2017年电大工程数学试题及答案

合集下载

国家开放大学《工程数学》章节测试参考答案

国家开放大学《工程数学》章节测试参考答案

国家开放大学《工程数学》章节测试参考答案第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D ).A. 4B. -4C. 6D. -6⒉若,则(A ). A.B. -1C.D. 1⒊乘积矩阵中元素(C ). A. 1 B. 7 C. 10 D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B ). A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D ).A. B. C. D.⒍下列结论正确的是(A ). A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则a a ab b bc c c 1231231232=a a a a b a b a b c c c 123112233123232323---=000100002001001a a=a =12-121124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥c 23=A B ,n A BAB+=+---111()AB BA--=11()A B A B +=+---111()AB A B ---=111A B ,n k >0k ≠1A B A B +=+AB n A B =kA k A =-=-kA k A n ()A A -1A B ,n AB A B ,n AB A B ,n AB ≠0⒎矩阵的伴随矩阵为(C ).A. B. C. D. ⒏方阵可逆的充分必要条件是(B ).A.B.C.D.⒐设均为阶可逆矩阵,则(D ).A. B. C.D.⒑设均为阶可逆矩阵,则下列等式成立的是(A ). A. B.C.D.(二)填空题(每小题2分,共20分)⒈ 7 。

⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 。

⒊若为矩阵,为矩阵,切乘积有意义,则为 5×4 矩阵。

⒋二阶矩阵 [151]。

⒌设,则 [6―35―18]。

⒍设均为3阶矩阵,且,则 72 。

国家开放大学工程数学(本)形成性考核作业一、二、三

国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。

《工程数学》电大历年期末试题及答案 (2)

《工程数学》电大历年期末试题及答案 (2)

工程数学电大历年期末试题及答案第一章:复数及其运算1.1 复数的定义和性质试题:1.请简要叙述复数的定义和性质。

2.复数的共轭运算是指什么?给出其定义和性质。

3.试证明虚数单位i满足i2=−1。

答案:1.复数是由实数和虚数部分构成的数,通常表示为a+bi的形式,其中a是实数部分,b是虚数部分,i是虚数单位。

复数的性质有:–复数可以相加:(a+bi) + (c+di) = (a+c) + (b+d)i–复数可以相乘:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i–复数的加法和乘法满足交换律和结合律。

2.复数的共轭运算是指改变虚数部分的符号,即将a+bi变为a-bi。

共轭运算的定义和性质如下:–定义:对于任意复数z=a+bi,其共轭复数为z* = a-bi。

–性质:(a+bi) * (a-bi) = a^2 + b^2,即一个复数与其共轭的乘积等于实数部分的平方加虚数部分的平方。

3.可以通过计算i2来证明虚数单位i满足i2=−1:–i2=(0+1i)∗(0+1i)=−1。

1.2 复数的指数表示和三角函数形式试题:1.请简要叙述复数的指数表示形式和三角函数形式。

2.试证明对于任意复数z,有$e^{i\\theta} =\\cos\\theta + i\\sin\\theta$。

答案:1.复数的指数表示形式是通过欧拉公式来表达,即$z= r \\cdot e^{i\\theta}$,其中r是复数的模,$\\theta$是复数的辐角。

复数的三角函数形式是通过复数的实部和虚部来表示,即$z = a + bi = r\\cos\\theta + r\\sin\\theta i$,其中r是复数的模,$\\theta$是复数的辐角。

2.可以通过欧拉公式来证明对于任意复数z,有$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$:–欧拉公式表示为$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$。

电大 工程数学试卷及答案汇总(完整版)

电大 工程数学试卷及答案汇总(完整版)

F(w)= [e|t| ] e|t|e jt dt e( j )t dt e( j )t dt
0
0
(3 分)
= 1 1 2 j j 2 2
(2 分)
由付氏积分公式有
f(t)= 1[ F(w)]=
1
F ( )e jt d
2
(2 分)
= 1 2 (cost j sint)d
dx f (x, y)dy 1
即 从而
dx ce(2x4y)dy 1
00
c=8
(2) P(X Y )
f
(x,
y)dxdy
x
dx
8e(2x4 y) dy
2
x y
00
3
(3) 当 x>0 时, f X (x) f (x, y)dy 8e(2x4y)dy 2e2x
0
=–( y2 –7000y + 4•106 ) /1000 求极值得 y=3500 (吨)
(3 分) (1 分)
工程数学(本)10 秋模拟试题(一) 一、单项选择题(每小题 3 分,共 15 分)
1.设 A, B 都是 n 阶方阵,则下列命题正确的是( AB A B ).
《工程数学》试题
第 8 页 共6 页
12.求线性方程组
x1 3x2 x3 x4 1 x12x14x27x23x32x32x4x41 2







2x1 4x2 8x3 2x4 2
将方程组的增广矩阵化为阶梯形
1 3 1 1 1 1 3 1 1 1
2 7 2 1 2 0 1 0 1 0 1 4 3 2 1 0 1 2 3 0
13.设二维随机变量 (X ,Y ) 的联合概率函数是

