(效率管理)脱硫效率低的原因分析
关于脱硫吸收塔脱硫效率低的原因分析
(作者单位:大唐环境产业集团股份有限公司特许经营分公司)关于脱硫吸收塔脱硫效率低的原因分析◎康宁大唐巩义发电有限责任公司1号机组为660MW 超超临界燃煤机组,烟气脱硫装置采用石灰石—石膏湿法脱硫工艺(以下简称FGD ),在设计煤种、锅炉BMCR 工况、处理100%烟气量条件下保证脱硫装置入口SO 2浓度≤4098mg/m 3(标态、干基、6%O 2)时,脱硫装置出口SO 2浓度≤35mg/m 3(标态、干基、6%O 2),脱硫效率≥99.15%。
自2020年3月5号启机以来,出现脱硫效率偏低的状况,相比以往,相同的工况和入口SO 2浓度下,需要多开两台浆液循环泵,使脱硫系统运行成本显著增加,同时影响机组带高负荷运行。
由于机组仍在运行中,主要从以下方面进行检查分析:(1)二氧化硫在线测量仪表(CEMS )检查,具体表现为在线测量仪表失真会使测量结果不真实,不能准确反映烟道内SO 2浓度值,导致脱硫效率偏离正常值。
检查结果发现在线仪表实测净烟气中SO 2含量为27mg/m 3,折算后上传至国家环保中心的数值为29.6mg/m 3,现场实际测量发现净烟气中SO 2含量为14mg/m 3,折算后为15.5mg/m 3,偏差14.1mg/m 3,误差较大。
(2)石灰石品质化验分析,石灰石化验结果如下:CaO 含量为52.91%,MgO 含量为0.45%,满足石灰石CaO 含量≥50.4%,MgO 含量≤1.2%的要求。
(3)湿磨机碾磨后石灰石浆液化验分析,石灰石浆液中石灰石粒径较大(过筛率31.34%,325目),远小于90%通过325目筛的设计要求。
石灰石粒径越大,其表面积越小,吸收速率越慢,浆液活性降低。
(4)液气比/气液流场对1号机脱硫效率影响分析。
5台浆液循环泵运行电流和出口压力与2019年12月份工况对比如下:循环泵电流和出口压力均出现了不同程度的变化,电流下降则证明输送至喷淋层的浆液流量下降,吸收塔的Ca/S 和液气比均有所下降。
脱硫系统典型故障分析及处理
2.1 FGD系统的设计是关键。 根据具体工程来选定合适的设计和运行参数是每个FGD系 统供应商在工程系统设计初期所必须面对的重要课题。特 别是设计煤种的问题。太高造价大,低了风险大。 特别是目前国内煤炭品质不一,供需矛盾突出,造成很多 电厂燃烧煤种严重超出设计值,脱硫系统无法长期稳定运 行,同时对脱硫系统造成严重的危害。
1.2 影响泵磨损的因素 磨损速度主要取决于材质和泵的转速、输送介质的密度。 泵与系统的合理设计、选用耐磨材料、减少进人泵内的空 气量、调整好吸人侧护板与叶轮之间的间隙是减少汽蚀、 磨损,提高寿命的关键措施。针对石膏系统的生产流程, 改变设备的运行工况,即降低浆液泵输送介质的密度,可 大大地延长设备的寿命。
脱硫系统典型故障
分析及处理
江苏峰峰鸿运环保科技发展有限公司
脱硫系统典型故障分析及处理
主内容: 一、脱硫效率低; 二、除雾器结垢堵塞; 三、石膏品质差; 四、浆液泵的腐蚀与磨损; 五、机械密封损坏; 六、吸收塔浆液起泡; 七、吸收塔“中毒”;
脱硫系统典型故障分析及处理 一、脱硫效率低
一、脱硫效率低
三、石膏品质差
(6)保证吸收塔浆液的充分氧化,定期化验,使塔内浆液 的成分在设计范围内。
(7)对石膏浆液旋流器应定期进行清洗维护,定期检验底 流密度,发现偏离正常值时及时查明原因并作相应处理。
(8)对石膏皮带脱水机、真空泵等设备应定期进行清洗维 护,保证设备的效率,滤布和真空系统是重点检查维护对 象。加强对石膏滤饼的冲洗。
五、机械密封损坏
3、机械密封泄露原因分析 离心泵在运转中突然泄漏,少数是因正常磨损或己达到使 用寿命,而大多数是由于工况变化较大或操作、维护不当 引起的。主要原因有
脱硫效率、PH值、浆液浓度的调整
脱硫效率、PH值、浆液浓度的调整
脱硫效率一般维持在95%以上,给浆量按设定的脱硫效率及PH值投入自动运行,若自动调节跟踪不上或调节装置故障,应及时解手动运行。
当脱硫效率下降时首先要分析何原因导致脱硫率降低:
1)烟气中SO2含量上升:在维持吸收塔浆液PH值4-6范围内补石灰石浆液,若效率还是降低,则应启动备用浆液循环泵增加液气比。
2)PH值低导致脱硫效率不达标:加大石灰石供给量维持PH值,保证脱硫效率。
3)液气比不合理:根据机组的负荷变化,调节浆液循环泵的运行台数,正常时三台浆液循环泵可维持1000MW负荷,必要时可以启动第四台浆液循环泵。
4)浆液循环泵出力不足(有可能为滤网或喷嘴堵塞):高负荷时应启动备用浆液循环泵维持脱硫率,负荷低时,在维持脱硫效率的同时降低浆液PH值运行(酸性环境可以减小结垢量)。
5)氧化风量不足导致浆液内亚硫酸盐浓度较高,启动备用氧化风机增加氧化风量,适量加大氧化风增湿水降低喷嘴结垢堵塞。
6)烟气含尘量:电除尘严格按专业要求运行方式运行,若FGD入口含尘量增加,汇报专业、值长,调整电除尘的运行方式。
7)石膏浆液浓度不合理:严格执行专业下发的措施,石膏浆液浓度大于14%启动脱水,石膏浆液浓度小于10%停运脱水。
8) 石膏浆液中杂质过多:严格执行专业下发废水排放措施,脱水系统启动后必须排放废水,且排放量要大于14t/h。
9)若是烟气的进出SO2含量测点不准确导致,应及时联系热控人员校验。
脱硫常见问题及解决方案大起底
一、脱硫效率低1.脱硫效率低的原因分析:(1)设计因素设计是基础,包括L/G、烟气流速、浆液停留时间、氧化空气量、喷淋层设计等。
