+xy2=﹣18.【分析】先提取公因式进行因式分解,然后整体代入计算.【解答】解:x2y+xy2=xy(x+y)=﹣3×6=﹣18.故答案为:﹣18.【点评】本题考查了提公因式法分解因式,准确找出公因式是解题的关键,然后整体代入计算.18.(3分)如图,A、B两点在直线l的同侧,在l上求作一点M,使AM+BM最小.小明的做法是:做点A关于直线l的对称点A',连结A'B,交直线l于点M,点M即为所求.请你写出小明这样作图的依据:两点确定一条直线、线段垂直平分线上点到线段两个端点距离相等、两点之间线段最短.【分析】根据直线的性质,相等垂直平分线的性质即可得到结论.【解答】解:两点确定一条直线、线段垂直平分线上点到线段两个端点距离相等、两点之间线段最短.故答案为:两点确定一条直线、线段垂直平分线上点到线段两个端点距离相等、两点之间线段最短.【点评】本题考查了轴对称﹣最短路线问题,熟记轴对称的性质是解题的关键.三.解答题(本题共5道小题,每题6分,共30分):19.(6分)(1)(m﹣3n)2(2)(y﹣3)2﹣2(y+2)(y﹣2).【分析】(1)依据完全平方公式进行变形即可;(2)依据平方差公式和完全平方公式进行变形,然后再合并同类项即可.【解答】解:(1)(m﹣3n )2=m2﹣6mn+9n2;(2)原式=y2﹣6y+9﹣2(y2﹣4)=y2﹣6y+9﹣2y2+8=﹣y2﹣6y+17.【点评】本题主要考查的是完全平方公式和平方差公式的应用,熟练掌握公式是解题的关键.20.(6分)先化简,再求值:(x﹣1)(x﹣2)﹣x(x+3),其中x=.【分析】先将原式化简,然后将x的值代入求解.【解答】解:当时,∴原式=x2﹣2x﹣x+2﹣x2﹣3x=﹣6x+2=﹣6×+2=﹣2+2=0【点评】本题考查代入求值,涉及整式的混合运算,属于基础题型.21.(6分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【分析】根据角平分线上的点到角的两边的距离相等可得,超市M建在∠COD 的平分线上,再根据线段垂直平分线上的点到线段两端点的距离相等可知超市应建在AB的垂直平分线上,所以作出两线的交点即可.【解答】解:如图所示,点M就是所要求作的建立超市的位置.【点评】本题主要考查了基本作图,有作线段的垂直平分线,角的平分线,是基本作图,需要熟练掌握.22.(6分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.【分析】根据由两个角和其中一角的对边相等的两个三角形全等证明△ABC≌△CDE,由全等三角形的性质即可得到BC=DE.【解答】证明:∵AB∥EC,∴∠A=∠DCE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴BC=DE.【点评】本题考查了全等三角形的判定和性质,全等三角形角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.(6分)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣l,O),C(﹣1,2),△ABC 关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,在右面的坐标系中画出△A2B2C2,并写出它的三个顶点的坐标.【分析】从直角坐标系中先找到三点的坐标,然后再向y轴引垂线并延长相同长度,得到对应点,顺次连接得到△A1B1C1,△A1B1C1的各点向y轴引垂线并延长相同长度,得到对应点,顺次连接得到△A2B2C2.【解答】解:所画图形如下所示:△A2B2C2即为所求.三个顶点的坐标分别为:A2(4,0)B2(5,0)C2(5,2).【点评】本题综合考查了直角坐标系和轴对称图形的性质.学生在做题时要注意知识的综合运用.四、解答题(本题6分)24.(6分)已知:如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.【分析】(1)由SAS证明△ABE≌△CBD即可;(2)由等腰直角三角形的性质求出∠BAC=45°,得出∠BAE=15°,由全等三角形的性质即可得出结果.【解答】(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=45°,∵∠CAE=30°,∴∠BAE=45°﹣30°=15°,∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质;证明三角形全等是解决问题的关键.五、解答题(本题共10分,第23题5分,第24题5分)25.(5分)先作图,再证明.(1)在所给出的图形中完成一下作图(保留作图痕迹):①作∠ACB的平分线CD,交AB于D;②延长BC到E,使CE=CA,连接AE.(2)求证:CD∥AE.【分析】(1)利用直尺和圆规即可作出;(2)根据等腰对等角以及三角形的外角的性质即可证得∠ACD=∠CEA,进而证明.【解答】(1)解:如图所示:;(2)证明:∵CE=CA,∴∠CAE=∠AEC,又∵∠ACB=∠CAE+∠AEC,∠ACD=∠ACB,∴∠ACD=∠CEA,∴CD∥AE.【点评】本题考查了尺规作图和等腰三角形的性质:等边对等角,正确理解性质定理是关键.26.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.【分析】首先在AB上截取AF=AD,由AE平分∠PAB,利用SAS即可证得△DAE ≌△FAE,继而可证得∠EFB=∠C,然后利用AAS证得△BEF≌△BEC,即可得BC=BF,继而证得AD+BC=AB.【解答】证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∵,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE,∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C,∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∵,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.【点评】此题考查了全等三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.第21页(共21页)。
北京市西城(北区)2012-2013学年高一上学期期末考试数学试题
北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学 2013.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3π B.23π C.43π D.53π 2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( )A.(4,2)-B.(4,2)--C.(4,2)D.(4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( )A.3-B.3C.13- D.135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是π(0)2,,那么()f x 的解 析式可以是( ) A.sin x B.cos x C.sin 1x +D.cos 1x +6. 已知向量(1,=a ,(=-b ,则a 与b 的夹角是( )A. 6πB.4π C.3π D.2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos2y x =的图象( ) A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( )A.4π B.2π C.πD.2π9. 设角θ的终边经过点(3,4)-,则πcos()4θ+的值等于( )A.10B.10C.10D.10-10. 在矩形ABCD中,AB =,1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( ) A .3B .2C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=sin2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______.16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>. 其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+.(Ⅰ)求()3f π的值; (Ⅱ)求()f x 的单调递增区间; (Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 AB 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.AB 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.1. 已知集合{11}P x x =-<<,{}M a =. 若M P ⊆,则a 的取值范围是________.2. lg2lg5+-=________. 3. 满足不等式122x>的x 的取值范围是_______.4. 设()f x 是定义在R 上的奇函数,若()f x 在(0,)+∞上是减函数,且2是函数()f x 的一个零点,则满足()0x f x >的x 的取值范围是________.5. 已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件: ①A U ⊆;②若x A ∈,则2x A ∉; ③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是________;(写出一个即可) (2)当7n =时,满足条件的集合A 的个数为________.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6. (本小题满分10分)已知函数21()1f x x =-. (Ⅰ)证明函数()f x 为偶函数;(Ⅱ)用函数的单调性定义证明()f x 在(0,)+∞上为增函数.7. (本小题满分10分)设函数(2)(4)2()(2)()2x x x f x x x a x -+≤⎧=⎨-->⎩. (Ⅰ)求函数()f x 在区间[2,2]-上的最大值和最小值;(Ⅱ)设函数()f x 在区间[4,6]-上的最大值为()g a ,试求()g a 的表达式.8. (本小题满分10分)已知函数()log a g x x =,其中1a >.(Ⅰ)当[0,1]x ∈时,(2)1x g a +>恒成立,求a 的取值范围; (Ⅱ)设()m x 是定义在[,]s t 上的函数,在(,)s t 内任取1n -个数1221,,,,n n x x x x -- ,设12x x << 21n n x x --<<,令0,ns x t x==,如果存在一个常数0M >,使得11()()nii i m xm x M -=-≤∑恒成立,则称函数()m x 在区间[,]s t 上的具有性质P . 试判断函数()()f x g x =在区间21[,]a a上是否具有性质P ?若具有性质P ,请求出M 的最小值;若不具有性质P ,请说明理由.(注:1102111()()()()()()()()nii n n i m x m xm x m x m x m x m x m x --=-=-+-++-∑ )北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学参考答案及评分标准 2013.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B. 二、填空题:本大题共6小题,每小题4分,共24分.11. 2; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③.注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分. 17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分所以sin 3tan cos 4ααα==-. …………………5分 (Ⅱ)24sin22sin cos 25ααα==-, …………………8分27cos22cos 125αα=-=, …………………11分 所以24717sin 2cos2252525αα+=-+=-. …………………12分 18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122==. …………………4分(Ⅱ)()cos )sin 1f x x x -+ …………………6分sin 1x x =+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分 又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()22AP a a = ,(2,0)AB a =, …………………3分所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{11}a a -<<; 2. 12; 3. {1}x x >-; 4. (2,0)(0,2)- ;5. {2},或{1,4},或{2,3},或{1,3,4};16. 注:一题两空的试题每空2分. 二、解答题:本大题共3小题,共30分. 6. 证明:(Ⅰ)由已知,函数()f x 的定义域为{0}D x x =∈≠R . …………………1分设x D ∈,则x D -∈,2211()11()()f x f x x x -=-=-=-. …………………3分 所以函数()f x 为偶函数. …………………4分(Ⅱ)设12x x ,是(0,)+∞上的两个任意实数,且12x x <,则210x x x ∆=->,21222111()()1(1)y f x f x x x ∆=-=--- …………………6分 22212121222222121212()()11=x x x x x x x x x x x x --+=-=. …………………8分 因为120x x <<, 所以210x x +>,210x x ->,所以0y ∆>, …………………9分 所以()f x 在(0,)+∞上是增函数. …………………10分7.解:(Ⅰ)在区间[2,2]-上,()(2)(4)f x x x =-+.所以()f x 在区间[2,1]--上单调递增,在区间[1,2]-上单调递减, ……………1分 所以()f x 在区间[2,2]-上的最大值为(1)9f -=, …………………3分最小值为(2)0f =. …………………4分(Ⅱ)当2a ≤时,()f x 在[4,1]--上单调递增,在[1,6]-上单调递减,所以()f x 的最大值为9. …………………5分当28a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减, 此时(1)9f -=,222()()922a a f +-=≤,所以()f x 的最大值为9. ……………7分 当810a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减. 此时222()()(1)22a a f f +-=>-,所以()f x 的最大值为2(2)4a -.………………8分 当10a >时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在[2,6]单调递增,此时(6)4(6)(1)f a f =->-,所以()f x 的最大值为4(6)a -. …………………9分综上,298,(2)()810,44(6)10.a a g a a a a ≤⎧⎪-⎪=<≤⎨⎪->⎪⎩ …………………10分 8.解:(Ⅰ)当[0,1]x ∈时,(2)1xg a+>恒成立,即[0,1]x ∈时,log (2)1xa a +>恒成立, …………………1分因为1a >,所以2xaa +>恒成立, …………………2分即2xa a -<在区间[0,1]上恒成立,所以21a -<,即3a <, …………………4分 所以13a <<. 即a 的取值范围是(1,3). …………………5分 (Ⅱ)由已知()f x =log a x ,可知()f x 在2[1,]a 上单调递增,在1[,1]a上单调递减,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a -=<<<<<= ,当存在某一个整数{1,2,3,,1}k n ∈- ,使得1k x =时,1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211[()()][()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-21()(1)()(1)123f f f a f a=-+-=+=. …………………7分当对于任意的{0,1,2,3,,1}k n ∈-,1k x ≠时,则存在一个实数k 使得11k k x x +<<,此时1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211()()[()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-011()()()()()()k k k n k f x f x f x f x f x f x ++=-+-+-……(*) 当1()()k k f x f x +>时,(*)式01()()2()3n k f x f x f x +=+-<, 当1()()k k f x f x +<时,(*)式0()()2()3n k f x f x f x =+-<, 当1()()k k f x f x +=时,(*)式01()()()()3n k k f x f x f x f x +=+--<.……………9分综上,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a-=<<<<<= ,均有11()()3nii i f x f x-=-≤∑.所以存在常数3M ≥,使11()()ni i i f x f x M -=-≤∑恒成立,所以函数()f x 在区间21[,]a a上具有性质P .此时M 的最小值为3. …………………10分。