2017年电大《工程数学》期末考试复习资料及答案

2017年电大《工程数学》期末考试复习资料及答案

1.设B A ,都是n 阶方阵,则下列命题正确的是(A )AB A B = 2.向量组的 秩是(B ).B. 33.n 元线性方程组AX b =有解的充分必要条件是(A ).A. )()(b A r A r =4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).D. 9/255.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(C )是μ无偏估计. C.321535151x x x ++ 6.若A 是对称矩阵,则等式(B )成立. B.A A ='7.=⎥⎦⎤⎢⎣⎡-15473( D ).D. 7543-⎡⎤⎢⎥-⎣⎦8.若(A )成立,则n 元线性方程组AX O =有唯一解.A. r A n ()=9. 若条件(C )成立,则随机事件A ,B 互为对立事件. C.∅=AB 且A B U +=10.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i i X X ,则下列各式中(C)不是统计量. C. ∑=-312)(31i i X μ11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(B )矩阵时,乘积B C A ''有意义.B.42⨯12. 向量组[][][][]αααα1234000*********====,,,,,,,,,,, 的极大线性无关组是( A ).A .ααα234,,13. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=(D )时线性方程组有无穷多解. D .1/214. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ). C.1/12 15. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是(B ).B. 未知方差,检验均值⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,00116. 若A B ,都是n 阶矩阵,则等式(BAB BA = 17. 向量组[][][][]3,2,1,3,0,0,0,2,1,0,0,14321====αααα的秩是(C ).C. 318. 设线性方程组b AX =有惟一解,则相应的齐次方程组O AX =(A ).A. 只有0解 19. 设A B ,为随机事件,下列等式成立的是(D ).D. )()()(AB P A P B A P -=-1.设B A ,为三阶可逆矩阵,且0>k ,则下式(B )成立.B A AB '=2.下列命题正确的是(C3.设⎥⎦⎤⎢⎣⎡=1551A ,那么A 的特征值是(D ) D .-4,64.矩阵A 适合条件( D )时,它的秩为r . D .A 中线性无关的列有且最多达r 列 5.下列命题中不正确的是( D ).D .A 的特征向量的线性组合仍为A 的特征向量 6. 掷两颗均匀的骰子,事件“点数之和为3”的概率是( B ). B .1/17.若事件A 与B 互斥,则下列等式中正确的是.A .P A B P A P B ()()()+=+8. 若事件A ,B 满足1)()(>+B P A P ,则A 与B 一定(A ). A .不互斥9.设A ,B 是两个相互独立的事件,已知则=+)(B A P (B )B .2/310.设n x x x ,,,21 是来自正态总体),(2σμN 的样本,则(B )是统计量. B .∑=ni i x n 11 1. 若0351021011=---x ,则=x (A).A.32. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ).B 23. 设B A ,为n 阶矩阵,则下列等式成立的是(C ). C. B A B A '+'='+)(4. 若A B ,满足(B ),则A 与B 是相互独立. B. )()()(B P A P AB P =5. 若随机变量X的期望和方差分别为)(X E 和)(X D ,则等式(D )成立. D.22)]([)()(X E X E X D -=1.设BA ,均为n 阶可逆矩阵,则下列等式成立的是( ).)BAAB 11=-,31)(,21)(==B P A P2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是(),其中0≠i a ,)3,2,1(=i . B .0321=-+a a a 3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) . B .0,6 4. 设A ,B 是两事件,其中A ,B 互不相容,则下列等式中( )是不正确的. C. )()()(B P A P AB P = 5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ).D .)(9)(4Y D X D +6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是(B .n s ⨯ )矩阵. 7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X +8.设矩阵,则A 的对应于特征值2=λ的一个特征向量α=()C .1,1,0 列事件运算关系正确的是( ).A .A B BA B +=9. 下10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( N2.,3) ).D .11.设321,,x x x 是来自正态总体),(2σμN 的样本,则()是μ的无偏估计. C .32153511x x ++12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).B .t 分布 a a a b b b c c c 1231231232=,则a a a ab a b a bc c c 123112233123232323---=(D ).D. -6⒈设⒉若,则a =(A ). A. 1/2⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=C. 10⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B )AB BA --=11 ⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D =-kA k A n ()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为().C. 5321--⎡⎣⎢⎤⎦⎥⒏方阵A 可逆的充分必要条件是(B ).B.A ≠0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).D. ()B C A ---'111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A 10100200001000=aa⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是 A. ()A B A AB B +=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).C. [,,]--'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).B. 有唯一解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ).A. 3⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.B.ααα123,,⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ).D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).可能无解 ⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论()成立.D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1 ⒈A B ,为两个事件,则( B )成立. B. ()A B B A +-⊂⒉如果( C )成立,则事件A 与B 互为对立事件. C. AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). D. 307032⨯⨯..4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B ,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6,0.87.设f x ()为连续型随机变量X 的密度函数,则对任意的a ba b ,()<,E X ()=(A).A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ). B.9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P (D ).D. f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. C. Y X =-μσ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计D.x x x 123--二、填空题(每小题3分,共15分) 1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-=-18 .2.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ= ,则称λ为A 的特征值. 3设随机变量12~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = 0.3.4.设X 为随机变量,已知3)(=X D ,此时D X ()32-= 27 . 5.设θˆ是未知参数θ的一个无偏估计量,则有 ˆ()E θθ=. 6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-=8.7.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量.8.若5.0)(,8.0)(==B A P A P ,则=)(AB P0.3 .9.如果随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20.10.不含未知参数的样本函数称为 统计量 . 11. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB -8 .12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,_________________)(=A r .213. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为 )(C B A +.14. 设随机变量)15.0,100(~B X ,则=)(X E15.15. 设n x x x ,,,21 是来自正态总体N (,)μσ的一个样本,∑==ni i x n x 11,则=)(x D 16. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12.17. 当λ=1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解..18. 若5.0)(,6.0)(,9.0)(===+B P A P B A P ,则=)(AB P 0.2.19. 若连续型随机变量X 的密度函数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则=)(X E 2/3.20. 若参数θ的估计量 θ满足E ( )θθ=,则称 θ为θ的无偏估计nσ. 1.行列式701215683的元素21a 的代数余子式21A 的值为= -56.2.已知矩阵n s ij c C B A ⨯=)(,,满足CB AC =,则A 与B 分别是n n s s ⨯⨯, 阶矩阵.3.设B A ,均为二阶可逆矩阵,则=⎥⎦⎤⎢⎣⎡---111O BA O⎥⎦⎤⎢⎣⎡O A B O .4.线性方程组⎪⎩⎪⎨⎧=-+=+++=+++326423343143214321x x x x x x x x x x x 一般解的自由未知量的个数为 2.5.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.6. 设A ,B 为两个事件,若P (AB )= P (A )P (B ),则称A 与B 相互独立 . 7.设随机变量X 的概率分布为则a = 0.3 .8.设随机变量⎪⎪⎭⎫ ⎝⎛3.03.04.0210~X,则E X ()=0.9. 9.设X 为随机变量,已知2)(=X D ,那么=-)72(X D 8.10.矿砂的5个样本中,经测得其铜含量为1x ,2x ,3x ,4x ,5x (百分数),设铜含量服从N (μ,2σ),2σ未知,在01.0=α下,检验0μμ=,则取统计量 x t =1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-. 2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k .1-3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 6.0 .4. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 4.2.5. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN . 1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 . 线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= )()(B P A P - 4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k =π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x nx 11,则~x )1,0(nN7.设三阶矩阵A 的行列式21=A ,则1-A =2 8.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.10.设A B ,互不相容,且P A ()>0,则P B A ()=0 . 11.若随机变量X ~ ]2,0[U ,则=)(X D 1/3.12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的无偏估计. ⒈210140001---=7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a= 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 .⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A .⒈当λ=1时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ的根. 10.若矩阵A满足A A'=-1,则称A为正交矩阵.⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2/5. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . 1.统计量就是不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和最大似然估 两种方法.3.比较估计量好坏的两个重要标准是无偏性,有效性 . 4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.三、(每小题16分,共64分) A1.设矩阵A B =---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎤⎦⎥112235324215011,,且有AX B =',求X .解:利用初等行变换得112100235010324001112100011210012301---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511 由矩阵乘法和转置运算得X A B ='=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-12017215112011511111362 2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-52012515105158500500021461351341B A3.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X.解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1211002550103640211121100013210001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X 4.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=031052,843722310B A ,I 是3阶单位矩阵,且有B X A I =-)(,求X .1. 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-=-6515924031052111103231)(1B A I X 5.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=21101211,1341102041121021B A ,求(1)A ;(2)B A I )(-. (1)13171020411*******41102041121021----=----=A =2513171200011317120121-=--=--(2)因为 )(A I-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0341112041221020所以 B A I)(-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------⋅0341112041221020=⎪⎪⎪⎪⎪⎭⎫⎝⎛--21101211⎪⎪⎪⎪⎪⎭⎫⎝⎛----09355245.6.设矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=653312,112411210B A ,解矩阵方程B AX '=.解:因为 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-120730001210010411100112010411001210 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---→123100247010235001123100001210011201,得 ⎪⎪⎪⎭⎫⎝⎛----=-1232472351A 所以='=-B A X 1⎪⎪⎪⎭⎫⎝⎛----123247235⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-13729161813635132. 7设矩阵⎥⎦⎢⎢⎢⎣⎡---=423532211A1)1111021121110211423532211=---=---=---=A(2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211 →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511 即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12017215118 .,3221,5231X B ,XA B A 求且=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=X..,B A B ,AX .BA X,A AI 求且己知例于是得出⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡---→⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡=--18305210738525312341112353221123513251001132510011021130110015321)(119.设矩阵⎥⎦⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A 解:(1)因为210110132-=--=A12111210211110210211321-=-===B所以 2==B A AB .(2)因为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1011012/32/11A .10.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎦⎢⎢⎢⎣⎡--=350211B ,求X .解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--11121120)(1A I所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X 11.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→11770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→00200011002341 所以,r (4321,,,αααα) = 3. 它的一个极大线性无关组是 431,,ααα(或432,,ααα).1⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎦⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC 13写出4阶行列式:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a14求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R15.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x xA2.求线性方程组 的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131方程组的一般解为x x x x x x14243415=+==-⎧⎨⎪⎩⎪ (其中x 4为自由未知量) 令x 4=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为⎪⎩⎪⎨⎧-===4342415xx x x x x (其中x 4为自由未知量)令x 4=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为 10kX X X +=(其中k 为任意常数)2.当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x有解,在有解的情况下求方程组的全部解. 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---19102220105111021211114796371221211λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1000010511108490110000105111021211λλ 由此可知当1≠λ时,方程组无解。