应该说,目前国内脱硫设计已经非常成熟,而且都是程序化,各家脱硫公司设计大同小异。
(2)烟气因素其次考虑烟气方面,包括烟气量、入口SO2浓度、入口烟尘含量、烟气含氧量、烟气中的其他成分等。
是否超出设计值。
(3)脱硫吸收剂石灰石的纯度、活性等,石灰石中的其他成分,包括SiO2、镁、铝、铁等。
特别是白云石等惰性物质。
(4)运行控制因素运行中吸收塔浆液的控制,起到关键因素。
包括吸收塔PH值控制、吸收塔浆液浓度、吸收塔浆液过饱和度、循环浆液量、Ca/S、氧化风量、废水排放量、杂质等。
(5)水水的因素相对较小,主要是水的来源以及成分。
(7)其他因素包括旁路状态、GGH泄露等。
2.改进措施及运行控制要点从上面的分析看出,影响FGD系统脱硫率的因素很多,这些因素叉相互关联,以下提出了改进FGD系统脱硫效率的一些原则措施,供参考。
(1)FGD系统的设计是关键。
根据具体工程来选定合适的设计和运行参数是每个FGD系统供应商在工程系统设计初期所必须面对的重要课题。
特别是设计煤种的问题。
太高造价大,低了风险大。
特别是目前国内煤炭品质不一,供需矛盾突出,造成很多电厂燃烧煤种严重超出设计值,脱硫系统无法长期稳定运行,同时对脱硫系统造成严重的危害。
(2)控制好锅炉的燃烧和电除尘器的运行,使进入FGD系统的烟气参数在设计范围内。
必须从脱硫的源头着手,方能解决问题。
(3)选择高品位、活性好的石灰石作为吸收剂。
(4)保证FGD工艺水水质。
(5)合理使用添加剂。
(6)根据具体情况,调整好FGD各系统的运行控制参数。
特别是PH值、浆液浓度、CL/Mg 离子等。
(7)做好FGD系统的运行维护、检修、管理等工作。
二、除雾器结垢堵塞1.除雾器结垢堵塞的原因分析经过脱硫后的净烟气中含有大量的固体物质,在经过除雾器时多数以浆液的形式被捕捉下来,粘结在除雾器表面上,如果得不到及时的冲洗,会迅速沉积下来,逐渐失去水分而成为石膏垢。
影响脱硫效果的原因分析
影响脱硫效果的原因分析
一.配合煤含硫高:正常情况下炼焦配合煤含硫率应该在
0.6—0.7%之间,现焦化厂配合煤硫分达到0.9%,最高达到近
1.1%。
造成焦炉煤气中硫化氢含量高,其他焦化厂煤气中硫化
氢含量在6000㎎/m³,我厂煤气硫化氢含量检测值为11280毫克/m³。
造成在达到脱硫效率的情况下煤气中硫化氢仍然超标。
二.煤气温度高:脱硫工艺要求初冷后煤气温度低于25℃,最好能达到20℃;我厂由于系统工艺和设备限制,煤气温度控制在30℃左右,(在全国焦化行业初冷后煤气温度中处于上世纪70年代水平)严重影响脱硫效率。
三.煤气焦油含量高:由于电捕焦油器设在鼓风机后本身降低其焦油捕集率,且由于煤气温度高造成煤气中焦油含量高,与脱硫液接触后焦油包裹脱硫催化剂造成脱硫效果下降以及脱硫液失效。
四.脱硫液杂质高:由于鼓冷工序煤气处理后仍有不少的焦油、煤粉等杂质,现场区域内由于石灰窑大量石灰飘散,在脱硫液循环过程中通过罐槽特别是氧化再生过程中混入脱硫液,使其失去催化吸收效果,继而影响脱硫效果。
湿法烟气脱硫效率低原因分析及改进脱硫装置运行效率的措施
扩散 , 加 快 反 应 速度 , 脱硫 效率随之 提高 ; 但随着 S O 2浓 度 进 一 步 的增 加 , 受液相吸收能力的限制 。 脱硫效率将下降。
3 . 3 烟 气 中烟 尘 浓度 的影 响
塔内的喷淋密度 , 使 液 气 比间 的接 触 面 积 增 大 ; 同时 也 增 大 了 可
用于吸收 S O 2的总 碱 度 , 故脱 硫 效 率 将 增 大 。 设 计 液 气 比 决定 了
烟气 与浆 液 的接 触 面 积 。 代 表 着 气 液 传质 的速 率 。
2 . 1 . 2吸收 塔 内烟 气 流速
原 烟 气 中 的 飞 灰 含 量 过 高 时 ,将 在 一 定 程 度 上 阻 碍 S O 2与
脱硫剂的接触 , 降低石灰石中 C a 2 + 的 溶解 速率 , 同 时 飞 灰 中 不 断
溶 出的 一 些 重 金 属 会抑 制 C a 2 + 与 HS O 3 一 的反 应 。烟 气 中粉 尘 含 量持续超过设计允许量 , 将使脱硫效率大为下降 。 喷 嘴 堵 塞 。 同
其 他 参 数 恒定 的情 况 下 , 保 持 合 理 的 塔 内烟 气 流 速 。 有 助 于
得 到 了显 著 的 发 展 和 改 进 。 在 现 代 的 石 灰 石 湿 法 烟 气 脱 硫 工 艺 中, 烟 气 由含 亚 硫 酸 钙 和硫 酸 钙 的 石 灰 石 浆 液 洗 涤 , S O 2与 浆 液
中 的 碱 性 物 质 发 生 化 学 反 应 生 成 亚硫 酸 盐 和 硫 酸 盐 。浆 液 中 的
保 证脱 硫 系统 的稳 定 和 高 效运 行 。
【 关键词 】 湿法脱硫 ; 脱硫效率 ; 原 因; 措施
1 概 述
脱硫系统效率下降的原因分析及应对措施
—75—《装备维修技术》2021年第1期引言2018年5月26日至6月初,某火电厂#1机组脱硫吸收塔入口S02约4000mg/nm3,还可按超低标准排放;到7月初,#1脱硫处理能力只能达到3400mg/nm3左右;7月15日,500MW负荷时,处理能力不到3000mg/nm3。
脱硫处理能力下降,除影响S02的排放,脱硫塔粉尘协同处理能力也会同时下降;两项指标超标都将影响大气污染物排放的合法性。