北京市西城区2020—2021学年初二上期末考试数学试题含答案
北京市西城区2020—2021学年初二上期末考试数学试题含答案八年级数学 2021.1试卷满分:100分,考试时刻:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.运算22-的结果是( ).A.14B.14- C.4 D.4- 2.下列剪纸作品中,不是..轴对称图形的是( ).3.在下列分解因式的过程中,分解因式正确的是( ). A.()xz yz z x y -+=-+ B. ()223232a b ab ab ab a b -+=- C. 232682(34)xy y y x y -=- D. 234(2)(x 2)3x x x x +-=+-+4.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 5.已知一次函数(2)3y m x =-+的图象通过第一、二、四象限,则m 的取值范畴是( ).A .0m <B .0m >C .2m <D .2m >6.分式11x--可变形为( ). A .11x + B .11x -+ C .11x -- D .11x - 7.若一个等腰三角形的两边长分别为2和4,则那个等腰三角形的周长是为( ).A. 8B. 10C. 8或10D.6或128.如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,若∠AEC =105°,则∠DAE 的度数等于( ).A. 30°B.40°C. 50°D.65°9.如图,在△ABC 中,BD 平分∠ABC ,与AC 交于点D ,DE ⊥AB于点E ,若BC =5,△BCD 的面积为5,则ED 的长为( ).A. 12B. 1C.2D.510.如图,直线y =﹣x +m 与直线y =nx +5n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +5n >0的整数解为( ).A.﹣5 ,﹣4,﹣3B. ﹣4,﹣3C.﹣4 ,﹣3,﹣2D. ﹣3,﹣2二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.若分式11-x 在实数范畴内有意义,则x 的取值范畴是 . 12.分解因式224x y -= .13.在平面直角坐标系xOy 中,点P (-2,3)关于y 轴的对称点的坐标是 .14.如图,点B 在线段AD 上,∠ABC =∠D , AB ED =.要使△ABC ≌△EDB ,则需要再添加的一个条件是(只需填一个条件即可).15.如图,在△ABC 中,∠ABC =∠ACB , AB 的垂直平分线交AC 于点M ,交AB 于点N .连接MB ,若AB=8,△MBC 的周长是14 ,则BC 的长为 .16.关于一次函数21y x =-+,当-2≤x ≤3时,函数值y 的取值范畴是 .17.如图,要测量一条小河的宽度AB 的长,能够在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC =CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长确实是AB 的长,其中用到的数学原理是:_ .S (米)412048010a 018.甲、乙两人都从光明学校动身,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚动身4min .设甲行走的时刻为t (单位:min),甲、乙两人相距 y (单位:m),表示y 与t 的函数关系的图象如图所示,依照图中提供的信息,下列说法: ①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲③甲、乙两人的最远距离是480m ④甲从光明学校到篮球馆走了30min正确的是__ _(填写正确结论的序号).练习题改编,识图能力,如何提取信息,数形结合思想三、解答题(本题共50分,第19,20题每小题6分;第21题~25题每小题5分; 第26题6分,第27题7分)19.分解因式:(1)2()3()a b a b -+- (2)221218ax ax a -+解: 解:20.运算:(1)42223248515a b a b c c ÷ (2)24()212x x x x x x -⋅+++ 解: 解:21.已知2a b-=,求222()2ab aaa ba ab b÷---+的值.解:22.解分式方程2242111x x xxx-+=+-解:23.已知:如图,A,O,B三点在同一条直线上,∠A=∠C,∠1=∠2,OD=OB.求证:AD=CB.证明:24.列方程解应用题中国地大物博,过去由于交通不便,一些地区的经济进展受到了制约,自从“高铁网络”在全国连续延伸以后,许多地区的经济和旅行发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅行,从北京到该地普快列车行驶的路程约为1352km,高铁列车比普快列车行驶的路程少52km,高铁列车比普快列车行驶的时刻少8h.已知高铁列车的平均时速是普快列车平均时速的 2.5倍,求高铁列车的平均时速.解:25.在平面直角坐标系xOy 中,将正比例函数2y x =-的图象沿y 轴向上平移4个单位长度后与y 轴交于点B ,与x 轴交于点C . (1)画正比例函数2y x =-的图象,并直截了当写出直线BC 的解析式; (2)假如一条直线通过点C 且与正比例函数2y x =-的图象交于点P (m ,2),求m 的值及直线CP 的解析式.解:(1)直线BC 的解析式: ;(2)26.阅读下列材料:利用完全平方公式,能够将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把如此的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++- =(8)(3)x x ++ 依照以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始显现错误的地点,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.(1)解:(2)正确的解答过程是:(3)证明:解: 2340x x -- =22233340x x -+-- =2(3)49x -- =(37)(37)x x -+-- =(4)(10)x x +-27.已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判定BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.图1 备用图(1)BF与CF的数量关系为:.证明:(2)解:北京市西城区2020— 2021学年度第一学期期末试卷八年级数学附加题2021.1试卷满分:20分一、填空题(本题6分)1.(1)已知32a ba+=,则ba= ;(2)已知115a b-=,则3533a ab ba ab b----= .二、解答题(本题共14分,每小题7分)2.观看下列各等式:(8.1)(9)(8.1)(9)---=-÷-,11()(1)()(1)22---=-÷-,4242-=÷,993322-=÷,┅┅依照上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)填空:-4=÷4;(3)请你再写两个实数,使它们具有上述等式的特点:-=÷;(4)假如用y表示等式左边第一个实数,用x表示等式左边第二个实数(x≠0 且x≠1),①x与y之间的关系能够表示为:(用x的式子表示y);②若x>1,当x时,y有最值(填“大”或“小”),那个最值为.3.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.(1)依题意补全图1;(2)线段OA,AC,OD之间的数量关系为:_____________________________;证明:(3)解:附加题答案1、(1)13(2)522、(1)差商(2)16 3(3)25255544-=÷;36366655-=÷(4)①21xyx=-②2 小43、(1)(2)作BE⊥OD四边形AOEB是正方形△ABC≌△BED∴OA+AC=OD(3)∵△ABC≌△BED ∴BC=BD∵BH⊥CD∴A、C、H、B四点共圆∴∠BAH=∠BCH=45°。
XXX版八年级上册数学期末考试试题及答案
XXX版八年级上册数学期末考试试题及答案XXX版八年级上册数学期末考试试卷一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(4分)4的平方根是()A。
±2 B。
-2 C。
2 D。
162.(4分)在实数2.3中,最大的是()A。
2 B。
3 C。
D.3.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A。
点A与点D B。
点B与点D C。
点B与点C D。
点C 与点D4.(4分)“I am a good student.”这句话中,字母“a”出现的频率是()A。
2 B。
C。
D.5.(4分)下列计算正确的是()A。
33 = 9 B。
(a-b)2 = a2-b2 C。
(a3)4 = a12 D。
a2·a3 = a66.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A。
17 B。
16 C。
8 D。
47.(4分)因式分解x2y-4y的结果是()A。
y(x2-4) B。
y(x-2)2 C。
y(x+4)(x-4) D。
y(x+2)(x-2)8.(4分)下列说法中正确的个数有()①是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a。
b都是单项式;⑤-3x2y+4x-1是关于x。
y的三次三项式,常数项是-1.A。
2个 B。
3个 C。
4个 D。
5个9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A。
a=3,b=3,c=4 B。
a:b:c=2:3:4 C。
∠B=50°,∠C=80°D。
∠A:∠B:∠C=1:1:210.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时。
XXX和XXX 相约从成都坐高铁到西安旅游。
如图,XXX家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,XXX家(记作C)在XXX的方向且相距3000米,则XXX家与XXX家的距离为()A。
2016年北京西城初三上学期期末数学试题及答案
2016年北京西城初三上学期期末数学试题及答案年北京西城初三上学期期末数学试题及答案北京市西城区2015— 2016学年度第一学期期末试卷九年级数学 2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.二次函数()257y x =-+的最小值是的最小值是 A .7- B .7C .5-D .52.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则cos A 的值为的值为 A .35 B .53C .45 D .343.如图,⊙C 与∠AOB 的两边分别相切,其中OA 边与⊙C 相切于点P .若∠AOB =90°,OP =6,则OC 的长为的长为 A .12 B .122 C .62 D .634.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是的形式,下列结果中正确的是A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =-- D .2(3)9y x =+-5.若一个扇形的半径是18cm ,且它的弧长是12π cm ,则此扇形的圆心角等于,则此扇形的圆心角等于 A .30° B .60° C .90° D .120°6.如图,在平面直角坐标系xOy 中,点A 的坐标为(1-,2), AB ⊥x 轴于点B .以原点O 为位似中心,将△OAB 放大为放大为 原来的2倍,得到△OA 1B 1,且点A 1在第二象限,则点A 1 的坐标为的坐标为A .(2-,4)B .(12-,1)C .(2,4-)D .(2,4)7.如图,一艘海轮位于灯塔P 的南偏东37°方向,距离方向,距离 灯塔40 海里的A 处,它沿正北方向航行一段时间后, 到达位于灯塔P 的正东方向上的B 处.这时,B 处与处与 灯塔P 的距离BP 的长可以表示为A .40海里海里B .40tan37°海里C .40cos37°海里海里D .40sin37°海里海里8.如图,A ,B ,C 三点在已知的圆上,在△ABC 中,中,∠ABC =70°,∠ACB =30°,D 是的中点,的中点, 连接DB ,DC ,则∠DBC 的度数为的度数为A .30°B .45°C .50°D .70°9.某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件.件.市场调查反映,市场调查反映,市场调查反映,如果调整商品售如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为的关系式为A .60(30020)y x =+B .(60)(30020)y x x =-+C .300(6020)y x =-D .(60)(30020)y x x =--10.二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为的值为 A .8 B .10- C .42- D .24-二、填空题(本题共18分,每小题3分) 11.若34a b =,则a bb +的值为的值为 .12.点A (3-,1y ),B (2,2y )在抛物线25y x x =-上,则1y 2y .(填“>”,“<”或“=”)13.△ABC 的三边长分别为5,12,13,与它相似的△DEF 的最小边长为15,则△DEF 的周长为周长为 .BAC14.如图,线段AB 和射线AC 交于点A ,∠A =30°,AB =20.点D 在射线AC 上,且∠ADB 是钝角,写出一个满足条件是钝角,写出一个满足条件 的AD 的长度值:AD = .15.程大位所著程大位所著《算法统宗》《算法统宗》《算法统宗》是一部中国传统数学重要的著作.是一部中国传统数学重要的著作.是一部中国传统数学重要的著作.在在《算法统宗》《算法统宗》中记载:中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?” 如图,假设秋千的绳索长始终保持直线状态,OA 是秋千的静止状态,A 是踏板,CD 是地面,点B 是推动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知AC =1尺,CD =EB =10尺,人的身高BD =5尺.设绳索长OA =OB =x 尺,则可列方程为尺,则可列方程为 .16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证∠OAP =∠OBP =90°,其依据是;由此可证明直线P A ,PB 都是⊙O 的切线,其依据是 .尺规作图:过圆外一点作圆的切线. 已知:P 为⊙O 外一点. 求作:经过点P 的⊙O 的切线.PO如图,(1)连接OP ,作线段OP 的垂直平分线MN交OP 于点C ;(2)以点C 为圆心,CO 的长为半径作圆, 交⊙O 于A ,B 两点; (3)作直线P A ,PB .所以直线P A ,PB 就是所求作的切线.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:24cos30tan60sin 45︒⋅︒-︒.18.如图,△ABC 中,AB =12,BC =15,AD ⊥BC 于点D ,∠BAD =30°. 求tan C 的值.的值.19.已知抛物线223y x x =-++与x 轴交于A ,B 两点,点A 在点B 的左侧.的左侧.(1)求A ,B 两点的坐标和此抛物线的对称轴;两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积.的面积.20.如图,四边形ABCD 中,AD ∥BC ,∠A =∠BDC . (1)求证:△ABD ∽△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x 米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?平方米,人行通道的宽度应是多少米?22.已知抛物线1C :2124y x x k =-+与x 轴只有一个公共点.轴只有一个公共点. (1)求k 的值;的值;(2)怎样平移抛物线1C 就可以得到抛物线2C :222(1)4y x k =+-?请写出具体的平移方法;方法;(3)若点A (1,t )和点B (m ,n )都在抛物线2C :222(1)4y x k =+-上,且n t <,直接写出m 的取值范围.的取值范围.23.如图,AB 是⊙O 的一条弦,且AB =43.点C ,E 分别在⊙O 上,且OC ⊥AB 于点D ,∠E =30°,连接OA . (1)求OA 的长;的长;(2)若AF 是⊙O 的另一条弦,且点O 到AF 的距离为22,直接写出∠BAF 的度数.的度数.24.奥林匹克公园观光塔.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD 约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径.PC 是⊙O 的切线,C 为切点,PD ⊥AB于点D ,交AC 于点E . (1)求证:∠PCE =∠PEC ; (2)若AB =10,ED =32,sin A =35,求PC 的长.的长.26.阅读下面材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与 双曲线2ky x=交于A (1,3)和B (3-,1-)两点. 观察图象可知:①当3x =-或1时,12y y =; ②当30x -<<或1x >时,12y y >,即通过观察函 数的图象,可以得到不等式kax b x+>的解集. 有这样一个问题:求不等式32440x x x +-->的解集.的解集.