国开电大《工程数学(本)》形考任务四答案

国开电大《工程数学(本)》形考任务四答案

国家开放大学《工程数学(本)》形成性考核作业四测验答案一、解答题(答案在最后)
二、证明题(答案在最后)
参考答案
试题1答案:解:
试题2答案:
试题3答案:解:
试题4答案:
试题5答案:
试题6答案:
试题7答案:
试题8答案:
试题9答案:
试题10答案:
证明:(A+A′)′=A′+(A′)′=A′+A=A+A′∴A+A′是对称矩阵
试题11答案:
证明:∵A是n阶方阵,且AA′=I
∴|AA′|=|A||A′|=|A|2=|I|=1
∴|A|=1或|A|=-1
试题12答案:
证明:设AX=B为含n个未知量的线性方程组
该方程组有解,即R(Ā)=R(A)=n
从而AX=B有唯一解当且仅当R(A)=n
而相应齐次线性方程组AX=0只有零解的充分必要条件是R(A)=n
∴AX=B有唯一解的充分必要条件是:相应的齐次线性方程组AX=0只有零解。

最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)

最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)

最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)
考试说明:本人汇总了历年来该科的试题及答案,形成了一个完整的标准考试题库,对考生的复习和考试起着非常重要的作用,会给您节省大量的时间。

内容包含:单选题、填空题、计算题、证明题。

做考题时,利用本文档中的查找工具(Ctrl+F),把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核、机考及教学考一体化试题答案,敬请查看。

《工程数学》题库一
试题答案及评分标准(仅供参考)
《工程数学》题库二
试题答案及评分标准(仅供参考)
《工程数学》题库三一、单项选择题(每小题3分.共15分)
试题答案及评分标准
(仅供参考)
《工程数学》题库四
试题答案及评分标准
(仅供参考)
《工程数学》题库五
试题答案及评分标准(仅供参考)
《工程数学》题库六一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案及评分标准
(仅供参考)。