1机组情况说明:某火电厂2×660MW 空冷机组,配套石灰石湿法脱硫系统,设计标准:按燃煤含硫量1.4%(标态、干基、6%O2 ),机组BMCR 工况下吸收塔入口S02≤3996mg/Nm3,出口S02排放浓度≤35mg/Nm3。
两台机组于2016年4-6月投产。
2引起脱硫效率下降的因素分析脱硫系统出现效率下降的问题,各主要原因分析如下:2.1吸收塔浆液起泡较为严重,浆液起泡导致浆液循环泵的输送效率下降,降低了吸收塔喷淋区的液气比,导致脱硫效率下降。
泡沫大量产生积累会对塔内流场产生影响,影响烟气的分布,最终部分烟气形成快速走廊,影响部分烟气未参与塔内吸收及反应。
浆液起泡原因分析如下:2.1.1 由于本厂设计使用城市中水做为全厂水源,脱硫系统使用的主要补水水源为工业水、辅机冷却水排水、化学高盐水,其中工业水、辅机冷却水排水均为城市中水入厂后经化学系统相关工艺后的出水,其补入脱硫系统后带入的有机物含量较江河水、地下水高,易导致吸收塔浆液出现起泡问题(此问题已与华电电科院环保专业技术人员进行了沟通,双方意见一致)。
同时,自2017年10月开始,化学高盐水开始全部进入脱硫系统回用,其含有的有机物含量及其它杂质含量较工业水提高3倍以上,补入脱硫系统后加重了吸收塔浆液的起泡问题。
2.1.2 机组启动过程中有未燃尽的煤粉进入吸收塔,这部分轻质杂质长期漂在吸收塔浆液上层不能去除,长期积累加重了吸收塔浆液的起泡问题。
石灰石-石膏湿法脱硫效率低的原因分析及预防措施
石灰石-石膏湿法脱硫效率低的原因分析及预防措施作者:高磊来源:《科学与财富》2020年第29期摘要:针对石灰石-石膏湿法脱硫系统效率偏低的现象,对黄陵某电厂2×300MW循环流化床机组湿法脱硫系统运行状态进行了分析,同时针对性的提出了相应的预防措施,对脱硫系统运行状态进行了调整,取得了较好的效果。
关键词:湿法脱硫;脱硫效率;运行分析;运行调整引言石灰石—石膏湿法脱硫是普遍应用于我国火力发电厂的烟气脱硫系统。
近年来国家环保要求不断提高,烟气污染物能否达标排放直接影响到一个发电厂的经济效益,各發电企业对烟气脱硫设备设施越来越重视。
但石灰石—石膏湿法脱硫系统在长期运行中难免出现这样那样的问题,造成脱硫效率下降,严重者会直接造成机组降负荷运行,带来巨大的经济损失。
本文对黄陵某电厂石灰石—石膏湿法脱硫系统的运行状态进行了针对性的分析,解析了脱硫系统效率低的原因,并提出了运行调整的方式,取得了较好的效果,可作为今后脱硫系统运行状态分析、调整的经验、依据。
一、脱硫系统运行概况黄陵某电厂2×300MW循环流化床机组采用石灰石—石膏湿法脱硫系统,一炉一塔单元式布置,吸收塔塔型为喷淋空塔,由上至下布置两级屋脊式除雾器、一级管式除雾器、三层喷淋层、一层合金托盘,吸收塔配置三台浆液循环泵,脱硫浆液采用强制氧化方式,属于典型的石灰石—石膏湿法脱硫系统。
以黄陵某电厂#2机组为例,吸收塔入口SO2浓度为724mg/Nm3,出口SO2浓度为61mg/Nm3,吸收塔脱硫效率为91.55%,吸收塔液位6.8m,浆液pH值为5.5,浆液密度为896.87kg/m3,浆液氯离子浓度为50000mg/L,其余设备运行正常。
从运行参数来看,吸收塔的脱硫效率偏低(设计值为大于95%),浆液氯离子浓度较高(正常运行要求低于20000mg/L)。
另外,脱硫吸收塔入口粉尘浓度偏高。
去除不合理的数据,机组负荷与吸收塔出入口SO2浓度曲线来看,随着机组负荷的升高,吸收塔入口SO2浓度急剧提升,吸收塔效率也随之下降,如图中取值所示,锅炉负荷274.91MW时,吸收塔入口SO2浓度为891.14 mg/Nm3,出口SO2浓度为92.98 mg/Nm3,脱硫效率仅为89.5%,较设计值低了5%左右,此时SO2排放浓度超标。
某电厂脱硫效率不达标的原因分析
注: 为 锅炉燃用校核煤种最大工况时的 烟气 量; 锅炉 在燃用 校核煤种达不
到满负 荷。
收 稿 日期 : 2 0 1 2—1 2~1 0 作者简介 : 何福龙 ( 1 9 6 7 一) , 男, 蒙古族 , 土默特右旗人 , 1 9 9 0年毕业 于内蒙古大学生物 系, 学士 学位 , 电力 工程 师, 现就 职 于内蒙古国电能源投资有限公 司电力工程技术研究院 , 从事 电力环境保护 工作 。
表2
吸 收 剂 组 分 参 数
系统 整体 脱硫 效率 不 达 标 时 , 应 增 加 吸 收 塔 自身 脱 硫效 率 的测试 , 以 判 断 脱 硫 效 率 不 达 标 是 吸 收 塔 的
问题 , 还 是 其 他 原 因所 致 , 为 问 题 的解 决 指 明 方 向 。 内 蒙 古 某 电厂 石 灰 石 一 石 膏 湿 法 脱 硫 增 容 改 造 后 石 灰石品质 、 工 艺 水 品质 等 均 合 格 , 吸收塔浆 液 p H 值 、 密度 等参 数控 制均正 常 , 但 脱硫 效率未 达 到设计 保 证值 , 针对 这一情 况 , 在增容 改造 性能 验收试 验过 程 中, 通 过增 加测 点 , 分 段 测 试 等手 段 , 对 系 统脱 硫 效 率不 达标 的原 因进行 分析 。
某 电厂 脱 硫 效 率 不 达 标 的 原 因分 析
何 福 龙
( 内蒙古 国电能源投资有限公司 电力工程技术研究 院 , 内蒙古 呼和浩特 0 1 0 0 8 3 )