某同学根据学习以上知识的经验,对求不等式32440x x x +-->的解集进行了探究. 下面是他的探究过程,请将(2)、(3)、(4)补充完整: (1)将不等式按条件进行转化)将不等式按条件进行转化 当0x =时,原不等式不成立;时,原不等式不成立;当0x >时,原不等式可以转化为2441x x x+->; 图1当0x <时,原不等式可以转化为2441x x x+-<; (2)构造函数,画出图象)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系,在同一坐标系中分别画出这两个函数的图象.中分别画出这两个函数的图象.双曲线44y x=如图2所示,请在此坐标系中所示,请在此坐标系中 画出抛物线.....2341y x x =+-;(不用列表)(不用列表)(3)确定两个函数图象公共点的横坐标)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足34y y =的所有x 的值为的值为 ; (4)借助图象,写出解集)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式32440x x x +-->的解集为解集为 .27.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =-++的图象经过点A (1,0),且当0x =和5x =时所对应的函数值相等.一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点B 在第一象限.在第一象限.(1)求二次函数212y x bx c =-++的表达式;的表达式; (2)连接AB ,求AB 的长;的长;(3)连接AC ,M 是线段AC 的中点,将点B 绕点M 旋转180180°°得到点N ,连接AN ,CN ,判断四边形ABCN 的形状,并证明你的结论.图228.在△ABC中,∠ACB=90°,AC=BC= 4,M为AB的中点.D是射线BC上一个动点,连中,∠接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=_______,NM与AB的位置关系是____________;时,(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.备用图图1 图2 备用图29.在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.图1 图2 图3 (1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为__________°;°;②自点A(1 ,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为______________;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.围.图4北京市西城区2015— 2016学年度第一学期期末试卷九年级数学参考答案 2016.1一、选择题(本题共30分,每小题3分)题号题号 12 3 4 5 6 7 8 9 10 答案答案BACCDADCBD二、填空题(本题共18分,每小题3分)11. . 12.>. 13.90. 14.满足 即可,如:AD =10. 15. .16.直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线..直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=23243()22⨯⨯-………………………………………………………3分 =162-=112. …………………………………………………………………………5分 18.解:∵AD ⊥BC 于点D , ∴∠ADB=∠ADC =90°.∵在Rt △ABD 中,AB =12,∠BAD =30°, ∴BD =12AB =6, …………………………………1分 AD =AB ·cos ∠BAD = 12·cos30cos30°°=63. ……………………………………2分∵BC =15,∴CD = BC-BD =15-6=9. ………………………………………………………3分 ∴在Rt △ADC 中,tan C =ADCD……………………………………………………4分 =639=233. ………………………………………5分 19.解:(1)令0=y ,则2230x x -++=.774222(4)10x x -+=3100<<AD解得解得 11-=x ,32=x . ………………………………………………………1分∵点A 在点B 的左侧,的左侧, ∴A (1-,0),B (3,0). …………………………………………………2分 对称轴为直线1=x . …………………………………………………………3分 (2)∵当1x =时,4=y , ∴顶点C 的坐标为的坐标为((1,4). …………………………………………………4分 ∵点C ,D 关于x 轴对称,轴对称, ∴点D 的坐标为(1,4-).∵AB =4,∴=ACB DCB ACBDSS S ∆∆+四边形1442162=⨯⨯⨯=. ………………………………5分20.(1)证明:∵AD ∥BC ,∴∠ADB=∠DBC . ……………………1分 ∵∠A =∠BDC ,∴△ABD ∽△DCB . ……………………3分(2)解:∵△ABD ∽△DCB ,∴AB AD DC DB=. …………………………………………………………4分 ∵AB =12,AD =8,CD =15,∴12815DB=.∴DB =10. ………………………………………………………………5分21.解:根据题意,得.解:根据题意,得 (213)(82)60x x --=. …………………………………………2分整理得整理得 211180x x -+=.解得解得 12x =,29x =. …………………………………………………………3分 ∵9x =不符合题意,舍去,不符合题意,舍去,∴2x =. ……………………………………………………………………………4分答:人行通道的宽度是2米.米. ……………………………………………………5分22.解:(1)∵抛物线1C :2124y x x k =-+与x 轴有且只有一个公共点,轴有且只有一个公共点,∴方程2240x x k -+=有两个相等的实数根.有两个相等的实数根.∴2(4)420k ∆=--⨯=. ……………………………………………………1分 解得解得 2k =. …………………………………………………………………2分(2)∵抛物线1C :21242y x x =-+22(1)x =-,顶点坐标为(1,0),抛物线2C :222(1)8y x =+-的顶点坐标为(的顶点坐标为(--1,-8), ………………3分∴将抛物线1C 向左平移2个单位长度,再向下平移8个单位长度就可以得到抛物线2C . …………………………………………………………………4分(3)31m -<<. ……………………………………………………………………5分23.解:(1)∵OC ⊥AB 于点D ,∴AD =DB , ……………………………………1分∠ADO =90°.∵AB =43, ∴AD =23.∵∠AOD =2∠E ,∠E =30°,∴∠AOD =60°. ………………………………………………………………2分 ∵在Rt △AOD 中,sin ∠AOD=OAAD ,∴OA =︒=∠60sin 32sin AOD AD =4. ………………………………………………3分 (2)∠BAF =75°或15°. ……………………………………………………………5分24.解:(1)∵在Rt △ADB 中,∠ADB =90°,∠B =45°,∴∠BAD =90°—∠B =45°. ∴∠BAD =∠B .∴AD =DB . ……………………………1分 设AD =x ,∵在Rt △ADC 中,tan ∠ACD =ADDC,∠ACD =58°, ∴DC =tan58xo. ………………………………………………………………3分 ∵DB = DC + CB =AD ,CB =90,∴tan58x o+90=x . ……………………………………………………………4分将tan58°≈1.60代入方程,代入方程,解得x ≈240. …………………………………………………………………5分答:最高塔的高度AD 约为240米.米.25.(1)证明:连接OC ,如图1. ∵ PC 是⊙O 的切线,C 为切点,为切点,∴OC ⊥PC . ……………………………1分 ∴∠PCO =∠1+∠2=92=90°0°. ∵PD ⊥AB 于点D , ∴∠EDA =9=90°0°. ∴∠A +∠3=93=90°0°. ∵OA =OC , ∴∠A =∠1. ∴∠2=∠3. ∵∠3=∠4, ∴∠2=∠4.即∠PCE =∠PEC . …………………………………………………………2分(2)解:作PF ⊥EC 于点F ,如图2.∵AB 是⊙O 的直径,的直径, ∴∠ACB =90°.∵在Rt △ABC 中,AB =10,3sin 5A =,∴BC =AB ·sin A =6.∴AC =22BC AB -=8.………………………………………………………3分 ∵在Rt △AED 中,ED =32, ∴AE =sin ED A =52. ∴EC=AC -AE =112. ∵∠2=∠4, ∴PE=PC . ∵PF ⊥EC 于点F , ∴FC=12EC=114, ……………………………………………………………4分 ∠PFC =90°.图1图2∴∠2+∠5=90°.∵∠A +∠2=∠1+∠2=90°. ∴∠A =∠5. ∴sin ∠5 =35. ∴在Rt △PFC 中,PC =sin 5FC∠=1255. ……………………………………5分26.解:(2)抛物线如图所示;)抛物线如图所示; ……………………1分(3)x =4-,1-或1; ……………………3分 (4)41x -<<-或1x >. ……………………5分27.解:(1)∵二次函数212y x bx c =-++, 当0x =和5x =时所对应的函数值相等,时所对应的函数值相等,∴二次函数212y x bx c =-++的图象的对称的图象的对称轴是直线52x =.∵二次函数212y x bx c =-++的图象经过点A (1,0),∴10,25.2b c b ⎧=-++⎪⎪⎨⎪=⎪⎩……………………………………………………………1分 解得解得 2,5.2c b =-⎧⎪⎨=⎪⎩∴二次函数的表达式为215222y x x =-+-. ………………………………2分(2)过点B 作BD ⊥x 轴于点D ,如图1.∵一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点,∴2153222x x x -+=-+-. 解得解得 12x =,25x =. ………………3分 ∴交点坐标为(2,1),(5,2-).∵点B 在第一象限,在第一象限,∴点B 的坐标为(2,1).∴点D 的坐标为(2,0). 在Rt △ABD 中,AD =1,BD =1,∴AB =22AD BD +=2. …………………………………………………4分 (3)结论:)结论:四边形四边形ABCN 的形状是矩形. ………………………………………5分证明:设一次函数3y x =-+的图象与x 轴交于点E ,连接MB ,MN ,如图2.∵点B 绕点M 旋转180180°°得到点N ,∴M 是线段BN 的中点.的中点.∴MB = MN .∵M 是线段AC 的中点,的中点, ∴MA = MC .∴四边形ABCN 是平行四边形. ……6分∵一次函数3y x =-+的图象与x 轴交于点E , 当0y =时,3x =. ∴点E 的坐标为(3,0). ∴DE =1= DB .∴在Rt △BDE 中,∠DBE =∠DEB =45°. 同理∠DAB =∠DBA =45°. ∴∠ABE =∠DBA +∠DBE =90°.∴四边形ABCN 是矩形. ……………………………………………7分28.解:(1)10,垂直;,垂直; …………………………2分 (2)①补全图形如图所示;)①补全图形如图所示; ………………3分 ②结论:②结论:(1)中NM 与AB 的位置关系不变.的位置关系不变.证明:∵证明:∵∠∠ACB =90°,AC =BC , ∴∠CAB =∠B =45°. ∴∠CAN +∠NAM =45°.∵AD 绕点A 逆时针旋转90°得到线段AE ,图2∴AD =AE ,∠DAE =90=90°°. ∵N 为ED 的中点,∴∠DAN =12∠DAE =45°, AN ⊥DE .∴∠CAN +∠DAC =45°, ∠AND =90=90°°. ∴∠NAM =∠DAC . ………………………………………………4分在Rt △AND 中,ANAD =cos ∠DAN = cos 45°=22. 在Rt △ACB 中,ACAB =cos ∠CAB = cos 45°=22. ∵M 为AB 的中点,∴AB =2AM . ∴222AC AC AB AM ==.∴22AM AC =. ∴AN AD =AMAC. ∴△ANM ∽△ADC . ∴∠AMN =∠ACD .∵点D 在线段BC 的延长线上,的延长线上, ∴∠ACD =180°-∠ACB =90°. ∴∠AMN =90°.∴NM ⊥AB . ………………………………………………………5分 (3)当BD 的长为的长为 6 时,ME 的长的最小值为的长的最小值为 2 . ……………………………7分29.解:(1)所得图形,如图1所示.所示. ……………………1分(2)①4545°°; ………………………………………3分②(32-,12)或(12-,32); ……………5分 (3)①如图2,直线OQ 与⊙M 相切于点Q ,点Q 在第一象限,在第一象限,连接MQ ,过点Q 作QH ⊥x 轴于点H . ∵直线OQ 与⊙M 相切于点Q , ∴MQ ⊥OQ . ∴∠MQO =90°. ∵MO =2,MQ =1,∴在Rt △MQO 中,sin ∠MOQ=21=MO MQ . ∴∠MOQ =30°.图1MQ3=MF MOMO MD=,∴12212x x+=+.3334-±=.333-+=.∴MOMFPD PE =.MO ⋅==12x +⋅图3=15338-.…………………………………………………………7分.可知,当反射点P从②中的位置开始,在⊙M上沿逆时针方向运动,到与①中的点Q重合之前,都满足反射光线与坐标轴无公共点,所以反射点P的纵坐标的取值范围是1533382Py-<≤.………………………………8分。
人教版八年级(上)期末数学试卷+答案解析
2016-2017学年北京市海淀区八年级(上)期末数学试卷一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×1064.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣25.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣28.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.259.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.12.分解因式:x2y﹣4xy+4y=.13.写出点M(﹣2,3)关于x轴对称的点N的坐标.14.如果等腰三角形的两边长分别是4、8,那么它的周长是.15.计算:﹣4(a2b﹣1)2÷8ab2=.16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=°.17.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.21.解下列方程:(1)=;(2)﹣1=.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=°,∠BEA=°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:.2016-2017学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【考点】利用轴对称设计图案.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6,故选A.4.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件可得x+2≠0,再解即可.【解答】解:由题意得:x+2≠0,解得:x≠﹣2,故选:D.5.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【解答】解:A、2a2﹣2a+1=2a(a﹣1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x﹣y)=x2﹣y2,这是整式的乘法,故此选项不符合题意;C、x2﹣6x+5=(x﹣5)(x﹣1),是因式分解,故此选项符合题意;D、x2+y2=(x﹣y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【考点】全等三角形的性质.【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣2【考点】分式的加减法;多项式乘多项式;平方差公式;整式的除法.【分析】根据分式的加减法,整式的除法,多项式乘多项式的运算方法和平方差公式,逐项判断即可.【解答】解:∵(15x2y﹣5xy2)÷5xy=3x﹣y,∴选项A不正确;∵98×102==9996,∴选项B正确;∵﹣1=﹣,∴选项C不正确;∵(3x+1)(x﹣2)=3x2﹣5x﹣2,∴选项D不正确.故选:B.8.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.25【考点】平行线的判定与性质;角平分线的定义.【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,最后求得∠ABE的度数.【解答】解:如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°﹣∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.故选:C.9.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处【考点】三角形的重心;等边三角形的性质;轴对称﹣最短路线问题.