2017年最新电大工程数学本期末复习

2017年最新电大工程数学本期末复习

一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是(AB A B= ). 2.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ()BAAB 11=- ). 3. 设B A ,为n 阶矩阵,则下列等式成立的是(B A B A '+'='+)( ).4.设B A ,为n 阶矩阵,则下列等式成立的是( BAAB = ).5.设A ,B 是两事件,则下列等式中( )()()(B P A P AB P =,其中A ,B 互不相容 )是不正确的. 6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( n s ⨯ )矩阵. 7.设A 是n s ⨯矩阵,B 是m s ⨯矩阵,则下列运算中有意义的是(AB ')8.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( 0,6 ) . 9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 ) . 10.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(321535151x x x ++ )是μ无偏估计.11.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =(nx /15-).12.设2321321321=c c c b b b a a a ,则=---321332211321333c c c b a b a b a a a a (2-). 13. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P (0.4 ). 14. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( 1x )是统计量. 15.若A 是对称矩阵,则等式(A A =')成立.16.若(r A n ()= )成立,则n 元线性方程组AX O =有唯一解.17. 若条件( ∅=AB 且A B U += )成立,则随机事件A ,B 互为对立事件. 18.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( )(9)(4Y D X D + ).19若X 1、X 2是线性方程组AX =B 的解而21ηη、是方程组AX = O 的解则(213231X X +)是AX =B 的解.20.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( )3,2(2-N ).21.若事件A 与B 互斥,则下列等式中正确的是( P A B P A P B ()()()+=+ ).22. 若0351021011=---x ,则=x (3 ).30. 若)4,2(~N X ,Y =(22-X ),则Y N ~(,)01. 23. 若A B ,满足()()()(B P A P AB P = ),则A 与B 是相互独立.24. 若随机变量X 的期望和方差分别为)(X E 和)(X D 则等式(22)]([)()(X E X E X D -= )成立.25. 若线性方程组AX =0只有零解,则线性方程组AX b =(可能无解).26. 若n 元线性方程组AX =0有非零解,则(r A n ()<)成立.27. 若随机事件A ,B 满足AB =∅,则结论(A 与B 互不相容 )成立.28. 若⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则秩=)(A (1 ).29. 若⎥⎦⎤⎢⎣⎡=5321A ,则=*A ( ⎥⎦⎤⎢⎣⎡--1325 ).30.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( 3 ).31.向量组10001200123012341111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,的秩是(4).32. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的一个极大无关组可取为(21,αα).33. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,则=-+32132ααα([]2,3,1--).34.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从(t 分布).35.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i i X X ,则下列各式中(∑=-312)(31i i X μ )不是统计量.)3,2,1(=i .36. 对于随机事件A B ,,下列运算公式()()()()(AB P B P A P B A P -+=+)成立.37. 下列事件运算关系正确的是( A B BA B += ).38.下列命题中不正确的是( A 的特征向量的线性组合仍为A 的特征向量).39. 下列数组中,(1631614121)中的数组可以作为离散型随机变量的概率分布.40. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是( 2).41. 已知⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=21101210,20101B a A ,若⎥⎦⎤⎢⎣⎡=1311AB ,则=a ( 1- ). 42. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么(1,21-==b a ).43. 方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( 0321=-+a a a ),其中0≠i a ,44. 线性方程组⎩⎨⎧=+=+013221x x x x 解的情况是(有无穷多解).45. n 元线性方程组AX b =有解的充分必要条件是()()(b A r A r = )46.袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( 259)47. 随机变量)21,3(~B X ,则=≤)2(X P (87).48.=⎥⎦⎤⎢⎣⎡-15473( 7543-⎡⎤⎢⎥-⎣⎦) 二、填空题1.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= 8.2.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= -18 . 3. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB —8 . 4. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12 . 5.设A B ,互不相容,且P A ()>0,则P B A ()= 0 .6. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-.7. 设A ,B 为两个事件,若)()()(B P A P AB P =,则称A 与B 相互独立 .8.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称λ为A 的特征值. 9.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量.10. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为)(C B A +. 11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(42⨯ )矩阵时,乘积B C A ''有意义.12. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵方程D BXC A =+的解=X 11)(---C A D B .13.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = 0.3 .14.设随机变量X ~ B (n ,p ),则E (X )= np . 15. 设随机变量)15.0,100(~B X ,则=)(X E 15 .16.设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = π4 .17. 设随机变量⎥⎦⎤⎢⎣⎡-25.03.0101~a X ,则a =45.0 . 18. 设随机变量⎥⎦⎤⎢⎣⎡5.02.03.0210~X ,则=≠)1(X P 8.0. 19. 设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它0103)(2x x x f ,则=<)21(X P 81.20. 设随机变量X 的期望存在,则E X E X (())-=0. 21. 设随机变量X ,若5)(,2)(2==X E X D ,则=)(X E 3.22.设X 为随机变量,已知3)(=X D ,此时D X ()32-= 27 .23.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 无偏 估计.24.设θˆ是未知参数θ的一个无偏估计量,则有ˆ()E θθ=. 25.设三阶矩阵A 的行列式21=A ,则1-A = 2 . 26.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21线性无关 . 27.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个。