摘 要: 针 对 内蒙 古 某 电厂 石 灰 石 一 石 膏 湿 法 脱 硫 增 容 改 造 后 各 项 运 行 参 数 控 制 正 常 , 但 系统 脱 硫 效 率 不 迭 标 的 问题 。 在 性 能 考 核 试 验 过 程 中增 加 了吸 收 塔 脱 硫 效 率 的 测 试 , 通过 分析 、 测试发 现造 成脱 硫 效 率 不 达 标 的 原 因为 未 经 脱 除 S O 的 原 烟 气 漏 入 了 已脱 除 S O 的 净 烟 气 中 , GGH 和 旁 路 挡 板 均 密 封
湿法烟气脱硫装置效率低的原因及措施
湿法烟气脱硫装置效率低的原因及措施
1 湿法烟气脱硫装置效率低的原因
湿法烟气脱硫装置由烟气进口、湿床、反应器、出口等组成,主
要用于处理灰渣烟气中的SO2及Mile等有毒气体,其成功率直接影响
到烟气处理后的环境质量。
但是,湿法烟气脱硫装置不能满足烟气脱
硫标准,导致效率低。
主要原因如下:
(1)烟气过量:不正确的烟气进口压力设置将导致进口烟气过量,灰渣强度增加,损坏湿床内表面,影响反应器降解效率。
(2)湿床表面受损:长期高温作用下,湿床内部会形成熔化的烟尘。
当湿床内的水温超过90℃时,大量烟尘会被熔解,并且堵塞湿床
内部管道,阻碍烟气的流动,影响效率。
(3)反应器失效:反应器的运行温度太高,会形成大量无机盐沉淀,堵塞湿床内换热器管道,降低湿床及反应器效率,同时有毒气体
排放不能达标。
(4)湿床洁净度不好:由于湿床内水质不好,会使湿床反应器表
面结垢,有机物沉积较多,影响湿床的运行效率。
2 湿法烟气脱硫装置提高效率的措施
(1)合理调节烟气进口压力,以免造成烟气过量、灰渣残留太多。
(2)定期清理湿床,限制温度超过90℃,以防止湿床内烟尘熔解和堵塞反应器,使清洁度保持在最佳状态,以增强气体脱除率。
(3)定期检查湿床反应器,确保温度和清洁度达标,防止因碳酸盐沉淀造成的堵塞。
(4)每月调整湿床的投加量,防止水位变化导致的效率降低。
(5)强化湿床的供水设备,保障水质的合理性,以便湿床的有效运转,保证反应器的有效运行。
以上是湿法烟气脱硫装置效率低的原因及措施,必须关注湿法烟气脱硫装置运行状况,通过合理地运维和改进设备来提高效率。
脱硫效率低的原因及措施
一.改进FGD系统脱硫效率的一些原则措施1)优化设计。
合理确定脱硫装置的设计和运行参数2)做好机组和除尘设备的运行,保证进人脱硫装置的烟气参数在设计范围内3)选择高品位、活性好的石灰石作为吸收剂4)保证FGD工艺水水质5)严格控制脱硫装置的运行参数6)做好FGD系统的运行维护、检修、化验等管理工作二影响石灰石—石膏湿法烟气脱硫效率的主要因素(1)烟气温度的影响进入吸收塔烟气温度越低,越利于SO2气体溶于浆液,形成HSO-3,即:低温有利于吸收,高温有利于解吸。
(2)烟气中SO2浓度的影响在钙硫摩尔比一定时,当烟气中SO2浓度很低时,由于吸收塔出口SO2浓度不会低于其平衡浓度,所以不可能获得很高的脱硫效率。
一般情况下,随着烟气中SO2浓度的增加,脱硫效率随之提高,但当烟气中SO2浓度高于某一极限值时,脱硫效率会随着烟气中SO2浓度的增加而下降。
(3)烟气中氧浓度的影响O2参与烟气脱硫的化学过程,使HSO-3氧化为SO2-4,随着烟气中O2含量的增加,CaSO4·2H2O的形成加快,脱硫效率也呈上升趋势。
(4)烟气含尘浓度的影响原烟气中的飞灰在一定程度上阻碍了SO2与脱硫剂的接触,降低了石灰石中Ca2+的溶解速率,同时飞灰中不断溶出的一些重金属会抑制Ca2+与HSO-3的反应,降低脱硫效率。
一般要求FGD入口粉尘含量小于200mg/Nm3(5)石灰石粒度及纯度的影响石灰石颗粒越细,其表面积越大,反应越充分,吸收速率越快,石灰石的利用率越高,一般要求小于44μm的物料过筛率达90%以上。
石灰石中的杂质对石灰石颗粒的消溶起阻碍作用,降低脱硫效率,一般要求石灰石中CaCO3的含量大于90%。
(6)浆液pH值的影响(7)液气比L/G的影响液气比增大,代表气液接触机率增加,脱硫效率提高,但二氧化硫与吸收液有一个气液平衡状态,液气比超过一定值后,脱硫效率增加幅度减小。
新鲜的石灰石浆液喷淋下来后与烟气接触后,SO2等气体与石灰石的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了脱硫效率。
脱硫效率低原因分析及应对措施
0 2 - 1 l
0 2 - 1 4
0 2 - 2 l
0 2 - 2 8
2 . 脱硫 效 率低 原 因 分 析
2 , 1 含硫量分析 本 厂两 台 I O 0 0 M W 机组脱硫 系统设计 参数 为 : 设计 煤种 ( S = O . 8 ) 工况 , F G D人 口 S O : 含量 不超 过 1 8 0 0 m g / N m, ; 校核煤种 ( S = 0 . 9 5 ) 工况 , F G D入 口 S O , 含量不超 过 2 3 0 0 mg / N m , 从 脱硫 OM画面 曲线 查 出近 段时 问内 F G D人 口 S O 含量最 大在 1 4 0 0 mg / Nm 3 左右 , 均在正 常处理 范 围之 内 故 含硫 量对脱硫效率降低未造成影响。 2 - 2 液/ 气 比分析
◇ 科技论坛◇
科技 目向导
2 0 1 4 年0 3 期
脱硫效率低原因分析及应对措施
李春龙 ( 神华浙江国华浙能发电有限公 司 浙江
【 摘
宁海
3 1 5 6 1 2)
要】 本 文详 细分析 了影 响 5号机 脱硫 效率的各种因素, 最终找 出导致 5号机脱硫效 率低的原 因, 并提 出有效应对措施。 .