【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【解答】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、E、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,故选:A.10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1【考点】分式的混合运算.【分析】根据定义:=,一一计算即可判断.【解答】解:A、正确.∵=,=.∴×=×=1.B、错误. +=+=.C、正确.∵()2=()2==.D、正确.==1.故选B.二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.【考点】作图—基本作图.【分析】过点C作BA的延长线于点D即可.【解答】解:如图所示,CD即为所求.12.分解因式:x2y﹣4xy+4y=y(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.13.写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接写出答案.【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)14.如果等腰三角形的两边长分别是4、8,那么它的周长是20.【考点】等腰三角形的性质;三角形三边关系.【分析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2015.计算:﹣4(a2b﹣1)2÷8ab2=﹣.【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】原式利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.【解答】解:原式=﹣4a4b﹣2÷8ab2=﹣2a3b﹣4=﹣,故答案为:﹣16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=36°.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=36°,故答案为:3617.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法正确.(填“正确”或“不正确”)【考点】全等三角形的判定.【分析】小明的说法正确.如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.首先证明△ACG≌△DFH,推出AG=DH,再证明△ABG≌△DEH,推出∠B=∠E,由此即可证明△ABC≌△DEF.【解答】解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是SAS;(2)∠ACB与∠ABC的数量关系为:∠ACB=2∠ABC.【考点】等腰三角形的性质;全等三角形的判定.【分析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.【解答】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.【考点】因式分解﹣运用公式法.【分析】原式整理后,利用平方差公式分解即可.【解答】解:原式=a2﹣3ab﹣4b2+3ab=a2﹣4b2=(a﹣2b)(a+2b).20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【考点】全等三角形的判定与性质.【分析】欲证明DE=CB,只要证明△ADE≌△ACB即可.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.21.解下列方程:(1)=;(2)﹣1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:5x+2=3x,解得:x=﹣1,经检验x=﹣1是增根,原方程无解;(2)去分母得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,经检验x=是分式方程的解.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将a+b的值代入化简后的式子即可解答本题.【解答】解:===,当a+b=2时,原式=.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】只要证明△ADF≌△BED,得AD=BE,同理可证:BE=CF,由此即可证明.【解答】解:在等边三角形ABC中,∠A=∠B=60°.∴∠AFD+∠ADF=120°.∵△DEF为等边三角形,∴∠FDE=60°,DF=ED.∵∠BDE+∠EDF+∠ADF=180°,∴∠BDE+∠ADF=120°.∴∠BDE=∠AFD.在△ADF和△BED中,,∴△ADF≌△BED.∴AD=BE,同理可证:BE=CF.∴AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约3千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.【考点】分式方程的应用.【分析】根据题意列出分式方程进行解答即可.【解答】解:这段路长约60×=3千米;由题意可得:.解方程得:a=15.经检验:a=15满足题意.答:a的值是15.故答案为:3五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【考点】四边形综合题;等腰三角形的性质;等边三角形的性质;矩形的性质;轴对称图形.【分析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可;(2)中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,在图1﹣4和图1﹣5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.【解答】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为:1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=60°,∠BEA= 30°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.【考点】全等三角形的判定与性质.【分析】(1)①只要证明AE⊥BC,△BCE是等边三角形即可解决问题.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN ⊥AE于N.只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.(2)如图3中,连接EC,由△ADC∽△BDE,推出=,推出=,由∠ADB=∠CDE,推出△ADB∽△CDE,推出∠BAD=∠DCE,∠ABD=∠DEC=β,由BC=BE,推出∠BCE=∠BEC,推出∠BAE=∠BEC=∠BEA+∠DEC=α+β.【解答】解:(1)①补全图1,如图所示.∵AB=AC,BD=DC,∴AE⊥BC,∴EB=EC,∠ADB=90°,∵∠ABC=30°,∴∠BAE=60°∵BC=BE,∴△BCE是等边三角形,∠DEB=∠DEC,∴∠BEC=60°,∠BEA=30°故答案为60,30.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE于N.∵AB=AC,∴∠ABC=∠C=α,∴∠MAB=2α,∵∠BAN=2α,∴∠BAM=∠BAN,∴BM=BN,在Rt△BMF和Rt△BNE中,,∴Rt△BMF≌Rt△BNE.∴∠BEA=∠F,∵BF=BC,∴∠F=∠C=α,∴∠BEA=α.(2)结论:∠BAE=α+β.理由如下,如图3中,连接EC,∵∠ACD=∠BED=α,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,∴=,∵∠ADB=∠CDE,∴△ADB∽△CDE,∴∠BAD=∠DCE,∠ABD=∠DEC=β,∵BC=BE,∴∠BCE=∠BEC,∴∠BAE=∠BEC=∠BEA+∠DEC=α+β.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:对称轴的条数是多边形边数的约数.【考点】作图﹣轴对称变换.【分析】(1)根据凸六边形进行画图,然后猜想即可;(2)根据题意画出图形,再结合轴对称图形的定义进行分析即可;(3)根据(1)中所得的数据可得答案.【解答】解:(1)凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴,故答案为:1,2,3或6;(2)不可以.理由如下:根据轴对称图形的定义,若一个凸多边形是轴对称图形,则对称轴与多边形的交点是多边形的顶点或一条边的中点.若多边形的边数是奇数,则对称轴必经过一个顶点和一条边的中点.如图1,设凸五边形ABCDE是轴对称图形,恰好有两条对称轴l1,l2,其中l1经过A和CD的中点.若l2⊥l1,则l2与五边形ABCDE的两个交点关于l1对称,与对称轴必经过一个顶点和一条边的中点矛盾;若l2不垂直于l1,则l2关于l1的对称直线也是五边形ABCDE的对称轴,与恰好有两条对称轴矛盾.所以,凸五边形不可以恰好有两条对称轴.(3)对称轴的条数是多边形边数的约数.2017年3月17日。
2016-2017学年北京市房山区八年级(上)期末数学试卷
2016-2017 学年北京市房山区八年级(上)期末数学试卷一、选择题(本题共30 分,每小题3 分)下列各题均有四个选项,其中有且只有一个是符合题意的.1.(3 分)9 的平方根是()A.3 B.﹣3 C.D.±32.(3分)剪纸艺术是我国古老的民间艺术之一,被联合国教科文组织保护非物质文化遗产政府间委员会审批列入第四批《人类非物质文化遗产代表作名录》.作为一种镂空艺术,它能给人以视觉上的透空感觉和艺术享受.下列剪纸作品中,是轴对称图形的是()A.B.C.D.Q3.(3 分)如果式子有意义,那么x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x<24.(3分)计算2+,结果正确的是()A.B.C.D.5.(3分)若a<<b,且a,b 为两个连续的正整数,则a+b 等于()A.6 B.7 C.8 D.96.(3分)化简﹣,结果正确的是()A.﹣1 B.1 C.0 D.±17.(3 分)下列计算错误的是()A.B.C.D.8.(3 分)小明有一块带秒针的手表,随意看一下手表,秒针在3 时至4 时(包括3 时不包括4 时)之间的可能性大小为()A.1 B.C.D.9.(3 分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°10.(3 分)如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC,AB 边于E,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本题共18 分,每小题3 分)11.(3 分)一个不透明的口袋中装有3 个红球和6 个黄球,这些球除了颜色外都相同,从中随意摸出一个球,摸出的球恰好是红球的可能性为.12.(3 分)当分式的值为0 时,x的值为.13.(3 分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.14.(3 分)某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102 万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2 400 元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程.15.(3分)《九章算术》中有一道“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10 尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1 尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'(如图).则水深尺;芦苇长尺.16.(3 分)小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC 的面积为1,试求以AD,BC,OC+OD 的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他的解题思路是延长CO 到E,使得OE=CO,连结BE,可证△OBE≌△OAD,从而得到的△BCE 即是以AD,BC,OC+OD 的长度为三边长的三角形(如图2).请你回答:图2 中△BCE 的面积等于.三、解答题(本题共30 分,每小题5 分)17.(5 分)计算:×﹣(﹣1)2+(+)(﹣).18.(5 分)解方程:=1.19.(5 分)已知x2+x﹣3=0,求代数式的值.20.(5分)如图,点A、B、C、D 在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.21.(5 分)已知:线段a,b.求作:一个等腰三角形,使得其中的一条线段为等腰三角形的底边,另一条线段为等腰三角形的底边上的高.(请保留作图痕迹,不写作法,指明作图结果)22.(5 分)从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400 千米,普通列车的行驶路程是520 千米.如果高铁的平均速度是普通列车平均速度的2.5 倍,且乘坐高铁比乘坐普通列车少用3 小时,求高铁的平均速度是多少千米/时?四、解答题(本题共22 分,其中第23、24、25 题每题5 分,第26 题7 分)23.(5分)已知:如图,四边形ABCD 中,BA<BC,BD 平分∠ABC,且DA=DC.求证:∠BAD+∠BCD=180°.24.(5 分)阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程+=1 的解为正数,求a 的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x=a﹣2.由题意可得a﹣2 >0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证a≠3 才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x 的方程=1 的解为负数,求m 的取值范围;(2)若关于x 的分式方程+=﹣1 无解.直接写出n 的取值范围.25.(5 分)已知:如图,在△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连结BC′,求BC′的长.26.(7 分)已知:如图,在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH 上的一点,且DH=HC,连结BD 并延长BD 交AC 于点E,连结EH.(1)请补全图形;(2)直接写出BD 与AC 的数量关系和位置关系;(3)求证:∠BEH=45°.2016-2017 学年北京市房山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30 分,每小题3 分)下列各题均有四个选项,其中有且只有一个是符合题意的.1.(3 分)9 的平方根是()A.3 B.﹣3 C.D.±3【分析】根据平方根的概念即可求出答案.【解答】解:∵(±3)2=25,∴9 的平方根为±3,故选:D.【点评】本题考查平方根的概念,属于基础题型.2.(3分)剪纸艺术是我国古老的民间艺术之一,被联合国教科文组织保护非物质文化遗产政府间委员会审批列入第四批《人类非物质文化遗产代表作名录》.作为一种镂空艺术,它能给人以视觉上的透空感觉和艺术享受.下列剪纸作品中,是轴对称图形的是()A.B.C.D.Q【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3 分)如果式子有意义,那么x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x<2【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故选:A.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.(3 分)计算2+,结果正确的是()A.B.C.D.【分析】先把化为=3,再合并同类二次根式即可.【解答】解:2 +=2×+=7,故选:B.【点评】本题考查了二次根式的加减,二次根式加减的实质是合并同类二次根式.5.(3 分)若a<<b,且a,b为两个连续的正整数,则a+b等于()A.6 B.7 C.8 D.9【分析】直接利用的近似值得出a,b 的值,进而得出答案.【解答】解:∵a<<b,且a,b 为两个连续的正整数,∴a=3,b=4,∴a+b=7.故选:B.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.6.(3 分)化简﹣,结果正确的是()A.﹣1 B.1 C.0 D.±1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==﹣=﹣1,故选:A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(3 分)下列计算错误的是()A.B.C.D.【分析】根据二次根式的性质对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的加减法对C 进行判断;根据二次根式的除法法则对D 进行判断.【解答】解:A、原式=|﹣3|=3,所以A 选项的计算正确;B、原式= =,所以B 选项的计算正确;C、与不能合并,所以 C 选项的计算错误;D、原式==,所以D 选项的计算正确.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.