2017年最新电大工程数学本期末温习

2017年最新电大工程数学本期末温习

一、单项选择题1.设B A ,都是n 阶方阵,那么以下命题正确的选项是( AB A B= ).2.设B A ,均为n 阶可逆矩阵,那么以劣等式成立的是(()BAAB 11=- ).3. 设B A ,为n 阶矩阵,那么以劣等式成立的是(B A B A '+'='+)( ).4.设B A ,为n 阶矩阵,那么以劣等式成立的是( BAAB = ).5.设A ,B 是两事件,那么以劣等式中( )()()(B P A P AB P =,其中A ,B 互不相容 )是不正确的.6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '成心义,那么C 是( n s ⨯ )矩阵. 7.设A 是n s ⨯矩阵,B 是m s ⨯矩阵,那么以下运算中成心义的是(AB ')8.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特点值为0,2,那么3A 的特点值为 ( 0,6 ) . 9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,那么A 的对应于特点值2=λ的一个特点向量α=( ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 ) . 10.设x x x n 12,,, 是来自正态整体N (,)μσ2的样本,那么(321535151x x x ++ )是μ无偏估量.11.设n x x x ,,,21 是来自正态整体)1,5(N 的样本,那么查验假设5:0=μH 采纳统计量U =(nx /15-).12.设2321321321=c c c b b b a a a ,那么=---321332211321333c c c b a b a b a a a a (2-). 13. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,那么=<)2(X P ( ). 14. 设n x x x ,,,21 是来自正态整体22,)(,(σμσμN 均未知)的样本,那么( 1x )是统计量. 15.若A 是对称矩阵,那么等式(A A =')成立.16.假设(r A n ()= )成立,那么n 元线性方程组AX O =有唯一解.17. 假设条件( ∅=AB 且A B U += )成立,那么随机事件A ,B 互为对立事件.18.假设随机变量X 与Y 彼此独立,那么方差)32(Y X D -=( )(9)(4Y D X D + ).19若X 1、X 2是线性方程组AX =B 的解而21ηη、是方程组AX = O 的解那么(213231X X +)是AX =B 的解.20.假设随机变量)1,0(~N X ,那么随机变量~23-=X Y ( )3,2(2-N ).21.假设事件A 与B 互斥,那么以劣等式中正确的选项是( P A B P A P B ()()()+=+ ).22. 若351021011=---x ,那么=x (3 ).30. 假设)4,2(~N X ,Y =(22-X ),那么Y N ~(,)01. 23. 假设A B ,知足()()()(B P A P AB P = ),那么A 与B 是彼此独立.24. 假设随机变量X 的期望和方不同离为)(X E 和)(X D 那么等式(22)]([)()(X E X E X D -= )成立.25. 假设线性方程组AX =0只有零解,那么线性方程组AX b =(可能无解).26. 若n 元线性方程组AX =0有非零解,那么(r A n ()<)成立.27. 假设随机事件A ,B 知足AB =∅,那么结论(A 与B 互不相容 )成立.28. 假设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,那么秩=)(A (1 ).29. 若⎥⎦⎤⎢⎣⎡=5321A ,那么=*A ( ⎥⎦⎤⎢⎣⎡--1325 ). 30.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( 3 ).31.向量组10001200123012341111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,的秩是(4).32. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的一个极大无关组可取为(21,αα).33. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,那么=-+32132ααα([]2,3,1--). 34.对给定的正态整体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从(t 散布).35.对来自正态整体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i i X X ,那么以下各式中(∑=-312)(31i i X μ )不是统计量.)3,2,1(=i .36. 关于随机事件A B ,,以下运算公式()()()()(AB P B P A P B A P -+=+)成立.37. 以下事件运算关系正确的选项是( A B BA B += ).38.以下命题中不正确的选项是( A 的特点向量的线性组合仍为A 的特点向量).39. 以下数组中,(1631614121)中的数组能够作为离散型随机变量的概率散布.40. 已知2维向量组4321,,,αααα,那么),,,(4321ααααr 最多是( 2).41. 已知⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=21101210,20101B a A ,假设⎥⎦⎤⎢⎣⎡=1311AB ,那么=a ( 1- ). 42. 已知)2,2(~2N X ,假设)1,0(~N b aX +,那么(1,21-==b a ).43. 方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( 0321=-+a a a ),其中0≠i a ,44. 线性方程组⎩⎨⎧=+=+013221x x x x 解的情形是(有无穷多解).45. n 元线性方程组AX b =有解的充分必要条件是()()(b A r A r = )46.袋中有3个红球,2个白球,第一次掏出一球后放回,第二次再取一球,那么两球都是红球的概率是( 259)47. 随机变量)21,3(~B X ,那么=≤)2(X P (87).48.=⎥⎦⎤⎢⎣⎡-15473( 7543-⎡⎤⎢⎥-⎣⎦) 二、填空题1.设B A ,均为3阶方阵,6,3A B =-=,那么13()A B -'-= 8 . 2.设B A ,均为3阶方阵,2,3A B ==,那么13A B -'-= -18 . 3. 设B A ,均为3阶矩阵,且3==B A ,那么=--12AB —8 . 4. 设B A ,是3阶矩阵,其中2,3==B A ,那么='-12B A 12 . 5.设A B ,互不相容,且P A ()>0,那么P B A ()= 0 .6. 设B A ,均为n 阶可逆矩阵,逆矩阵别离为11,--B A ,那么='--11)(A B B A )(1'-.7. 设A ,B 为两个事件,假设)()()(B P A P AB P =,那么称A 与B 彼此独立 .8.设A 为n 阶方阵,假设存在数λ和非零n 维向量X ,使得AX X λ=,那么称λ为A 的特点值. 9.设A 为n 阶方阵,假设存在数λ和非零n 维向量X ,使得AX X λ=,那么称X 为A 相应于特点值λ的特点向量.10. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为)(C B A +. 11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(42⨯ )矩阵时,乘积B C A ''成心义. 12. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,那么矩阵方程D BXC A =+的解=X 11)(---C A D B .13.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,那么a = .14.设随机变量X ~ B (n ,p ),那么E (X )= np . 15. 设随机变量)15.0,100(~B X ,那么=)(X E 15 .16.设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,那么常数k = π4 .17. 设随机变量⎥⎦⎤⎢⎣⎡-25.03.0101~a X ,那么a 45.0 . 18. 设随机变量⎥⎦⎤⎢⎣⎡5.02.03.0210~X ,那么=≠)1(X P 8.0. 19. 设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它0103)(2x x x f ,那么=<)21(X P 81.20. 设随机变量X 的期望存在,那么E X E X (())-=0.21. 设随机变量X ,假设5)(,2)(2==X E X D ,那么=)(X E 3.22.设X 为随机变量,已知3)(=X D ,现在D X ()32-= 27 .23.设θˆ是未知参数θ的一个估量,且知足θθ=)ˆ(E ,那么θˆ称为θ的 无偏 估量. 24.设θˆ是未知参数θ的一个无偏估量量,那么有ˆ()E θθ=.25.设三阶矩阵A 的行列式21=A ,那么1-A = 2 . 26.设向量β可由向量组n ααα,,,21 线性表示,那么表示方式唯一的充分必要条件是n ααα,,,21线性无关 . 27.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.28. 设1021,,,x x x 是来自正态整体)4,(μN 的一个样本,那么~101101∑=i i x )104,(μN .29. 设n x x x ,,,21 是来自正态整体N (,)μσ2的一个样本,∑==ni i x n x 11,那么=)(x D n 2σ30.设412211211)(22+-=x x x f ,那么0)(=x f 的根是 2,2,1,1-- . 31.设22112112214A x x =-+,那么0A =的根是 1,-1,2,-2 . 32.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,那么_________________)(=A r .2 33.若5.0)(,8.0)(==B A P A P ,那么=)(AB P .34.假设样本n x x x ,,,21 来自整体)1,0(~N X ,且∑==ni i x n x 11,那么~x )1,0(n N35.假设向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能组成R 3一个基,那么数k 2≠ . 36.假设随机变量X ~ ]2,0[U ,那么=)(X D 31.37. 假设线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,那么当λ=( 21)时线性方程组有无穷多解. 38. 假设n 元线性方程组0=AX 知足r A n ()<,那么该线性方程组 有非零解 . 39. 若5.0)(,1.0)(,9.0)(===+B A P B A P B A P ,那么=)(AB P .40. 假设参数θ的两个无偏估量量1ˆθ和2ˆθ知足)ˆ()ˆ(21θθD D >,那么称2ˆθ比1ˆθ更 有效 . 41.假设事件A ,B 知足B A ⊃,那么 P (A - B )= )()(B P A P - . 42. 假设方阵A 知足A A '=,那么A 是对称矩阵.43.若是随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 44.若是随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 45. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,那么k=1- 46. 向量组[][][][]αααα1234000100120123====,,,,,,,,,,,的极大线性无关组是(ααα234,, ).47.不含未知参数的样本函数称为 统计量 .48.含有零向量的向量组必然是线性相关 的.49. 已知2.0)(,8.0)(==AB P A P ,那么=-)(B A P .50. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E . 51. 已知随机变量⎥⎦⎤⎢⎣⎡-5.05.05.05.05201~X ,那么=)(X E 3. 52.行列式701215683的元素21a 的代数余子式21A 的值为= -56 .53. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(121). 54. 在对单正态整体N (,)μσ2的假设查验问题中,T 查验法解决的问题是(未知方差,查验均值).55. 1111111---x x 是关于x 的一个多项式,该式中一次项x 系数是 2 . 56. =⎥⎦⎤⎢⎣⎡-12514⎥⎦⎤⎢⎣⎡--451231. 57. 线性方程组b AX =中的一样解的自由元的个数是2,其中A 是54⨯矩阵,那么方程组增广矩阵)(b A r = 3 .58. 齐次线性方程组0=AX 的系数矩阵经初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→→000020103211 A 那么方程组的一样解为4342431,(22x x x x x x x ⎩⎨⎧=--=是自由未知量).59. 当λ= 1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.1.设矩阵A B =---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎤⎦⎥112235324215011,,且有AX B =',求X . 解:利用初等行变换得112100235010324001112100011210012301---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511 →------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥11092201072100151110020*********1511 即 A -=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511 由矩阵乘法和转置运算得X A B ='=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-120172151120115111113622.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→14610013501000111146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A 3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为2100110132-=--=A12111210211110210211321-=-===B 因此 2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032 因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A . 4.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 解:由矩阵乘法和转置运算得100111111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 利用初等行变换得111100132010122001111100021110011101----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ 100201001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦100201011101001112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦→⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100201010011001112 即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=423532211A ,求(1)A ,(2)1-A .解: (1)1100110211210110211423532211=---=---=---=A(2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211 →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511 →------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥11092201072100151110020*********1511 即 A -=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12017215116.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1101001210101200011101001111010101即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I 因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .7.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X . 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→12110025*********1121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A 由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X8.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x 的全数解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一样解为:x x x x x x14243415=+==-⎧⎨⎪⎩⎪ (其中x 4为自由未知量)令x 4=0,取得方程的一个特解)0001(0'=X .方程组相应的齐方程的一样解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中x 4为自由未知量)令x 4=1,取得方程的一个基础解系)1115(1'-=X .于是,方程组的全数解为:10kX X X +=(其中k 为任意常数)9.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031一样解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--因此原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.10.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解.解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 505==-λλ即当时,3)(<A r ,因此方程组有非零解.方程组的一样解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',那么方程组的基础解系为{X 1}.通解为k 1X 1,其中k 1为任意常数.27.罐中有12颗围棋子,其中8颗白子,4颗黑子.假设从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,那么(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+==273.0018.0255.0255.031234=+=+C C .11.求以下线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭方程组的一样解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量.令042==x x ,得方程组的一个特解0(0010)X '=,,,. 方程组的导出组的一样解为:124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,; 令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,.因此方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数.12. 当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=++-=++-=+-2532342243214321421λx x x x x x x x x x x 有解,在有解的情形下求方程组的全数解. 解:将方程组的增广矩阵化为阶梯形110121214323152110120113101132---+⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥λλ →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥110120113100003101210113100003λλ 由此可知当λ≠3时,方程组无解。