【 关键词 】 效率低 ; 原因分析 ; 应对措 施
月 2日 和3 月 3日 两次对 5 号吸收塔做溢流试验 . 将溢 流出的浆液用 1 . 问题 简介 大大降低 了浆液 中氯 离子含量 . 对恢 复脱硫效率是有 实际 5号机脱 硫效 率 自 2月 1 2日 7 : 5 2开 始一 直 在 9 4 ~ 9 5 %左 右波 罐 车拉走 . 动, 2月 1 5日 1 6 : 5 4以后逐步趋于正 常。 2月 2 3日 1 3 : 0 9效率开始在 效果 的。 9 4 %左右波 动 , 2 月 2 6日 8 : 5 3降至 9 3 %左 右 , 2 月2 7日进一 步降至
脱硫系统PH值及脱硫率偏低的原因分析及处理
脱硫系统PH值及脱硫率偏低的原因分析及处理摘要:汕尾电厂1、2号机组脱硫系统运行一年半的时间里,主要存在PH值偏低,脱硫率经常不能达到设计值的问题。
经过运行人员与相关技术人员的不断分析原因和总结,前面所提到的问题得到了很大的改善。
关键词:脱硫 PH值脱硫率原因分析处理0 引言汕尾电厂1、2号机组脱硫系统运行一年半的时间里,整体情况良好但主要存在PH值偏低,脱硫率经常不能达到设计值的问题。
通过深入现场分析并与相关技术人员沟通,我总结主要有以下几个方面的问题:1 脱硫率不能达到设计值的问题1.1 燃煤含硫量高脱硫系统设计入口SO2浓度为1556mg/Nm3,校核煤种为2043mg/Nm3,但通过这几天的运行观察,如图1所示,脱硫系统入口SO2有相当长一段时间都在2000 mg/Nm3以上,甚至高达3476 mg/Nm3,远超过脱硫系统的处理能力,这对脱硫系统的稳定运行是不利的。
1.2 烟气量偏大脱硫系统关旁路挡板运行,在负荷为600MW时,增压风机动叶开度高达90%以上,甚至高达100%,据了解烟气量比以前大20%左右。
烟气量偏大对脱硫系统会有以下几方面的影响:1.2.1 在入口SO2浓度不变的情况下,烟气量增大,会造成实际进入脱硫系统的SO2总量大,加重脱硫系统的处理能力,甚至超过其处理能力。
1.2.2 烟气量大,烟气流速高,石灰石浆液与烟气的接触时间短,造成脱硫率偏低。
1.2.3 烟气量大,烟气流速过高,会降低除雾器效率,易造成烟气二次带水,烟气中的液滴含量高,对下游GGH的运行是不利的,会加快GGH的堵塞,进而影响脱硫系统的投运率。
1.3 石灰石品质差表1为石灰石浆液和吸收塔石膏浆液化学分析结果。
石灰石的品质远没有达到设计值,两个样品的纯度都为82.38%,低于90%的标准;MgCO3的含量分别为16.12%和12.53%,远大于小于3%的标准要求。
石灰石中MgCO3含量高时,会在吸收塔内生产大量可溶的MgSO3,减小了SO2气相扩散的化学反应推动力,阻碍SO2与CaCO3的进一步反应,严重影响石灰石化学活性。
脱硫效率下降的原因分析
1. 烟气温度的影响进入吸收塔的烟气温度越低,越有利于二氧化硫气体溶于浆液,即低温有利于吸收高温有利于解析。
2. 烟气中二氧化硫浓度的影响在钙硫摩尔比一定时,当烟气中的二氧化硫浓度很低时,由于吸收塔出二氧化硫浓度不会低于其平衡浓度,所以不可能获得很高的脱硫效率。
一般情况下,随着烟气中的二氧化硫的浓度的增加,脱硫效率随之提高,但当烟气中的二氧化硫浓度高于某一极限值时,脱硫效率会随着烟气中的二氧化硫浓度的增加而下降。
3. 烟气中氧浓度的影响氧气参与烟气脱硫的化学过程,使亚硫酸根氧化为硫酸根,随着烟气中氧气含量的增加,二水硫酸钙的形成加快,脱硫效率也呈上升趋势。
4. 烟气含粉尘浓度的影响原烟气中的飞灰在一定程度上阻碍了二氧化硫与脱硫剂的接触,降低了石灰石中钙离子的溶解速率,同时飞灰中不断溶出的一些重金属会一直钙离子与亚硫酸根的反应,降低脱硫效率。
5. 石灰石粒度及纯度的影响石灰石颗粒越细,其表面积越大,反应越充分,吸收速率越快,石灰石的利用率高。
石灰石中的杂质对石灰石颗粒的消溶起阻碍作用,降低脱硫效率。
6. 浆液PH值的影响PH值越高越有利于二氧化硫的吸收,但不利于亚硫酸钙的氧化。
PH值低有利于亚硫酸钙的溶解,但是不利于二氧化硫的吸收。
一般控制PH在5.2~5.7左右。
7. 液气比L/G的影响液气比增大,代表液气接触几率增加,脱硫效率提高,但二氧化硫与吸收液有一个液气平衡状态,液气比超过一定值后,脱硫效率增加幅度减小。
新鲜的石灰石浆液喷淋下来后与烟气接触后,二氧化硫等气体与石灰石的反应不完全,需要不断的循环反应,增加浆液的循环量,也就加大了碳酸钙与二氧化硫的接触机会,从而提高了脱硫效率。
8. 烟气与脱硫剂接触时间的影响烟气进出吸收塔后,自上而下流动,与喷淋而下的石灰石浆液接触反应,接触时间越长,反应的越完全。
因此,长期投运高位的喷淋层对应的浆液循环泵,有利于二氧化硫的吸收,相应的提高脱硫效率。