(3 分)小明有一块带秒针的手表,随意看一下手表,秒针在3 时至4 时(包括3 时不包括4 时)之间的可能性大小为()A.1 B.C.D.【分析】用3 时至4 时(包括3 时不包括4 时)之间的度数除以360°可得答案.【解答】解:根据题意知秒针在3 时至4 时(包括3 时不包括4 时)之间的可能性大小=,故选:D.【点评】本题主要考查可能性的大小,熟练掌握可能性的大小的计算方法是解题的关键.9.(3 分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.【点评】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.10.(3 分)如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC,AB 边于E,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为()A.6 B.8 C.10 D.12【分析】连接AD,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD⊥BC,再根据三角形的面积公式求出AD 的长,再再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A,故AD 的长为CM+MD 的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD⊥BC,∴S= BC•AD= ×4×AD=16,解得AD=8,△ABC∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A,∴AD 的长为CM+MD 的最小值,∴△CDM 的周长最短=(CM+MD)+CD=AD+BC=8+ ×4=8+2=10.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题(本题共18 分,每小题3 分)11.(3 分)一个不透明的口袋中装有3 个红球和6 个黄球,这些球除了颜色外都相同,从中随意摸出一个球,摸出的球恰好是红球的可能性为.【分析】由一个不透明的口袋中装有3 个红球和6 个黄球,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋中装有33 个红球和6 个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=故答案是:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.(3 分)当分式的值为0 时,x的值为 2 .【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴x﹣2=0 且2x+1≠0.解得:x=2.故答案为:2.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.13.(3 分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB= 105°.【分析】根据要求先画出图形,利用等腰三角形的性质以及三角形外角定理求出∠CDB 和∠ACD 即可.【解答】解:如图所示:∵MN 垂直平分BC,∴CD=BD,∴∠DBC=∠DCB∵CD=AC,∠A=50°,∴∠CDA=∠A=50°,∵∠CDA=∠DBC+∠DCB,∴∠DCB=∠DBC=25°,∠DCA=180°﹣∠CDA﹣∠A=80°,∴∠ACB=∠CDB+∠ACD=25°+80°=105°.故答案为:105°.【点评】本题考查基本作图、垂直平分线的性质、三角形的外角定理、等腰三角形的性质等知识,解题的关键是灵活应用这些性质解决问题,属于中考常考题型.14.(3 分)某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102 万元;B 型计算机总价值为81.6 万元,且单价比A 型机便宜了2 400 元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程.【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x﹣0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【解答】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x﹣0.24)万元/台,根据题意得:=.故答案为:=.【点评】本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.15.(3分)《九章算术》中有一道“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10 尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1 尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部 B 恰好碰到岸边的B'(如图).则水深12 尺;芦苇长13 尺.【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为10 尺,则B'C=5 尺,设出AB=AB'=x 尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解答】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为B'E=10 尺,所以B'C=5 尺在Rt△AB'C 中,52+(x﹣1)2=x2,解之得x=13,即水深12 尺,芦苇长13尺.故答案为:12,13.【点评】此题主要考查了勾股定理的应用,熟悉数形结合的解题思想是解题关键.16.(3 分)小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC 的面积为1,试求以AD,BC,OC+OD 的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他的解题思路是延长CO 到E,使得OE=CO,连结BE,可证△OBE≌△OAD,从而得到的△BCE 即是以AD,BC,OC+OD 的长度为三边长的三角形(如图2).请你回答:图 2 中△BCE 的面积等于 2 .【分析】证△OBE ≌△OAD 即可知△OEB 与△BOC 是等底同高的两个三角形,从 而根据 S △BCE =S △OEB +S △BOC 可得答案.【解答】解:∵△ABO 和△CDO 均为等腰直角三角形,∠AOB=∠COD=90°, ∴OD=OC ,OA=OB . 又∵∠BOE +∠AOE=90°,∠AOD +∠AOE=90°,∴∠AOD=∠BOE , 在△OBE 和△OAD 中,∵ ,∴△OBE ≌△OAD ,∴△BCE 即是以 AD 、BC 、OC +OD 的长度为三边长的三角形.∵△OEB 与△BOC 是等底同高的两个三角形,∴S △OEB =S △BOC =1,∴S △BCE =S △OEB +S △BOC =2,故答案为:2.【点评】本题考查了全等三角形的判定与性质、三角形的面积、等腰三角形的性 质等知识,解题的关键是旋转的性质的应用,想办法移动这些分散的线段, 构造一个三角形.三、解答题(本题共 30 分,每小题 5 分)17.(5 分)计算: ×﹣( ﹣1)2+( + )( ﹣ ).【分析】注意运用平方差公式和完全平方公式进行计算.【解答】解:原式=﹣(2﹣2+1)+6﹣2,=,=,=.【点评】本题考查了二次根式的混合计算,再进行二次根式的乘除运算时,把被开方数相乘除,作为结果的被开方数,然后合并同类二次根式;符合平方差公式和完全平方公式的要利用公式进行计算.18.(5 分)解方程:=1.【分析】因为x2﹣1=(x+1)(x﹣1),所以可确定最简公分母(x+1)(x﹣1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.【解答】解:方程两边同乘(x+1)(x﹣1),得:x(x+1)﹣(2x﹣1)=(x+1)(x﹣1),解得:x=2.经检验:当x=2 时,(x+1)(x﹣1)≠0,∴原分式方程的解为:x=2.【点评】本题考查了解分式方程,解分式方程要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化.19.(5 分)已知x2+x﹣3=0,求代数式的值.【分析】先算乘法,再算加减,根据x2+x﹣3=0 得出x2+x=3,代入代数式进行计算即可.【解答】解:原式=•+=+=+=.∵x2+x﹣3=0∴x2+x=3∴原式= .【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.20.(5分)如图,点A、B、C、D 在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA 求证△ABC 和△FDC 全等即可.【解答】证明:∵BE∥DF,∴∠ABE=∠D,在△ABE 和△FDC 中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC 和△FDC 全等.21.(5 分)已知:线段a,b.求作:一个等腰三角形,使得其中的一条线段为等腰三角形的底边,另一条线段为等腰三角形的底边上的高.(请保留作图痕迹,不写作法,指明作图结果)【分析】作射线AE,在射线AE 上截取线段AB=a,再作线段AB 的垂直平分线交线段AB 于点D,截取CD=b,连接AC,BC 即可.【解答】解:如图,△ABC 即为所求.【点评】本题考查的是作图﹣复杂作图,熟知等腰三角形的作法是解答此题的关键.22.(5 分)从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400 千米,普通列车的行驶路程是520 千米.如果高铁的平均速度是普通列车平均速度的2.5 倍,且乘坐高铁比乘坐普通列车少用3 小时,求高铁的平均速度是多少千米/时?【分析】设普通列车平均速度是x 千米/时,则高铁的平均速度是2.5x 千米/时,根据乘坐高铁比乘坐普通列车少用3 小时,列出分式方程,然后求解即可.【解答】解:设普通列车平均速度是x 千米/时,则高铁平均速度是2.5x 千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120 是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300 千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.四、解答题(本题共22 分,其中第23、24、25 题每题5 分,第26 题7 分)23.(5分)已知:如图,四边形ABCD 中,BA<BC,BD 平分∠ABC,且DA=DC.求证:∠BAD+∠BCD=180°.【分析】在BC 边上取点E,使BE=BA,连结DE.先证明△ABD≌△EBD,依据全等三角形的性质得到∠A=∠BED,DA=DE,然后再证明∠C=∠DEC,因为∠BED+ ∠DEC=180°,通过等量代换可得到问题的答案.【解答】证明:在BC 边上取点E,使BE=BA,连结DE.∵BD 平分∠ABC∴∠ABD=∠EBD在△ABD 和△EBD 中∴△ABD≌△EBD.∴∠A=∠BED,DA=DE.∵DA=DC,∴DE=DC.∴∠C=∠DEC.∵∠BED+∠DEC=180°∴∠A+∠C=180°即∠BAD+∠BCD=180°.【点评】本题主要考查的是全等三角形的性质和判定,掌握本题的辅助线的作法是解题的关键.24.(5 分)阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程+=1 的解为正数,求a 的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x=a﹣2.由题意可得a﹣2 >0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证a≠3 才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件.完成下列问题:(1)已知关于x 的方程=1 的解为负数,求m 的取值范围;(2)若关于x 的分式方程+=﹣1 无解.直接写出n 的取值范围.【分析】考虑分式的分母不为0,即分式必须有意义;(1)表示出分式方程的解,由解为负数确定出m 的范围即可;(2)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n 的范围即可.【解答】解:请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x 的分式方程得,x=,∵方程有解,且解为负数,∴,解得:m<且m≠﹣;(2)分式方程去分母得:3﹣2x+nx﹣2=﹣x+3,即(n﹣1)x=2,由分式方程无解,得到x﹣3=0,即x=3,代入整式方程得:n= ;当n﹣1=0 时,整式方程无解,此时n=1,综上,n=1 或n=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.(5 分)已知:如图,在△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连结BC′,求BC′的长.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连结BB′,∵△ABC 绕点A 顺时针旋转60°得到△AB′C′.∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′=AB′,延长BC′交AB′于点D,又∵AC′=B′C′,∴BD 垂直平分AB′,∴AD=B′D,∵∠C=90°,AC=BC=∴AB= =2,∴AB′=2∴AD=B′D=1,∴BD= =,C′D==1,∴BC′=BD﹣C′D=.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.26.(7 分)已知:如图,在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH 上的一点,且DH=HC,连结BD 并延长BD 交AC 于点E,连结EH.(1)请补全图形;(2)直接写出BD 与AC 的数量关系和位置关系;(3)求证:∠BEH=45°.【分析】(1)根据题意直接补全图形;(2)先判断出△ABH 为等腰直角三角形,进而得出△AHC≌△BHD,最后用对顶角和等量代换即可得出∠ADE+∠DAE=90°,结论得证;(3)先利用同角或等角的余角相等得出结论即可判断出△AHE≌△BHF,即可得出EH=FH,结论得证.【解答】解:(1)补全图形如图1 所示;(2)BD=AC;BD⊥AC;理由:∵AH⊥BC 于点H,∠ABC=45°,∴△ABH 为等腰直角三角形,∴AH=BH,∠BAH=45°,在△AHC 和△BHD 中,∴△AHC≌△BHD∴AC=BD,∠ACH=∠BDH,∵∠BDH=∠ADE,∴∠ACH=∠ADE,∵∠ACH+∠DAE=90°,∴∠ADE+∠DAE=90°,∴∠AEB=90°,∴BD⊥AC;(3)∵△AHC≌△BHD,∴∠1=∠2如图2,过点H 作HF⊥HE 交BE 于点F,∴∠FHE=90°即∠4+∠5=90°又∵∠3+∠5=∠AHB=90°∴∠3=∠4,在△AHE 和△BHF 中,∴△AHE≌△BHF∴EH=FH,∵∠FHE=90°∴△FHE 是等腰直角三角形∴∠BEH=45°,【点评】此题是三角形的全等的性质和判定,主要考查了等腰直角三角形的性质和判定,同角或等角的余角相等,构造出直角三角形EFH 是解本题的关键,也是难点,注:出现直角,要联想到互余.。
2020~2021北京市西城区八年级初二上学期数学期末试卷及答案
.
12.点A(1,-3)关于x 轴对称的点的坐标为
.
13.计算:10a2b3÷(-5ab3)=
.
14.如图,△ABC≌△ADE,点 D 在边BC 上,∠EAC=36°,
则∠B=
°.
北京市西城区2020-2021学年度第一学期期末试卷 八年级数学 第 2页(共6页)
15.已知小腾家、食堂、图书馆在同一条直线上.小腾从家去食堂吃早餐,接着去图书馆
匀速运动.设点P 运动的时间为x,线段EP 的长为y,图2是y 与x 的函数关系的 大致图象,则点P 的运动路径可能是
图1
A.C→B→A→E C.A→E→C→B
图2
B.C→D→E→A D.A→E→D→C
二、填空题 (本题共18分,第15,17题每小题3分,其余每小题2分)
11.若分式x1-4有意义,则x 的取值范围是
B.AC=DF,AB=DE
C.∠A=∠D,AB=DE
D.AC=DF,CB=FE
D.(ab2)2=a2b4
5.化简分式xyx+2x 的结果是
A.xy
B.yx+1
C.y+1
6.如果m2+m=5,那么代数式m(m-2)+(m+2)2 的值为
D.yx+x
A.14
B.9
C.-1
D.-6
7.已知一次函数y=kx-6,且y 随x 的增大而减小.下列四个点中,可能是该一次函数
;
(2)如图,已知点A(1,0),B(0,1),根据定义可知线段AB 上的任意一点与原点O
的 “直角距离”都等于1.
若点P 与原点O 的 “直角距离”dOP =1,请在图中将所有满足条件的点 P 组成
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017东城区八年级上学期数学期末考试卷
东城区2016—2017学年第一学期期末统一测试初二数学2017.1学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1。
的相反数是A.B.C.D.2.用科学记数法表示0。
000 567正确的是A.B.C.D.3. 在下列图形中,对称轴最多的图形是A。
等腰直角三角形B。
等边三角形 C. 长方形D。
正方形4。
以下各式一定成立的是A.B.C.D.5 。
下列各式中,成立的是A.B.C.D.6. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B.C。
D.7. 若分式的值为正,则x的取值范围是A.B.C.D.且8. 如图,是等边三角形,,分别是,上的点,且,,相交于点,则∠BOE的度数为A。
30° B. 45°C。
60° D. 75°9。
某公司准备铺设一条长的道路,由于采用新技术,实际每天铺路的速度比原计划快10%,结果提前天完成任务.设原计划每天铺设道路,根据题意可列方程为A. B.C. D。