电大[工程数学]形成性考核册答案(1~3)

电大[工程数学]形成性考核册答案(1~3)

工程数学(1~3) 形成性考核册答案电大工程数学作业(一)答案(满分100分)第2章 矩阵(一) 单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若0001000020011a a=,则a =(A ).A.12B. -1C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BA B +=+---111B. ()AB BA--=11C. ()A B AB+=+---111D. ()A B AB---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. A B n A B = C. kA k A = D. -=-kA k A n() ⒍下列结论正确的是( A ). A. 若A 是正交矩阵,则A-1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则A B ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ).A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321 ⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ). A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2 C. ()221111ABC C B A ----= D. ()22A B C C B A '=''' (二)填空题(每小题2分,共20分)⒈210140001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积A C B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2A B 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()A B C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A ⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12101210321111432102,,,求AC BC +. 解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式102014360253311--中元素a a 4142,的代数余子式,并求其值.答案:035263420)1(1441=--=+a 4535631021)1(2442=---=+a ⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 123423121111126---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶ 1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-919292929192929291100010001919292031320323110210201122120323190630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-110110001100011A ⒍求矩阵101101111011001012101211321⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-0001110001110110110110101110111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且A A I '=,试证A =1或-1. 证明: A 是n 阶方阵,且A A I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量 10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1D.B P PA ='(二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα.⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组A X b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则A X b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612109039270018871048231901843101850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-310101001001020001314110046150101244200134241441542111r rr r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x 2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(1111111011111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==5710117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,, 解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000073140211450110314731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A AA AA AI∴ξλξ11=-A即λ1是矩阵1-A 的特征值10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B.xf x x ab ()d ⎰ C.f x x ab ()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. F x x a b ()d ⎰C. f a f b ()()-D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52.2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P A B ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P A B P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-pp pp pp pk k 12)1()1()1(321 6.设随机变量X 的概率分布为12345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它试求P X P X (),()≤<<12142.解:412)()21(2122121====≤⎰⎰∞-xxdx dx x f X P16152)()241(1412141241====<<⎰⎰xxdx dx x f X P8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(1031==⋅==⎰⎰+∞∞-xxdx x dx x xf X E21422)()(1041222==⋅==⎰⎰+∞∞-xxdx x dx x f x XE181)32(21)]([)()(222=-=-=x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X nX i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX XX E nX nE X E +⋯⋯++=+⋯⋯++==∑=μμ==n n1 )]()()([1)(1)1()(2122121n n ni i X D X D X D nX XX D nX nD X D +⋯⋯++=+⋯⋯++==∑=22211σσnn n=⋅=以上内容可能会有错误,欢迎指出。