9. 钙硫比CA/S的影响在保持液气比不变的情况下,钙硫比增加,即注入吸收塔内石灰石的量增加,吸收塔内浆液PH值上升,脱硫效率增加。
300MW机组脱硫效率低的原因分析及解决方案
( ) 种离 子质 量浓 度对 脱硫效 率 的影 响 。 7各
1 S z 影响。当 S ; )O _ O一质量浓度超过一定值
时 ,a O 在 石灰 石表 面 的溶解 度下 降 ,造 成 “ 灰 CC 石
20 0 8年正式 投入 运行 。
气 脱硫 F D( leG sD sl rai ) 口烟 尘 增 G Fu a euf i tn 人 uz o 加 , 降低 脱 硫 效 率 。烟 尘 中 H 会 F进 人 脱 硫 塔 后 溶
于水 , a O C C 中 c “ 与 F 发 生 反 应 生 成 C F ; a 一 a : 同 时 , 灰 中 A¨ 溶 解 进 脱 硫 塔 内 的 浆 液 中 , 成 飞 l 生
9 % 以下 , 复调 整也 不见 成效 。因此 , 0 反 需要 对整 个 脱 硫 系统进 行全 面检 查 和原 因分析 。
足, 脱硫 浆 液 p H值 降低 。此 外 , 尘 进入 吸 收 塔浆 粉 液 系 统 , 加 了 设 备 的 磨 损 , 石 膏 的 品 质 大 大 增 使
下降 。
" S Ca O4 ・2H2 O。
定影 响 。
亚 硫 酸盐 的氧 化
ca + S O 一 +2H 2 : O ̄
() 5 吸收塔部 分 喷淋 管 道及 喷 嘴被 鳞 片碎 片 堵 塞 。部分 喷 嘴无 喷淋 浆 液 , 气 和 浆 液不 能 充 分 接 烟 触 , 成 烟气逃 逸 , 造 脱硫效 率 下降 。
果 为 3 %左 右 , 0 到现场 取样 , 目测 明显 低 于 5 % 。 0
2 影响脱硫效率 的因素及原 因分析
在确 定 仪 表读 数 准 确 的情 况 下 , 以下 7个 可 有
脱硫效率低的原因分析
1号机组脱硫系统效率低的报告分析一、脱硫添加剂的试验影响添加剂的试验目的:促进石灰石的溶解和SO2的吸收,增加溶液的反应活性,总反应速度得到提高。
添加剂具有分散作用,可以增强石灰石的表面活性,增加石灰石的分散性,降低其沉降速度,增大有效传质面积,减少设备的结垢。
4月22日-4月24日进行的脱硫添加剂提高脱硫效率试验,其中添加剂的主要成分:复合硫质催化剂、CP活性剂、含羧基类盐。
复合硫质催化剂的作用:缓冲作用,促进SO2吸收和CaCO3溶解。
CP活性剂:增加浆液反应活性,提高总反应速率。
含羧基类盐:促进SO2的溶解。
试验过程:4月23日向1号JBR地坑注入1.2吨添加剂,搅拌均匀后23日——5.2,24号上午调至5.3,下午调回;于24号上午补充添加剂至地坑15袋,9时开始打入吸收塔,24号下午参数开始有运行人员自行掌握。
数据分析:—5.1,入口1200mg/nm3左右,JBR液位在100mm以下),与添加前效率起始值91.4%比较,可认为提高3%--4%的。
23日11:00—12:00,93.8%;14:00—16:00,94%;19:00—20:00,95.5%;2、1#系统在使用添加剂后,系统效率提升有改善,之前效率基本在95%以下,现在可轻松维持在96%以上。
结论及建议:1、脱硫添加剂有提效作用,但由于机组目前运行状况较好,燃煤含硫量较低,添加前效率运行在94%左右,致使添加剂提效作用效果缩水(添加剂的最好使用效果是含硫量超设计值30%以内)。
2、再做试验前,应储存适量的超设计值含硫量的燃煤,如在0.8%—1.2%之间,确实使系统的脱硫效率降下来,再使用添加剂,效果会更好。
2浓度与负荷因素2浓度根据双膜理论,入口SO2浓度的升高,使烟气中的SO2分压增大,降低了气相传质阻力,有利于SO2吸收,但在SO2浓度增大的同时吸收浆液的碱性并未随之增大,这就使得吸收反应的增强因子减小。
但后一种作用的影响更为明显,这两种作用的综合结果使得传质单元数减小从而降低了脱硫效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1号机组脱硫系统效率低的报告分析一、脱硫添加剂的试验影响添加剂的试验目的:促进石灰石的溶解和SO2的吸收,增加溶液的反应活性,总反应速度得到提高。
添加剂具有分散作用,可以增强石灰石的表面活性,增加石灰石的分散性,降低其沉降速度,增大有效传质面积,减少设备的结垢。
4月22日-4月24日进行的脱硫添加剂提高脱硫效率试验,其中添加剂的主要成分:复合硫质催化剂、CP活性剂、含羧基类盐。
复合硫质催化剂的作用:缓冲作用,促进SO2吸收和CaCO3溶解。
CP活性剂:增加浆液反应活性,提高总反应速率。
含羧基类盐:促进SO2的溶解。