10.关于的方程的解为非负数,则的取值范围是A。
B。
C。
且D。
且二、填空题(本题共24分,每小题3分)11。
当有意义时,实数的取值范围是.12。
计算的结果是。
13。
当x= 时,式子的值为0。
14。
如图,在平面直角坐标系中,已知点A(0,,1),B(6,2)。
在x轴上找一点P,使得P A+PB最小,则点P的坐标是,此时△P AB的面积是.15。
方程的解为.16。
若等腰三角形的一个角是30°,则其它两个角的度数分别是.17. 如图,∠AOB=60°,点P在∠AOB的平分线上,PC⊥OA于点C,点D在边OB上,且OD=DP=4.则线段OC的长度为.18. 在△ABC中,∠ABC<20°,三边长分别为a,b,c。
2016-2017学年度下学期期末考试八年级数学试卷(含答案)
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
2017-2018学年八年级数学上学期期末考试试题 (含答案)
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
北京市石景区2016-2017学年八年级下期中数学复习试题及答案
八年级数学第二学期期中考试试卷一、选择题(本大题共8小题,每小题3分,共24分.每小题都有四个选项,将正确的答案的代号填在答题卷相应位置上)1、在26个大写正体的英文字母中,既是轴对称图形,又是中心对称图形的有( )A.3个B.4个C.5个D.6个 2、下列事件中,是随机事件的为 ( )A .水涨船高B .守株待兔C .水中捞月D .冬去春来3.在4y,y x +6,x x x -2,πy +5,y x 1+中分式的个数有( )A.1个B.2个C.3个D.4个 4. 下列约分正确的是 ( )A.632a a a = B.a x a b x b+=+ C.22a b a b a b +=++ D.1x y x y --=-+ 5.已知□ABCD 中,∠B =4∠A ,则∠D =( )A .18°B .36°C .72°D .144°6.如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为3和4, 那么点P 到矩形的两条对角线AC 和BD 的距离之和是 ( ) A .125 B .65 C .245D .不确定7.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE =3,则四边形AECF 的周长为( ) A . 22B . 18C . 14D . 118.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;第6题第7题第8题其中正确结论的序号是( )A.①③④ B .①②⑤ C .③④⑤ D .①③⑤二.填空题(本大题共10小题,每小题2分,共20分)9.当x = 时,分式112--x x 的值是0。
八年级上学期期末数学试卷(含解析) (18)
八年级上学期期末数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.4 B.8 C.16 D.642.(3分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC 是直角三角形的是()A.∠A=∠C﹣∠B B.a:b:c=2:3:4C.a2=b2﹣c2D.a=,b=,c=13.(3分)下列计算,正确的是()A.;B.; C.D.4.(3分)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.50cm B.40cm C.30cm D.20cm5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣47.(3分)图中两条直线l1和l2的交点坐标可以看作下列方程组中()的解.A.B.C.D.8.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数9.(3分)在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为()A.90°B.58°C.54°D.32°10.(3分)下列命题中,是真命题的是()A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形D.是最简二次根式11.(3分)如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°12.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.二、填空题(本题共6小题,每小题填对得4分,共分)13.(4分)若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是14.(4分)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是16cm,则小长方形的面积是cm2.15.(4分)已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.16.(4分)写出“全等三角形的面积相等”的逆命题.17.(4分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为.18.(4分)如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是.三、解答题(本题共7小题,满分60分)19.(8分)小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?20.(8分)解方程组:21.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.22.(8分)如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.23.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?24.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.25.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.4 B.8 C.16 D.64【解答】解:由勾股定理得,正方形A的面积=289﹣225=64,∴字母A所代表的正方形的边长为=8,故选:B.2.(3分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC 是直角三角形的是()A.∠A=∠C﹣∠B B.a:b:c=2:3:4C.a2=b2﹣c2 D.a=,b=,c=1【解答】解:A、由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC为直角三角形;B、不妨设a=2,b=3,c=4,此时a2+b2=13,而c2=16,即a2+b2≠c2,故△ABC不是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件有a2+c2=()2+12==()2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;故选B.3.(3分)下列计算,正确的是()A.B.C.D.【解答】解:∵=2,∴选项A不正确;∵=2,∴选项B正确;∵3﹣=2,∴选项C不正确;∵+=3≠,∴选项D不正确.故选:B.4.(3分)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.50cm B.40cm C.30cm D.20cm【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB==30cm.故选C5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A7.(3分)图中两条直线l1和l2的交点坐标可以看作下列方程组中()的解.A.B.C.D.【解答】解:设直线l2的解析式为y=kx+b,把(2,1),(0,﹣5)代入得,解得,所以直线l2的解析式为y=3x﹣5,设直线l1的解析式为y=mx+n,把(2,1),(0,3)代入得,解得,所以直线l2的解析式为y=﹣x+3,所以两条直线l1和l2的交点坐标(2,1)可看作方程组的解.故选D.8.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选D.9.(3分)在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为()A.90°B.58°C.54°D.32°【解答】解:∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°﹣∠C,∵∠B=2∠C﹣6°,∴90°﹣∠C=2∠C﹣6°,∴∠C=32°.故选D.10.(3分)下列命题中,是真命题的是()A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形D.是最简二次根式【解答】解:A、算术平均数等于自身的数为1和0,故错误,为假命题;B、斜边和一条直角边分别相等的两个直角三角形全等,故正确,为真命题;C、有一个角等于60°的等腰三角形是等边三角形,故错误,为假命题;D、不是最简二次根式,错误,为假命题,故选B.11.(3分)如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵P A=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.12.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B. C. D.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.二、填空题(本题共6小题,每小题填对得4分,共分)13.(4分)若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是﹣3【解答】解:∵点M(a,﹣1)与点N(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a+b=(﹣2)+(﹣1)=﹣3.故答案为:﹣3.14.(4分)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是16cm,则小长方形的面积是3cm2.【解答】解:设小长方形的长为xcm,宽为ycm,根据题意得:,解得:,∴小长方形的面积为3×1=3(cm2).故答案为:3.15.(4分)已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是2.【解答】解:由平均数的公式得:(1+x+3+2+5)÷5=3,解得x=4;∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(5﹣3)2+(4﹣3)2]÷5=2.故答案为:2.16.(4分)写出“全等三角形的面积相等”的逆命题面积相等的三角形全等.【解答】解:“全等三角形的面积相等”的题设是:两个三角形全等,结论是:面积相等,因而逆命题是:面积相等的三角形全等.故答案是:面积相等的三角形全等.17.(4分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为()2016.【解答】解:∵∠OA0A1=90°,OA1=,∠A2OA1=30°,同理:OA2=()2,…,OA n=()n,∴OA2017的长度为()2017;∵2017×30°÷360=168…1,∴OA2017与OA1重合,∴点A2017的横坐标为()2017×=()2016=()故答案为:()2016.18.(4分)如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是13cm.【解答】解:∵DE∥AB,BD平分∠ABC,∴∠EBD=∠ABD=∠EDB,∴DE=BE=5cm,∵AB=AC,DE∥AB,∴∠C=∠ABE=∠DEC,∴DC=DE=5cm,且CE=3cm,∴DE+EC+CD=5cm+3cm+5cm=13cm,即△CDE的周长为13cm,故答案为:13cm.三、解答题(本题共7小题,满分60分)19.(8分)小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?【解答】解:(1)小明抽到卡片的计算结果:﹣﹣+=3﹣﹣2+=;小华抽到卡片的计算结果:﹣3+﹣=2﹣+3﹣=,(2)∵<,∴小华获胜.20.(8分)解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.21.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.【解答】解:(1)甲=(83+79+90)÷3=84,乙=(85+80+75)÷3=80,丙=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.22.(8分)如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.【解答】解:(1)CE∥BF,AB∥C D.理由:∵∠1=∠2,∴CE∥FB,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.23.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【解答】解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.24.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL);(2)∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=225.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).。
北京市西城区2017-2018学年八年级下期末考试数学试卷含答案解析
北京市西城区 2017-2018 学年八年级下期末考试数学试卷含答案分析试卷满分:100 分,考试时辰:100 分钟一、选择题(本题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个是切合题意的.1.使二次根式x3存心义的x 的取值范围是().A.x3B.x3C.x0D.x3【专题】惯例题型.【剖析】斩钉截铁利用二次根式存心义的条件从而剖析得出答案.【解答】应选: B.【评论】本题重要考察了二次根式存心义的条件,正确掌握定义是解题重点.2.《国家宝藏》节目立足于中华文化宝库资源,经过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下边四幅图是我国一些博物馆的标记,此中是中心对称图形的是().A B C D【专题】惯例题型.【剖析】依照中心对称图形的定义和图案特色即可解答.【解答】解: A 、不是中心对称图形,应选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,应选项正确;D、不是中心对称图形,故本选项错误.应选: C.【评论】本题考察中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180 度,旋转后的图形能和原图形完好重合,那么那个图形就叫做中心对称图形.3.以下条件中,不可以判断一个四边形是平行四边形的是().A.两组对边分不平行B.两组对边分不相等C.两组对角分不相等 D .一组对边平行且另一组对边相等【专题】多边形与平行四边形.【剖析】依照平行四边形的判断方法一一判断即可.【解答】解: A、两组对边分不平行的四边形是平行四边形,故本选项不切合题意;B、两组对边分不相等的四边形是平行四边形,故本选项不切合题意;C、两组对角分不相等的四边形是平行四边形,故本选项不切合题意;D、一组对边平行且另一组对边相等的四边形不必定是平行四边形,可能是等腰梯形,故本选项切合题意;应选: D.【评论】本题考察平行四边形的判断,解题的重点是记着平行四边形的判断方法.4.若点 A(, m),B(4,n)都在反比率函数y 8的图象上,则 m与 n 的大小关系是().xA.m n B.m n C.m n D.没法确立【专题】函数思想.【剖析】把所给点的横纵坐标代入反比率函数的分析式,求出 mn 的值,比较大小即可.【解答】∴m<n.应选: A.【评论】本题重要考察反比率函数图象上点的坐标特色,全部在反比例函数上的点的横纵坐标的积等于比率系数.5.如图,菱形 ABCD 中,点 E,F 分不是 AC, DC 的中点.若 EF=3,则菱形 ABCD 的周长为().A.12 B.16C.20D. 24【专题】几何图形.【剖析】依照三角形的中位线平行于第三边同时等于第三边的一半求出 AD ,再依照菱形的周长公式列式运算即可得解.【解答】解:∵ E、F 分不是 AC、DC 的中点,∴E F 是△ ADC 的中位线,∴A D=2EF=2 ×3=6,∴菱形 ABCD 的周长 =4AD=4 ×6=24.应选: D.【评论】本题重要考察了菱形的四条边都相等,三角形的中位线平行于第三边同时等于第三边的一半,求出菱形的边长是解题的重点.6.近几年,手机支付用户规模增加快速,据统计2015 年手机支付用户约为 3.58 亿人,连续两年增加后,2017 年手机支付用户达到约 5.27 亿人.假如设这两年手机支付用户的年均匀增加率为 x,则依照题意可以列出方程为().A.3.58(1x) 5.27B.3.58(1 2x) 5.27C.3.58(1x)2 5.27 D. 3.58(1 x) 2 5.27【专题】惯例题型.【剖析】假如设这两年手机支付用户的年均匀增加率为x,那么 2016年手机支付用户约为 3.58(1+x)亿人, 2017 年手机支付用户约为3.58(1+x)2亿人,而2017 年手机支付用户达到约 5.27 亿人,依照2017 年手机支付用户的人数不变,列出方程.【解答】解:设这两年手机支付用户的年均匀增加率为x,依题意,得3.58(1+x)2=5.27.