国家开放大学《工程数学》综合练习题参考答案

国家开放大学《工程数学》综合练习题参考答案

A. a1 a2 a3 0
B. a1 a2 a3 0
C. a1 a2 a3 0
D. a1 a2 a3 0
28.设矩阵
A
1 1
1
1
的特征值为 0,2,则 3A 的特征值为
(D)

A.0,2 B.2,6 C.0,0 D.0,6 29.若事件 A 与 B 互斥,则下列等式中正确的是(A).
国家开放大学《工程数学》综合练习题参考答案
一、单项选择题
本套练习题包括题型:
一、单项选择题(40) 二、填空题(35) 三、计算题(28) 四、证明题(6)
1.设 A, B 均为 n 阶可逆矩阵,则下列等式成立的是(D). A. ( A B)1 A1 B 1 B. A B A B
C. 2AB 2n A B D. ( AB)1 B 1 A1
B. AB AB C. AB 1 B 1 A1 D. A B 1 A1 B 1
23.设 A , B 是两个随机事件,下列命题中不正确的是(B) . A. P( A B) P( A) P(B) P( AB) B. P( AB) P( A)P(B)
C. P( A) 1 P( A) D. P( A B) P( AB)
A. P( A B) P( A) P(B)
B. P(B) 1 P( A)
C. P( A) P( A B)
D. P( AB) P( A) P(B)
30.设 x1, x2 ,, xn 是来自正态总体 N (5,1) 的样本,则检验假设 H 0 : 5 采用统计 量 U =(C).
A. x 5 5
7.向量组 1 0, 0, 0, 2 1, 0, 0, 3 1, 2 , 0, 4 1, 2 , 3的极大线性无关

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
c. 方程个数大于未知量个数的线性方程组一定有无穷多解
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
c.
d.
正确答案是:
试题 7
7-1.二阶矩阵
(B).
a.
b.
c.
d.
正确答案是:
7-2.二阶矩阵
a.
b.
c.
d.
(B).
正确答案是:
试题 8
8-1.向量组
的秩是(D).
a. 1
b. 2
c. 4
d. 3
正确答案是:3
8-2.向量组
的秩为(C).
a. 2
b. 4
c. 3
d. 5
正确答案是:3
试题 9
9-1.设向量组为
1-1.同时掷 3 枚均匀硬币,恰好有 2 枚正面向上的概率为(B).
a. 0.125
b. 0.375
c. 0.25
d. 0.5
1-2.从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是
偶数的概率为(A).
a. 0.4
b. 0.1
c. 0.5
d. 0.3
2-1.设 A,B 是两事件,则下列等式中( A)是不正确的.
正确答案是: 5×4
试题 3
,则 BA-1(B).
3-1.设
a.
b.

电大《工程数学》期末真题(含31套历年真题:2002年至2017年)

电大《工程数学》期末真题(含31套历年真题:2002年至2017年)
1
) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
1
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
0 00
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
(含 31 套历年真题)2002 年 1 月至 2017 年 7 月 国家开放大学(中央电大)“开放本科”期末考 试《工程数学》(本)试题及参考答案(含 15 年 31 套真题)
试卷代号:1080
《工程数学》真题目录(31 套)
1、2002 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 2、2003 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 3、2003 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 4、2004 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 5、2004 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 6、2005 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 7、2005 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 8、2006 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 9、2006 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 10、2007 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 11、2007 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 12、2008 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 13、2008 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 14、2009 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 15、2009 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 16、2010 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 17、2010 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 18、2011 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 19、2011 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 20、2012 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 21、2012 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 22、2013 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 23、2013 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 24、2014 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 25、2014 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 26、2015 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 27、2015 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 28、2016 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 29、2016 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 30、2017 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 31、2017 年 6 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案

工程数学试题(含答案)

工程数学试题(含答案)

【题型】计算题【题干】计算下列行列式:;.【答案】【难度】3【分数】15【课程结构】00027001001【题型】计算题【题干】设,求矩阵及矩阵的秩;【答案】【难度】3【分数】15【课程结构】00027001002【题型】计算题【题干】已知,,求(1);(2).【答案】(1);(2).【难度】3【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】设,, 求.【答案】,,【难度】3【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】求矩阵的逆矩阵。

【答案】【难度】3【分数】10【课程结构】00027001002【题型】计算题【题干】解矩阵方程【答案】【难度】3【分数】15【课程结构】00027001002;00027001003【题型】计算题【题干】设为三阶方阵,是的伴随矩阵,且,求下列行列式:(1);(2); (3).【答案】 (1)(2)(3)【难度】5【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】设,,求使.【答案】【难度】4【分数】15【课程结构】00027001002【题型】计算题【题干】两批相同产品分别来自甲、乙两厂,甲厂产品6件,其中一等品2件,乙厂产品5件,其中一等品1件。

现从甲厂产品中任取一件混入乙厂产品中,再从后者中任取一件,求取得一等品的概率。

【答案】【难度】4【分数】10【课程结构】00027001004【题型】计算题【题干】已知随机变量的分布密度为,求⑴分布函数;⑵.【答案】⑴分布函数⑵【难度】4【分数】15【课程结构】00027001005【题型】计算题【题干】求解线性方程组【答案】同解方程组为方程组的解为:【难度】4【分数】15【课程结构】00027001003【题型】计算题【题干】某人去甲、乙、丙三国之一旅游。