试验过程:4月23日向1号JBR地坑注入1.2吨添加剂,搅拌均匀后23日8时按照试验要求进行参数调整,10:30基本到位,效率91.4%、负荷500MW以上、PH值4.9—5.0之间,10:40开始开用地坑泵加药,打入吸收塔,23号加药后至25号期间负荷在300MW以上效率最高上至97.8%,PH值在23号加药有降低现象,后调整至5.0—5.2,24号上午调至5.3,下午调回;于24号上午补充添加剂至地坑15袋,9时开始打入吸收塔,24号下午参数开始有运行人员自行掌握。
数据分析:1、在同等条件下(负荷500MW,ph值5.0—5.1,入口1200mg/nm3左右,JBR液位在100mm 以下),与添加前效率起始值91.4%比较,可认为提高3%--4%的。
23日11:00—12:00,93.8%;14:00—16:00,94%;19:00—20:00,95.5%;2、1#系统在使用添加剂后,系统效率提升有改善,之前效率基本在95%以下,现在可轻松维持在96%以上。
结论及建议:1、脱硫添加剂有提效作用,但由于机组目前运行状况较好,燃煤含硫量较低,添加前效率运行在94%左右,致使添加剂提效作用效果缩水(添加剂的最好使用效果是含硫量超设计值30%以内)。
2、再做试验前,应储存适量的超设计值含硫量的燃煤,如在0.8%—1.2%之间,确实使系统的脱硫效率降下来,再使用添加剂,效果会更好。
2.1入口SO2浓度与负荷因素2.1.1入口SO2浓度根据双膜理论,入口SO2浓度的升高,使烟气中的SO2分压增大,降低了气相传质阻力,有利于SO2吸收,但在SO2浓度增大的同时吸收浆液的碱性并未随之增大,这就使得吸收反应的增强因子减小。
但后一种作用的影响更为明显,这两种作用的综合结果使得传质单元数减小从而降低了脱硫效率。
2.1.2针对04月07日-04月16日1号机脱硫效率低进行分析:2009.4.09-10报表从上图中红色区域我们可以看到,在升负荷期间FGD入口含硫量逐渐增大脱硫效率降低,必然要提高PH值来维持脱硫效率,此时进入JBR的石灰石浆液量及石膏浆液浓度随之增加,然而脱硫效率并为提高,PH值接近5.4后石灰石浆液的利用率反而会降低脱硫效果也不明显,脱硫效率下降到了最低点,经调整此时PH值为4.8,但是石灰石浆液供给量还在逐渐增加,因为石灰石浆液量与脱硫系统入口烟气流量和进口烟气SO2含量进行前馈控制,与JBR的pH值进行反馈控制。
在机组降负荷(上图中蓝色区域)达到脱硫效率,但是FGD入口含硫量还是偏高。
上图中粉红色区域为一组再次升负荷参数,经调整PH值后脱硫效率仍然达不到,且石灰石浆液浓度降低。
上图中海绿色区域也是一组升负荷参数,在没有什么调整的情况下能够达到脱硫效率,跟前两次升负荷不同的是FGD入口含硫量不高,但是石灰石浆液随着流量的增加浆液密度在下降。
上图中褐色同样还是一组升负荷参数,这时的FGD入口含流量增加,调整PH值脱硫效率没有达到要求,石灰石浆液浓度随流量的增加而降低。
为什么脱硫系统在机组满负荷的情况下脱硫效率很难达标:由于台电1、2脱硫系统设计煤含硫量为0.7%,当含硫量增加,带给脱硫运行有两个最大的问题:一是石灰石制浆、石膏脱水出力能否满足,二是脱硫效率能否维持在95%以上。
入炉煤含硫量与SO2浓度对应表根据上表所示我们可以计算出9号到10号之间S中的含硫量,在这两天中FGD的入口含硫量平均值为1131.325S平均增长0.1所对应的SO2:1661-830 x0.1=166.26(mg/Nm3)1.0-0.5S=1131.325-830 x 0.1+0.5=0.68123166.26计算得出9号到10号之间S中的含硫量0.68123接近1、2脱硫系统设计煤含硫量0.7%将近达到了饱和状态,、所以脱硫效率一直低的原因。
2.1.2石灰石不足的原因通过钙硫摩尔比方程式粗略计算:S CaCO3 CaSO432 100 136-=-=-2.5 x yx=(2.5×100×0.95)/32=7.41t/h(按照95%脱硫滤计算,并且是按照石灰石纯度为100%来计算,所以当石灰石纯度再降低时,制浆系统更不能供给足够的石灰石浆液。
)设计中:单台球磨机的制浆量为8.4 t/h,共2台球磨机。
通过反推法:计算出石灰石制浆系统最大出力连续运行,并且石灰石纯度为100%时条件下,脱硫率按照95%计算,所能容许的最大含硫量为1.1318%,实际我们石灰石纯度不足60%,这算后所能容许的最大含硫量为为6.7%。
2.1.3负荷因素:随着机组升降负荷时,带入的热量增大,导致吸收塔整体浆液温度上升,从而影响SO2也石灰石的化学反响。
其次机组负荷上升机组的烟气量也将随之变化,脱硫系统的容纳烟气量是一定的,当机组满负荷时,这时烟气量达到最大值,那么这是烟气在系统里停留的时间也是最短的,这也是为什么机组满负荷脱硫效率为什么较低的原因之一。
2.2吸收塔浆液位与PH值2.2.1吸收塔浆液pH值浆液的pH值是石灰石湿法烟气脱硫工艺中的重要运行参数。