应选: C.【评论】本题考察的是由实质咨询题抽象出一元二次方程-均匀增加率咨询题.解决这种咨询题所用的等量关系同样是:增加前的量×(1+均匀增加率)增加的次数 =增加后的量.7.甲、乙两位射击运动员的10 次射击练习成绩的折线统计图以下图,则以下对于甲、乙这10 次射击成绩的讲法中正确的选项是().A.甲的成绩相对牢固,其方差小B.乙的成绩相对牢固,其方差小C.甲的成绩相对牢固,其方差大D.乙的成绩相对牢固,其方差大【专题】惯例题型.【剖析】联合图形,乙的成绩颠簸比较小,则颠簸大的方差就小.【解答】解:从图看出:乙选手的成绩颠簸较小,讲明它的成绩较稳固,甲的颠簸较大,则其方差大,应选: B.【评论】本题考察了方差的意义.方差是用来权衡一组数据颠簸大小的量,方差越大,表示这组数据偏离均匀数越大,即颠簸越大,数据越不牢固;反之,方差越小,表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越牢固.8.已知△ ABC 的三边长分不是 a, b,c,且对于 x 的一元二次方程x 22ax c2b20 有两个相等的实数根,则可推测△ ABC 必定是().A.等腰三角形 B .等边三角形C.直角三角形D.钝角三角形【专题】运算题.【剖析】依照判不式的意义获得△=(-2a)2-4(c2-b2)=0,而后依照勾股定理的逆定理判断三角形为直角三角形.【解答】解:依照题意得△=(-2a) 2-4( c2-b2)=0,所以 a2+b2=c2,所以△ ABC 为直角三角形,∠ ACB=90°.应选: C.【评论】本题考察了根的判不式:一元二次方程 ax2+bx+c=0(a≠0)的根与△ =b2-4ac 有以下关系:当△> 0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△< 0 时,方程无实数根.也考察勾股定理的逆定理.9.如图,在△OAB中,∠ AOB=55 °,将△ OAB在平面内绕点O 顺时针(旋转到△ OA′B′的地点,使得).A.125°B.70°C.55°D.15°BB′∥ AO ,则旋转角的度数为【专题】平移、旋转与对称.【剖析】据两直线平行,内错角相等可得∠AOB= ∠B'BO=55°,依照旋转的性质可得OB=OB′,而后利用等腰三角形两底角相等可得∠BO B′,即可获得旋转角的度数.【解答】解:∵ BB′∥ AO,∴∠ AOB= ∠B'BO=55°,又∵ OB=OB′,∴△ BOB' 中,∠ BOB'=180°-2×55°=70°,∴旋转角的度数为70°,应选: B.【评论】本题考察了旋转的性质,等腰三角形两底角相等的性质,熟记性质并正确识图是解题的重点.10.已知某四边形的两条对角线订交于点O.动点 P 从点 A 起程,沿四边形的边按 A→B→C 的路径匀速运动到点 C.设点 P 运动的时辰为 x,线段 OP 的长为 y,表示 y 与 x 的函数关系的图象大概如右图所示,则该四边形可能是().A B C D【专题】函数及其图像.【剖析】经过点P 经过四边形各个极点,观看图象的对称趋向咨询题可解.【解答】解: C、D 选项 A→B→C 路线都对于对角线BD 对称,因此函数图象应拥有对称性,故C、D 错误,对于选项 B 点 P 从 A 到 B 过程中OP 的长也存在对称性,则图象前半段也应当拥有对称特色,故 B 错误.应选: A.【评论】本题动点咨询题的函数图象,考察学生对动点运动过程中所产生函数图象的变化趋向判断.解答重点是注意动点抵达临界前后的图象变化二、填空题(本题共24 分,每题 3 分)11.运算:3 5210_________.【专题】运算题.【剖析】先进行二次根式的乘法运算,而后化简后归并即可.【评论】本题考察了二次根式的混淆运算:先把二次根式化为最简二次根式,而后进行二次根式的乘除运算,再归并即可.在二次根式的混淆运算中,如能联合题目特色,灵巧运用二次根式的性质,选择适合的解题门路,常常能事半功倍.12.若平行四边形中两个内角的度数比为1:2,则此中一个较小的内角的度数是°.【剖析】第一设平行四边形中两个内角的度数分不是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,既而求得答案.【解答】解:设平行四边形中两个内角的度数分不是x°, 2x°,则 x+2x=180,解得: x=60,∴此中较小的内角是: 60°.故答案为: 60°.【评论】本题考察了多边形的内角和外角,平行四边形的性质.注意平行四边形的邻角互补.13.如图,一根垂直于地面的木杆在离地面高3m 处折断 ,若木杆折断前的高度为8m,则木杆顶端落在地面的地点离木杆底端的距离为m.【专题】惯例题型.【剖析】由题意得,在直角三角形中,理解了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的地点离木杆底端的距离.【解答】解:∵一棵垂直于地面的木杆在离地面 3 米处折断,木杆折断前的高度为 8m,故答案为: 4.【评论】本题考察了勾股定理的应用,重要考察学生对勾股定理在实质生活中的运用能力.14.将一元二次方程x28x13 0 经过配方转变成 (x n)2p 的形式( n ,p 为常数),则n=_________,p =_________.【专题】运算题;一元二次方程及应用.【剖析】依照配方法的同样步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加前一次项系数一半的平方求解可得.【解答】解:∵ x2+8x+13=0,∴x2+8x=-13,则 x2+8x+16=-13+16,即( x+4)2=3,∴n=4、p=3,故答案为: 4、3.【评论】本题考察了配方法解一元二次方程,解题时要注意解题步骤的正确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.15.如图,在矩形ABCD 中,对角线 AC,BD 订交于点 O,若∠ AOD=120 °, AB=2 ,则 BC 的长为.【剖析】由条件可求得△ AOB 为等边三角形,则可求得 AC 的长,在Rt△ABC 中,由勾股定理可求得 BC 的长.【解答】解:∵∠ AOD=120 °,∴∠ AOB=60 °,∵四边形 ABCD 为矩形,∴A O=OC=OB ,∴△ AOB 为等边三角形,∴A O=OB=OC=AB=2 ,∴A C=4,【评论】本题重要考察矩形的性质,掌握矩形的对角线相等且相互均分是解题的重点.16.已知一个反比率函数的图象与正比率函数y 2 x的图象有交点,请写出一个知足上述条件的反比率函数的表达式:.【专题】惯例题型.【剖析】写一个经过一、三象限的反比率函数即可.【解答】【评论】本题考察了反比率函数与一次函数的交点咨询题:求反比率函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则二者有交点,方程组无解,则二者无交点.也考察了待定系数法求函数分析式.17.某汽车制造商对新投入市场的两款汽车进行了检查,这两款汽车的各项得分以下表所示:汽车型号安全性能省油效能外观吸引力内部装备A3123B3222(得分讲明: 3 分——极佳, 2 分——优秀, 1 分——尚可赞同)(1)技术员以为安全性能、省油效能、外观吸引力、内部装备这四项的占比分不为 30%,30%,20%,20%,并由此运算获得 A 型汽车的综合得分为 2.2,B 型汽车的综合得分为;(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B 型汽车的综合得分.(讲明:每一项的占比大于0,各项占比的和为100%)答:安全性能: ______,省油效能: ______,外观吸引力:______,内部装备: ______.【专题】惯例题型.【剖析】(1)依照加权均匀数的运算公式列式运算即可;(2)要使得 A 型汽车的综合得分高于 B 型汽车的综合得分,依照这两款汽车的各项得分,将 A 型汽车高于 B 型汽车得分的项(内部装备)占比较高,同时将 A 型汽车低于 B 型汽车得分的项(省油效能)占比较低即可.【解答】解: B 型汽车的综合得分为: 3×30%+2×30%+2×20%+2×2 0%=2.3.故答案为 2.3;(2)∵ A 型汽车的综合得分高于 B 型汽车的综合得分,∴各项的占比方式可以是:安全性能: 30%,省油效能: 10%,外观吸引力:10%,内部装备 50%.故答案为 30%,10%,10%,50%.【评论】本题考察的是加权均匀数的求法,掌握公式是解题的重点.18.已知三角形纸片 ABC 的面积为 48,BC 的长为 8.按以下步骤将三角形纸片 ABC 进行裁剪和拼图:第一步:如图 1,沿三角形 ABC 的中位线 DE 将纸片剪成两部分.在线段 DE 上随意取一点 F,在线段 BC 上随意取一点 H,沿 FH 将四边形纸片DBCE 剪成两部分;第二步:如图 2,将 FH 左边纸片绕点 D 旋转 180°,使线段 DB 与 D A 重合;将 FH 右边纸片绕点 E 旋转 180°,使线段 EC 与 EA 重合,再与三角形纸片 ADE 拼成一个与三角形纸片 ABC 面积相等的四边形纸片.图2图1(1)当点 F, H 在如图 2 所示的地点时,请依照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的全部四边形纸片中,其周长的最小值为_________.【专题】综合题.【剖析】(1)利用旋转的旋转即可作出图形;(2)先求出△ ABC 的边长边上的高为 12,从而求出 DE 与 BC 间的距离为6,再判断出 FH 最小时,拼成的四边形的周长最小,即可得出结论.【解答】解:(1)∵ DE 是△ ABC 的中位线,∴四边形 BDFH 绕点 D 顺时针旋转,点 B 和点 A 重合,四边形 CEFH 绕点 E 逆时针旋转,点 C 和点 A 重合,∴补全图形如图 1 所示,(2)∵△ ABC 的面积是 48,BC=8,∴点 A 到 BC 的距离为 12,∵D E 是△ ABC 的中位线,∴平行线 DE 与 BC 间的距离为 6,由旋转知,∠ DAH''= ∠B,∠ CAH'= ∠C,∴∠ DAH''+ ∠BAC+ ∠CAH'=180 °,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠ AEF'+∠CEF'=∠CEF+∠CEF'=180°,∴点 F,E,F'在同一条直线上,同理:点 F,D,F''在同一条直线上,即:点 F',F''在直线 DE 上,由旋转知, AH''=BH ,AH'=CH ,DF''=DF,EF'=EF,F''H''=FH=F'H' ,∴F'F''=2DE=BC=H'H'' ,∴四边形 F'H'H''F''是平行四边形,∴? F'H'H''F''的周长为 2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH ,∵拼成的全部四边形纸片中,其周长的最小时,FH 最小,即:FH⊥BC,∴F H=6,∴周长的最小值为16+2× 6=28,故答案为 28.【评论】本题是四边形综合题,重要考察了旋转的旋转和作图,判断三点共线的方法,平行四边形的判断和性质,判断出四边形 F'H'H''F''是平行四边形是解本题的重点.三、解答题(本题共其他每题 6 分)19.解方程:(1)x2 4 x 5 0 ;解:46 分,第19 题8 分,第 24、25 题每题(2)2 x2 2 x 10 .解:7 分,【专题】惯例题型.【剖析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出 b2-4ac 的值,再代入公式求出即可.【解答】解:(1)x2-4x-5=0,分解因式得:(x-5)(x+1)=0,x-5=0,x+1=0,x1=5,x2=-1;(2)2x2-2x-1=0,a=2,b=-2,c=-1,△=b2-4ac=(-2)2-4×2×( -1)=12>0,【评论】本题考察认识一元二次方程,能选项适合的方法解一元二次方程是解本题的重点.20.如图,正方形 ABCD 的对角线 AC,BD 订交于点 O,将 BD 向两个方向延伸,分不至点 E 和点 F,且使 BE=DF.(1)求证:四边形 AECF 是菱形;(2)若 AC=4,BE=1,斩钉截铁写出菱形 AECF 的边长.(1)证明:(2)菱形 AECF 的边长为 ____________.【专题】几何图形.【剖析】(1)依照正方形的性质和菱形的判断解答即可;(2)依照正方形和菱形的性质以及勾股定理解得答即可.【解答】(1)证明:∵正方形ABCD 的对角线 AC,BD 订交于点 O,∴O A=OC,OB=OD ,∵B E=DF,∴O B+BE=OD+DF ,即 OE=OF.∴四边形 AECF 是平行四边形.∵AC⊥EF,∴四边形 AECF 是菱形.(2)∵ AC=4,∴O A=2 ,∴O B=2,∴O E=OB+BE=3,【评论】本题考察了菱形的性质和判断,解题时要注意选择适合的判定方法.21.已知对于的一元二次方程2x(k 1)x 2k 20 .(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于 0 且小于 1,求k的取值范围.(1)证明:(2)解:【专题】一次方程(组)及应用.【剖析】(1)依照方程的系数联合根的判不式,求得判不式△≥ 0 恒建立,所以得证,(2)利用求根公式求根,依照有一个跟大于 0 且小于 1,列出对于 k 的不等式组,解之即可.【解答】(1)证明:△ =b2-4ac=[-( k+1)]2-4×(2k-2)=k2-6k+9=(k -3)2,∵( k-3)2≥0,即△≥ 0,∴此方程总有两个实数根,解得x1=k-1,x2=2,∵此方程有一个根大于0 且小于 1,而 x2>1,∴0<x1<1,即 0<k-1<1.∴1<k<2,即 k 的取值范围为: 1<k<2.【评论】本题考察了根的判不式,解题的重点是:(1)切记“当△≥ 0时,方程总有两个实数根” ,(2)正确找出不等量关系列不等式组22.小梅在扫瞄某电影评判网站时,搜寻了近来关注到的甲、乙、丙三部电影,网站经过对观众的抽样检查,获得这三部电影的评分数据统计图分不以下:甲、乙、丙三部电影评分情况统计图讲明: 5 分——特意喜欢,4 分——喜欢,3 分——同样,2 分——不喜欢,1 分——特意不喜依照以上资料回答以下咨询题:(1)小梅依照所学的统计知识,对以上统计图中的数据进行了剖析,并经过运算获得这三部电影抽样检查的样本容量,观众评分的均匀数、众数、中位数,请你将下表增补完好:甲、乙、丙三部电影评分情况统计表电影样本容量均匀数众数中位数甲100 3.455乙 3.665丙1003 3.5(2)依照统计图和统计表中的数据,可以推测此中_______电影相对比较受欢迎,原因是.(起码从两个不一样的角度讲明你推测的合理性)【专题】惯例题型;统计的应用.【剖析】(1)依照众数、中位数和均匀数的定义,联合条形图分不求解可得;(2)从均匀数、中位数和众数的意义解答,合理即可.【解答】解:(1)甲电影的众数为 5 分,补全表格以下表所示:甲、乙、丙三部电影评分情况统计表电影样本容量均匀数众数中位数甲100 3.4555乙100 3.6654丙100 3.783 3.5(2)丙,①丙电影得分的均匀数最高;②丙电影得分没有低分.【评论】本题考察了条形统计图,表格,中位数,众数,弄清题意是解本题的重点.23.如图,在平面直角坐标系xOy 中, Rt△ ABC 的直角边 AB 在 x 轴上,∠ ABC=90 °.点 A 的坐标为( 1,0),点 C 的坐标为( 3,4),M 是BC边的中点,函数y k (x0 )的图象经过点M .x(1)求 k 的值;(2)将△ ABC 绕某个点旋转 180°后获得△ DEF(点 A,B,C 的对应点分不为点 D,E,F),且 EF 在 y 轴上,点 D 在函数y k(x0 )的图象上,求直线 DF 的表达式.x 解:(1)(2)【专题】函数思想.【剖析】(1)依照直角三角形的性质和坐标与图形的特色求得点 M 的坐标,将其代入反比率函数分析式求得 k 的值;(2)依照旋转的性质推知:△DEF≌△ABC .故其对应边、角相等:DE= AB ,EF=BC,∠ DEF=∠ABC=90 °.由函数图象上点的坐标特色获得: D (2,3). E( 0,3).联合 EF=BC=4 获得 F( 0,-1).利用待定系数法求得结果.【解答】解:(1)∵ Rt△ABC 的直角边 AB 在 x 轴上,∠ ABC=90 °,点 C 的坐标为( 3,4),∴点 B 的坐标为( 3,0),CB=4.∵M是 BC 边的中点,∴点M 的坐标为( 3,2).∴k=3×2=6.(2)∵△ ABC 绕某个点旋转 180°后获得△ DEF,∴△ DEF≌△ ABC .∴D E=AB ,EF=BC,∠ DEF=∠ABC=90 °.∵点 A 的坐标为( 1,0),点 B 的坐标为( 3,0),∴A B=2.∴D E=2.∵E F 在 y 轴上,∴点D 的横坐标为 2.当 x=2 时, y=3.∴点 D 的坐标为( 2,3).∴点 E 的坐标为( 0,3).∵E F=BC=4,∴点 F 的坐标为( 0,-1).设直线 DF 的表达式为 y=ax+b,将点 D,F 的坐标代入,∴直线 DF 的表达式为 y=2x-1.【评论】考察了待定系数法求一次函数分析式,反比率函数图象上点的坐标特色,旋转的性质,解题时,注意函数思想和数形联合数学思想的应用.24.在矩形 ABCD 中,BE 均分∠ ABC 交 CD 边于点 E.点 F 在 BC 边上,且 FE⊥AE.(1)如图 1,①∠ BEC=_________°;②在图 1 已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图 2,FH∥CD 交 AD 于点 H,交 BE 于点 M.NH∥BE,NB∥H E,连结 NE.若 AB=4 ,AH=2 ,求 NE 的长.解:(1)②结论:△ _________≌△ _________;证明:图 1(2)【专题】几何综合题.图 2【剖析】(1)依照矩形的性质获得∠ ABC= ∠BCD=90°,依照角均分线的定义获得∠ EBC=45°,依照三角形内角和定理运算即可;(2)利用 ASA 定理证明△ ADE ≌△ ECF;(3)连结 HB ,证明四边形 NBEH 是矩形,获得 NE=BH ,依照勾股定理求出 BH 即可.【解答】解:(1)①∵四边形 ABCD 为矩形,∴∠ ABC= ∠BCD=90°,∵BE 均分∠ ABC ,∴∠ EBC=45°,∴∠ BEC=45°,故答案为: 45;②△ ADE ≌△ ECF,原因以下:∵四边形 ABCD 是矩形,∴∠ ABC= ∠C=∠D=90°, AD=BC .∵FE⊥ AE,∴∠ AEF=90°.∴∠ AED+ ∠FEC=180°-∠AEF=90°.