注意到这三国在此季节内下雨的概率分别是,他去这三国旅游的概率分别是.据此信息计算:(1)他旅游遇上雨天的概率;(2)若他旅游遇上雨天,求此人去甲国旅游的概率。

电大本科 工程数学-期末复习试卷含答案

电大本科 工程数学-期末复习试卷含答案

工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。

2,%,。

410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。

=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。

电大工程数学形成性考核册答案复习专用

电大工程数学形成性考核册答案复习专用

年电大【工程数学】形成性考核册答案工程数学作业(一)答案(满分分)第章 矩阵(一)单项选择题(每小题分,共分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=( ).. . - . . - ⒉若000100002001001a a=,则a =().. 12. - . -12. ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=( ).. . . .⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( ). . A B A B +=+---111 . ()AB BA --=11. ()A B A B +=+---111 . ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是( ). . A B A B +=+ . AB n A B =. kA k A = . -=-kA k A n () ⒍下列结论正确的是( ).. 若A 是正交矩阵,则A -1也是正交矩阵. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵 . 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 . 若A B ,均为n 阶非零矩阵,则AB ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( )..1325--⎡⎣⎢⎤⎦⎥ . --⎡⎣⎢⎤⎦⎥1325. 5321--⎡⎣⎢⎤⎦⎥ . --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是( )..A ≠0 .A ≠0 . A *≠0 . A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1( ). . ()'---B A C 111 . '--B C A 11 . A C B ---'111() . ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是( ). . ()A B A AB B +=++2222 . ()A B B BA B +=+2 . ()221111ABC C B A ----= . ()22ABC C B A '=''' (二)填空题(每小题分,共分)⒈21014001---= . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 × 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为阶矩阵,且A B ==-3,则-=2AB .⒎设A B ,均为阶矩阵,且A B =-=-13,,则-'=-312()A B - .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 .⒑设A A 12,是两个可逆矩阵,则AO OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A .(三)解答题(每小题分,共分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵: ⑴122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥.解:()[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-9192929291929292911000100019192920313203231100212011220120323190063201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) () ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题分,共分)⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+ ∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1. 证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A ∴ A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A 即'A 是正交矩阵工程数学作业(第二次)(满分分)第章 线性方程组(一)单项选择题(每小题分,共分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).. [,,]102-' . [,,]--'722. [,,]--'1122 . [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( ).. 有无穷多解 . 有唯一解 . 无解 . 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( ).. . . .⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则()是极大无关组.. αα12, . ααα123,, . ααα124,, . α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().. 秩()A =秩()A . 秩()A <秩()A . 秩()A >秩()A . 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ).. 可能无解 . 有唯一解 . 有无穷多解 . 无解⒎以下结论正确的是( ).. 方程个数小于未知量个数的线性方程组一定有解. 方程个数等于未知量个数的线性方程组一定有唯一解 . 方程个数大于未知量个数的线性方程组一定有无穷多解 . 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.. 至少有一个向量 . 没有一个向量 . 至多有一个向量 . 任何一个向量.设,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是的特征值 B.λ是的特征值C.λ是-的特征值 D.x 是的属于λ的特征向量.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题分,共分)⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα.⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++..若λ是A的特征值,则λ是方程0=-A I λ 的根. .若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第小题分,其余每小题分) .用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且()判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x 则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分分)第章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( )成立.. ()A B B A +-= . ()A B B A +-⊂ . ()A B B A -+= . ()A B B A -+⊂⒉如果( )成立,则事件A 与B 互为对立事件. . AB =∅ . AB U =. AB =∅且AB U = . A 与B 互为对立事件⒊张奖券中含有张中奖的奖券,每人购买张,则前个购买者中恰有人中奖的概率为( ).. C 10320703⨯⨯.. . 03. . 07032..⨯ . 307032⨯⨯.. . 对于事件A B ,,命题( )是正确的. . 如果A B ,互不相容,则A B ,互不相容 . 如果A B ⊂,则A B ⊂. 如果A B ,对立,则A B ,对立 . 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在次重复试验中至少失败次的概率为( )..3)1(p - . 31p - . )1(3p - . )1()1()1(223p p p p p -+-+- .设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是( ). . , . , . , . , .设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=( ). . xf x x ()d -∞+∞⎰ . xf x x ab()d ⎰.f x x ab ()d ⎰.f x x ()d -∞+∞⎰.在下列函数中可以作为分布密度函数的是( ). . f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它 . f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它 .f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 . f x x x ()sin ,,=<<⎧⎨⎩00π其它 .设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( ). . F a F b ()()- . F x x a b()d ⎰ .f a f b ()()- .f x x ab()d ⎰.设X 为随机变量,E X D X (),()==μσ2,当( )时,有E Y D Y (),()==01. . Y X =+σμ . Y X =-σμ . Y X =-μσ. Y X =-μσ2(二)填空题⒈从数字中任取个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52..已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= ,P AB ()= ..A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= ,P A B ()= ..设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . .若X B ~(,.)2003,则E X ()= . .若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ..E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:()C B A ++ ()C B A C B A C B A ++ () C B A C B A C B A C B A +++ ()BC AC AB ++ ()C B A ++ ()C B A. 袋中有个红球,个白球,现从中随机抽取个球,求下列事件的概率: ⑴ 球恰好同色;⑵ 球中至少有红球.解:设A “球恰好同色”,B “球中至少有红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P . 加工某种零件需要两道工序,第一道工序的次品率是,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是,求加工出来的零件是正品的概率. 解:设=i A “第道工序出正品”()9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P. 市场供应的热水瓶中,甲厂产品占,乙厂产品占,丙厂产品占,甲、乙、丙厂产品的合格率分别为,求买到一个热水瓶是合格品的概率. 解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-== P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(321.设随机变量X 的概率分布为12345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P . 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(10310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P .设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X ii n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X n E X E +⋯⋯++=+⋯⋯++==∑=μμ==n n 1)]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则()是统计量..x 1 . x 1+μ .x 122σ . μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量()不是μ的无偏估计. .max{,,}x x x 123 .1212()x x + . 212x x - . x x x 123--(二)填空题.统计量就是 不含未知参数的样本函数 ..参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法..比较估计量好坏的两个重要标准是 无偏性 , 有效性 . .设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=..假设检验中的显著性水平α为事件u x >-||0μ(为临界值)发生的概率.(三)解答题.设对总体X 得到一个容量为的样本值, , , , , , , , ,试分别计算样本均值x 和样本方差s 2. 解:6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i ix x s.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第页例矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ.测两点之间的直线距离次,测得距离的值为(单位:):测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ()当σ225=.时,由-α=,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-nx n x σλσλ()当2σ未知时,用2s 替代2σ,查 (, ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查个样品,求得均值为,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > ,所以拒绝0H.某零件长度服从正态分布,过去的均值为,现换了新材料,从产品中随机抽取个样品,测得的长度为(单位:):, , , , , , ,问用新材料做的零件平均长度是否起了变化(α=005.).解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ < ∴ 接受即用新材料做的零件平均长度没有变化。

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A . AB A B +=+ B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。

A .0,2 B .0,6C .0,0D .2,64.若随机变量(0,1)X N :,则随机变量32Y X =-: ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111O A B O ---⎡⎤=⎢⎥⎣⎦ .8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B .9.若随机变量[0,2]X U :,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。

三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --. 12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13. 设随机变量(8,4)X N :,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档