浆液pH值升高,降低了液相的传质阻力, 将随之增大,进而K G和NTU也随之增大,有利于SO2的吸收。
还可以从烟气中SO2与吸收塔浆液接触后发生的一系列化学反应中可以看出:S O2吸收:SO2 + H2O= H2SO3→H2SO3=H+ + HSO3-石灰石溶解:CaCO3 + H2O = Ca2+ + HCO3- + OH-氧化: HSO3- + 1/2O2 = H+ + SO42-沉淀: Ca2+ + SO42- + 2H2O = CaSO4·2H2O高PH的浆液环境有利于SO2的吸收,而低PH则有助于Ca2+的析出,二者互相对立,因此选择一合适的PH值对烟气脱硫反应至关重要。
在一定范围内随着吸收塔浆液PH的升高,脱硫率一般也呈上升趋势,因为高PH意味着浆液中存在有较多的CaCO3,对脱硫当然有益,理论上PH>6后脱硫率不会继续升高,反而降低,原因是随着H+浓度的降低,Ca2+的析出越来越困难,显然此时SO2与脱硫剂的反应不彻底,既浪费了石灰石,又降低了石膏的品质。
PH下调时,CaSO4·2H2O含量又回升,CaCO3用量也随之降低。
因此,浆液PH值既不能太高又不能太低。
因此,选择合适的PH值,对FGD系统的良好运行有着重要的意义。
一般认为吸收塔PH值选择在4.0~5.5为宜,避免PH值>5。
浆液的pH值和脱硫效率的关系如图1所示:图1.浆液成分随PH值的变化曲线2.2.2当 PH计不准的情况下PH值设定过高,脱硫反应中间产物亚硫酸钙和亚硫酸氢钙的溶解度减少,氧化反应严重受阻,最终使脱硫无法进行。
吸收塔浆液中的碳酸钙过剩,致使石膏品质降低,另一方面长期维持就容易造成石灰石的过量,石灰石过量以后, 一方面即浪费了石灰石不经济,另一方面过量的石灰石在吸收塔内部无法反应掉,反而从一定程度上阻碍了脱硫反应中间产物亚硫酸钙和亚硫酸氢钙的溶解度,导致氧化反应严重受阻,不但影响了脱硫效率,还造成吸收塔含固量的升高,容易造成结垢和石膏纯度的降低。
2.2.3就我厂脱硫设备来讲,吸收塔有大、小液位之分,而我们通常以设定小液位来进行控制,从上面1号脱硫系统与2号脱硫系统DCS数据比较提到的小液位其实就是间接加深了下降管的深度,使烟气更好的和浆液进行反应,从而在未提高PH值的前提下提高了脱硫效率。
在液位保持恒定时,FGD系统的脱硫率随着煤的含硫量的降低而升高。
2.3液气比(L/G)与烟气流速因素2.3.1液气比是与流经吸收塔的单位体积的烟气量相对应的浆液喷淋量。
液气比对脱硫效率的高低有着重要的影响。
这是因为,在吸收塔的设计中,循环浆液量的大小决定了SO2吸收表面积的大小。
在其它参数恒定的情况下,提高液气比相当于增大了吸收塔内的浆液喷淋密度从而增大了气液传质表面积;同时,提高液气比也增大了可用于吸收SO2的浆液的碱ϕ增大,因此传质单元数也随之增大,提高了脱硫效率。
液气比增大,代表气液接触机度使率增加,脱硫率增大。
但二氧化硫与吸收液有一个气液平衡,液气比超过一定值后,脱硫率将不在增加。
新鲜的石灰石浆液喷淋下来后与烟气接触后,SO2等气体与石灰石的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了SO2的去除率。
η和液胡满银等在文献中建立了湿法脱硫系统脱硫效率的数学模型,并给出了脱硫效率气比L/G之间的关系式:-1000(L/G)aη=1-e其中,L——石灰石浆液喷淋量,L/s;G——处理烟气量,m3/s;L/G——液气比,L/m3;a——吸收速率系数,定义为吸收液中SO2浓度增量占烟气内SO2浓度的比值。
该式是液气比的理论计算方法,实际液气比的计算中还要考虑吸收塔型式、运行经济性等因素的影响。
文献中给出了液气比与脱硫效率的关系曲线,如图2所示。
图2液气比由图可以看出,在风速一定的情况下,随着液气比的升高,脱硫效率也随之升高。
但曲线的斜率也不断变小。
这说明,液气比超过一定程度后,脱硫效率将不会有显著提高。
在实际工程应用中,提高液气比将使浆液循环泵的流量增大,进而增加设备的投资和能耗。
此外,高液气比还会使吸收塔内的压降增大,增加风机能耗,因此增压风机失速也是不得不考虑的因素。
2.3.2 在其它参数恒定的情况下,提高烟气流速可以增强气液两相的湍动,减薄烟气与吸收浆液之间的膜厚度,增强气液传质。
另外,增大烟气流速将使喷淋液滴的下降速度相对降低,使单位体积内持液量增大,增大了吸收段的传质面积从而增大了传质单元数,提高了脱硫效率,但在吸收塔中提高烟气流速反而减少了浆液和烟气的接触时间。
在实际工程应用中,烟气冷却器烟气流速的增加可以减小吸收塔的横截面积,降低其体积从而降低工程造价,还可以降低循环泵的能耗。
但是,烟气流速的增大也可能造成溢液和烟气带水而增加除雾器的负担。
此外,烟气流速的选择还必须考虑吸收塔的型式。
对于FGD系统中所采用的主流塔型逆流喷淋塔来说,通常采用的烟气流速为3~5m/s。