∵∠ AED+ ∠DAE=90 °,∴∠ FEC=∠EAD ,∵B E 均分∠ ABC ,∴∠ BEC=45°.∴∠ EBC=∠BEC.∴B C=EC.∴A D=EC .在△ ADE 和△ ECF 中,∴△ ADE ≌△ ECF;(2)连结 HB ,如图 2,∵FH∥CD,∴∠ HFC=180°-∠C=90°.∴四边形 HFCD 是矩形.∴DH=CF ,∵△ADE ≌△ECF,∴DE=CF.∴DH=DE .∴∠ DHE=∠DEH=45°.∵∠BEC=45°,∴∠ HEB=180°-∠DEH-∠BEC=90°.∵NH∥BE,NB∥HE,∴四边形 NBEH 是平行四边形.∴四边形 NBEH 是矩形.∴N E=BH .∵四边形 ABCD 是矩形,∴∠ BAH=90 °.∵在 Rt △BAH 中, AB=4 ,AH=2 ,【评论】本题考察的是矩形的判断和性质、全等三角形的判断和性质以及勾股定理的应用,掌握全等三角形的判断定理和性质定理是解题的关键.25.当 k 值同样时,我们把正比率函数y1x 与反比率函数yk叫做“关kx联函数”,可以经过图象研究“关系函数”的性质.小明依照学习函数的体会,先以y1 x 与y2 为例对“关系函数”进行了研究.2x下边是小明的研究过程,请你将它增补完好:( 1)如图,在同一坐标系中画出这两个函数的图象.设这两个函数图象的交点分不为 A ,B ,则点 A的坐标为(2 ,1),点B 的坐标为 _________;(2)点P 是函数y2 在第一象限内的图象上一个动点(点P 不与点Bx重合),设点 P 的坐标为(, 2),此中 >0 且 t 2 .t①结论 1:作直线 PA ,PB 分不与 x 轴交于点 C ,D ,则在点 P 运动的过程中,总有 PC=PD .证明:设直线 PA 的分析式为 yax b ,将点 A 和点 P 的坐标代入,a11 2a b,,12 t得解得t.___________. 2 t则直线 PA 的分析式为 y xtt令 y b.2, 0).0 ,可得 x t t 2 ,则点 C 的坐标为( t同理可求,直线 PB 的分析式为 y 1 x t2,点 D 的坐标为 __t t___________.请你连续达成证明 PC=PD 的后续过程:②结论 2:设△ABP 的面积为 S ,则 S 是 t 的函数.请你斩钉截铁写出S 与 t 的函数表达式.【专题】综合题.【剖析】(1)联立方程组求解即可得出结论;(2)①利用待定系数法求出直线 PA 的分析式,再利用待定系数法求出直线PB 的分析式即可求出点 D 坐标,从而判断出 PM 是 CD 的垂直均分线,即可得出结论;②分两种情况利用面积的和差即可得出结论;考试停止后:同( 2)②的方法即可得出结论.令 y=0,考试停止后,你可以对点 P 在函数y2的第三象限内x∴x=t-2,图象上的情况进行近似的研究哟!则点 C的坐标为( t-2,0).∴x=t+2∴点 D 的坐标( t+2,0),如图则点 M 的横坐标为 t.∴CM=t- (t-2)=2,DM= ( t+2)-t=2.∴CM=DM .∴M 为 CD 的中点.∴PM 垂直均分 CD.,过点P 作PM ⊥x轴于点M ,∴PC=PD.【评论】本题是反比率函数综合题,重要考察了待定系数法,三角形的面积的运算方法,线段垂直均分线的性质和判断,掌握坐标系内求几何图形面积的方法是解本题的重点.北京市西城区 2017— 2018 学年度第二学期期末试卷八年级数学附带题2018.7试卷满分: 20 分一、填空题(本题共12 分,每题 6 分)1.观看下边的表格,研究此中的规律并填空:一元二次方程方程的两个根二次三项式分解因式x2x 2 0x1 1 , x22x2x 2 (x 1)(x 2) x23x 4 0x1 1 , x24x23x 4 (x 1)(x 4)3x2x20x2, x213x2x 2 3( x2)( x 1) 1334x29x 2 0x11, x224x29x 2 4( x)( x) 42x27x30x1___,x2___2x27x3____________________ax2bx c0x1m , x2n ax2bx c____________________【专题】因式分解.【剖析】利用公式法对方程的左边进行因式分解.【解答】【评论】考察认识一元二次方程 -因式分解法.因式分解法的确是先把方程的右边化为 0,再把左边经过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为 0,这就能获得两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转变为解一元一次方程的咨询题了(数学转变思想).2.在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形——同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解得将这种方法介绍给同学.(1)依照信息将以下小红的证明思路增补完好:①如图 1,在△ ABC 中,∠ ACB=90 °,四边形 ADEC ,四边形 BCFG,四边形 ABPQ 差不多上正方形.延伸 QA 交 DE于点 M,过点 C 作 CN∥AM 交 DE 的延伸线于点 N,可得四边形 AMNC 的形状是 _________________;②在图 1 中利用“等积变形”可得S正方形ADEC = _____________;③如图 2,将图 1 中的四边形 AMNC 沿直线 MQ 向下平移图 MA1的长度,获得四边形A’ M ’N’ C’,即四边形 QACC ’;④设 CC’交 AB 于点 T,延伸 CC’交 QP 于点 H,在图 2 中再次利用“等积变形”可得S= _____________,四边形QACC '则有 S= _____________;正方形ADEC⑤同理可证S正方形BCFG= S四边形HTBP,所以获得S正方形ADEC+ S正方形BCFG = S正方形ABPQ,从而证了然勾股定理.图 2(2)小芳阅读完小红的证明思路后,对此中的第③步提出了疑咨询,请将以下小红对小芳的讲明增补完好:图 1 中△ ______≌△ ______,则有 ______=AB=AQ ,因为平行四边形的对边相等,从而四边形 AMNC 沿直线 MQ 向下平移 MA 的长度,获得四边形 QACC ’.【专题】矩形菱形正方形.【剖析】依照平行四边形的性质、正方形的性质、全等三角形的判断和性质、等高模型即可解决咨询题;【解答】解:(1)∵四边形 ACED 是正方形,∴A C∥MN ,∵ AM ∥CN,∴四边形 AMNC 是平行四边形,∴S正方形 ADEC=S 平行四边形 AMNC ,∵AD=AC ,∠D=∠ACB ,∠DAC= ∠MAB ,∴∠ DAM= ∠CAB ,∴△ ADM ≌△ ACB ,∴A M=AB=AQ ,∴图 1 中的四边形 AMNC 沿直线 MQ 向下平移 MA 的长度,获得四边形 A′M ′N′C′,即四边形 QACC ′,∴S四边形 QACC′ =S 四边形 QATH,则有 S 正方形 ADEC=S 四边形 QA TH,∴同理可证 S 正方形 BCFG=S 四边形 HTBP,所以获得 S 正方形 ADEC+S 正方形 BCFG=S 正方形 ABPQ;故答案为平行四边形, S 四边形 AMNC ,S 四边形 QATH,S 四边形 QATH;(2)由( 1)可知:△ ADM ≌△ ACB ,∴AM=AB=AQ ,故答案为 ADM ,ACB , AM ;【评论】本题考察平行四边形的性质、正方形的性质、全等三角形的判断和性质、等高模型等知识,解题的重点是学会增添常用协助线,结构特意四边形解决咨询题,属于中考创新题目.二、解答题(本题8 分)3.在△ ABC 中, M 是 BC 边的中点.(1)如图 1,BD,CE 分不是△ ABC 的两条高,连结 MD ,ME,则 M D 与 ME 的数目关系是 ________________;若∠ A=70 °,则∠ DME=________°;(2)如图 2,点 D, E 在∠ BAC 的外面,△ ABD 和△ ACE 分不是以AB ,AC 为斜边的直角三角形,且∠ BAD= ∠CAE=30 °,连结 MD ,ME .①判断(1)中 MD 与 ME 的数目关系能否依旧建立,并证明你的结论;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2016-2017学年度第一学期期末试卷八 年 级 数 学 2017.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列二次根式中,最简二次根式是( ). A.1x - B.18 C.116D.29a2. 2015年9月14日,意大利物理学家马尔科•德拉戈收到来自激光干涉引力波天文台(LIGO )的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个LIGO 探测器上产生了-18410⨯米的空间畸变(如图中的引力波信号图像所示),也被称作“时空中的涟漪”,人类第一次探测到了引力波的存在,“天空和以前不同了……你也听得到了.”这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差. 三百五十万分之一约为0.000 000 285 7.将0.000 000 285 7用科学记数法表示应为( ).A .-82.85710⨯ B. -72.85710⨯ C . -62.85710⨯ D. -60.285 710⨯3.以下图形中,不是..轴对称图形的是( ).4. 如图,在△ABC 中,∠B =∠C =60︒,点D 在AB 边上,DE ⊥AB ,并与 AC 边交于点E . 如果AD=1,BC=6,那么CE 等于( ). A. 5 B. 4C. 3D. 25.下列各式正确的是( ). A. 6212121= x x x x --⋅= B. 62331 x x x x --÷== C. 323322 () x xy x y y --== D. 13223y x x y -⎛⎫= ⎪⎝⎭6.化简211x x --正确的是( ).A. 221(1)1111x x x x x --==--- B. 221(1)111x x x x x --==--- C. 21(1)(1)111x x x x x x -+-==+-- D. 21(1)(1)1111x x x x x x -+-==--+ 7. 在△ABD 与△ACD 中,∠BAD =∠CAD ,且B 点,C 点在AD 边两侧,则不一定...能使△ABD 和△ACD 全等的条件是( ).A. BD =CDB. ∠B =∠CC. AB =ACD. ∠BDA =∠CDA 8.下列判断错误的是( ).A. 当a ≠0时,分式2a有意义 B. 当3a =-时,分式239a a +-有意义 C. 当12a =-时,分式2a +1a 的值为0D. 当1a =时,分式21a a-的值为19. 如图,AD 是△ABC 的角平分线,∠C =20︒,AB BD AC +=, 将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为 点E ,那么∠AED 等于( ). A. 80︒ B.60︒ C. 40︒ D. 30︒10. 在课堂上,张老师布置了一道画图题:画一个Rt △ABC ,使∠B =90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN =90°之后,后续画图的主要过程分别如下图所示.那么小刘和小赵同学作图确定三角形的依据分别是( ).A. SAS ,HLB. HL ,SASC. SAS ,AASD. AAS ,HL二、填空题(本题共18分,每小题3分) 11. 0(π-3)=________.12. 3x -在实数范围内有意义,那么x 的取值范围是_________. 13. 在平面直角坐标系xOy 中,点(5,1)-关于y 轴对称的点的坐标为_________.小刘同学 小赵同学14. 中国新闻网报道: 2022年北京冬奥会的配套设施——“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达. 目前,北京至张家口的列车里程约200千米,列车的平均时速为v 千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少________小时.(用含v 的式子表示)15. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成), 其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个.....小三角形, 使它与阴影部分合起来所构成的完整图形是一个轴对称图形.(1)画出其中 一种涂色方式并画出此时的对称轴;(2)满足题意的涂色方式有_____种.16. 对于实数p ,我们规定:用<p >表示不小于p 的最小整数,例如:<4>=4,<3>=2. 现对72进行如下操作:(1)对36只需进行_______次操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(本题共52分) 17. (本题6分,每小题3分)分解因式:(1)3225a b a b -; (2)231212a a -+.解: 解:18. (本题6分)化简并求值:222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中1a =-.解方程:2217111x x x +=-+-. 解:20. (本题6分)小华在学习二次根式时遇到如下计算题,他是这样做的:请你先把他在第一步中出现的其它错误圈画出来(不必改正),再.完成此题的解答过程.......... 解:21. (本题6分)如图,△P AO 和△PBQ 是等边三角形,连接AB ,OQ . 求证:AB =OQ . 证明:阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m ≠n 时,2m n +≠2m n +.可是我见到有这样一个神奇的等式:2()a b a b b-+=2()a b a b b -+(其中a ,b 为任意实数,且b ≠0).你相信它成立吗?” 小雨:“我可以先给a ,b 取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a ,b 的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);① 当a = ,b = 时,等式 (□成立;□不成立);② 当a = ,b = 时,等式 (□成立;□不成立).(2)对于任意实数a ,b (b ≠0),通过计算说明2()a b a b b-+=2()a b a b b -+是否成立. 解:23. (本题5分)阅读下列材料:为了了解学校初二年级学生的阅读情况,小廉所在实践小组的同学们设计了相应的调查问卷,他们共发放问卷300张,收回有效问卷290张,并利用统计表整理了每一个问题的数据,绘制了统计图.他们的调查问卷中,有关“阅读载体的选择”和“阅读过书的类型”两个问题的统计情况如下表所示. 表1:表2:根据以上材料解答下列问题:(1)根据表1中的统计数据,选择合适的统计图对其进行数据的描述;(2)通过表2中统计出的数据你能得到哪些结论?请你说出其中的一条即可.解:(1)(2).24.1题5分(此24. 先阅读以下材料,再从24.1、24.2两题中任选一题....作答(若两题都做以第一题为准)............时卷面满分100分),24.2题7分(卷面总分不超过100分).请先在以下相应方框内打勾,再解答相应题目.24.1 解决下列两个问题:(1)如图2,在△ABC中,AB=3,AC=4,BC=5,EF垂直且平分BC,点P在直线EF上,直接写出P A+PB的最小值,回答P A+PB取最小值时点P的位置并在图中标出来......;解:P A+PB的最小值为,P A+PB取最小值时点P的位置是;(2)如图3,点M,N分别在直线AB两侧,在直线AB∠=∠.要求画图,并简上找一点P,使得MPB NPB要叙述确定点P位置的步骤.(无需尺规作图,保留画图痕迹,无需证明)解:确定点P位置的简要步骤:.24.2借鉴阅读材料中解决问题的三个步骤完成以下尺规作图....: 已知三条线段h ,m ,c ,求作△ABC ,使其BC 边上的高AH =h ,中线AD =m ,AB = c .(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(4分) 解:(2)完成尺规作图(不要求写作法.......,作出一个满足条件的三角形即可).(3分)25. (本题6分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE =DA(如图1).(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM.小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可).(2)①补全图形.②证明:北京市西城区2016-2017学年度第一学期期末试卷八年级数学附加题2017.1试卷满分:20分一、填空题(本题8分)1. 3,按下面的方式进行排列:(1,5),(2,3),那么(1所在的位置应记为;(2)在(4,1)的位置上的数是,所在的位置应记为;(3)这组数中最大的有理数所在的位置应记为.二、操作题(本题4分)2. 条件:图①和图②是由边长都为1个单位长度的小正方形组成的网格,其中有三个图形:组块A,组块B和组块C.任务:在图②的正方形网格中,用这三个组块拼出一个轴对称图形(组块C的位置已经画好),要求组块的所有顶点都在格点上,并且3个组块中,每两个组块.....要有公共的顶点或边.请画出组块A和组块B的位置(用阴影部分表示,并标注字母)说明:只画一种即可,组块A,组块B可在网格中平移,翻折或旋转.三、解答题(本题8分)3. 在平面直角坐标系xOy 中,点A 的坐标为(4,0)-,点B 的坐标为(0,)b ,将线段BA 绕点B 顺时针旋转90︒得到线段BC ,连接AC .(1)当点B 在y 轴的正半轴上时,在图1中画出△ABC 并求点C 的坐标(用含b 的式子表示); (2)画图探究:当点B 在y 轴上运动且满足2-≤b ≤5时,相应的点C 的运动路径形成什么图形. ① 在图2中画出该图形; ② 描述该图形的特征; ③ 利用图3简要证明以上结论. 解:(1)(2)①画图.②该图形的特征是 . ③简要证明过程:北京市西城区2016-2017学年度第一学期期末试卷八年级数学参考答案及评分标准 2017.1图1图2图3。