完整版七年级行程问题应用题专题训练

合集下载

初一行程问题应用题初一行程问题及答案

初一行程问题应用题初一行程问题及答案

初一行程问题应用题初一行程问题及答案25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

问: 若已知队长320米,则通讯员几分钟返回? 若已知通讯员用了25分钟,则队长为多少米?31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?32.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。

七年级数学配套应用题专项训练

七年级数学配套应用题专项训练

七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。

甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。

当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。

当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。

对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。

对第二个方程进行化简:公式,即公式。

用公式减去公式:公式公式公式,解得公式。

把公式代入公式,得到公式,公式,公式,解得公式。

2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

解析设船在静水中的速度为公式千米/小时。

顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。

根据路程 = 速度×时间,且两个码头之间的距离不变。

顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。

展开方程得公式。

移项可得公式,解得公式。

两码头之间的距离为公式千米。

二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。

甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。

两人合作4天完成的工作量为公式。

先计算括号内的值:公式。

那么两人合作4天完成的工作量为公式。

剩下的工作量为公式。

乙单独完成剩下的工作量需要的时间为公式天。

2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。

初一行程问题等应用题

初一行程问题等应用题

一.基本问题:1.某人乘车行121千米的路程,一共用了3小时.第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米.第三段路程为20千米,第一段和第二段路程各有多少千米?二.利润率.增长率.打折问题1.商店里有种皮衣,每件售价600元可获利20%,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?2.某电视机厂10月份产量为10万台,以后每月增长率为5%,那么到年底能再生产多少万台?3. 一家商店将某种服装按进价提高 40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?三.行程问题:1.相遇:甲、乙两人同时从相距27千米的A、B两地相向而行,3小时后相遇,如果甲比乙每小时多走1千米,求甲、乙两人的速度。

2.追及:敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?3.复习拓展:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?4.一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出发,背向而行,3小时后.他们相遇.已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?四.工程问题:1.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?五.等积变形问题:⨯mm内高为80mm 1.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252.)的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数π≈314六.盈亏问题:1.将一批白杨树苗栽在一条马路的两旁,若每隔3米栽一棵,将剩下3棵树苗;若每隔2.5米栽一棵,则还缺77棵树苗.求这条马路的长及这批树苗的棵数.行程问题1、例题回顾①、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?②、一列快车从甲地开往乙地需5小时,一列慢车从乙地开往甲地需要的时间比快车多小时.两列火车同时从两地相对开出,2小时后,慢车在一个车站停了下来,快车继续行驶96千米与慢车相遇.问甲、乙两地相距多少千米?2、学生练习某同学在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?(涂黑部分表示被墨水覆盖的若干文字)请将这道作业补充完整,列出相应的方程,并写出求解过程.三、小结:见到题目要先分清它属于哪一种类型,比如本课的行程问题,抓住行程问题的特点:相遇问题:路程之和=总路程追及问题:路程之差=相距路程把相应的等量关系转换成方程或方程组进行求解。

第三章一元一次方程微专题——应用题行程问题专练+2023—2024学年人教版数学七年级上册

第三章一元一次方程微专题——应用题行程问题专练+2023—2024学年人教版数学七年级上册

人教版数学七年级上册第三章一元一次方程微专题——应用题行程问题专练1.列一元一次方程解应用题.从甲城到乙城,普通列车原来需行驶8个小时,开通高铁以后,路程缩短了80千米,车速平均每小时增加了180千米,结果只需3个小时即可到达.求甲乙两城之间开通高铁以后的路程.2.某船在静水中的速度是每小时8千米,水速是每小时2千米,这船从甲地到乙地,再从乙地回到甲地,共用8小时,求甲乙两地的距离.3.明明家和学校相距2300m,每天步行上学,有一天他正以每分钟80m的速度前进着,一抬头看见路边的钟表发现要迟到,他马上改用每分钟150m的速度跑步前进,途中共用20分钟,准时到达了学校.明明在离学校多远的地方开始跑步?4.甲车从A地开往B地,乙车从B地开往A地,两车同时出发,沿着A,B两地间的同一条笔直的公路匀速行驶,出发1小时后两车相距48千米,又过1小时,两车又相距48千米,且此时两车均未到达终点,求A,B两地间的距离.5.我国古代数学著作《九章算术》中记载以下问题:今有凫起南海,七日至北海;雁起北海,九日至南海,今凫雁俱起,问何日相逢?意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海,野鸭与大雁从南海和北海同时起飞,经过几天相遇?请解决上述问题.6.一艘客船从A地出发到B地顺流行驶,用了2.5小时;从B地返回A地逆流行驶,用了3.5小时,已知水流的速度是4千米∕ 时,求客船在静水中的平均速度?7.在一条直线上顺次有A地,B地,C地.小明和小红分别从A地和B地同时出发前往C 地,小明慢跑,小红步行,且小明慢跑的速度比小红步行速度的2倍还多10米/分钟.他们出发5分钟时,小明到达B地.他们出发9分钟时,小明追上小红.(1)求小明慢跑的速度和小红步行速度分别是多少?(2)小明到达C地后休息了2分钟,沿原路以原速返回A地.当小红到达C地时,小明刚好到达B地.求B地与C地的距离是多少?8.为了打通城市和景区的交通线路,某市新修了高铁线路,使得两地总里程比原来缩短了29千米,高铁行驶速度比原来火车行驶速度的3倍还多9千米,原来的火车行完全程用时3小时,现在高铁用时50分钟,求开通后高铁的平均速度是多少千米/小时?9.一架飞机在A、B两地飞行,风速为15km/h,它从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h.求(1)飞机无风时的平均速度;(2)两地之间的航程.10.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20%后,又行驶了1小时,这时未行路程与已行路程的比是3:1.甲乙两港相距多少千米?11.甲、乙两人分别从A,B两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h、相遇后乙再经1h到达A地.(1)甲、乙两人的速度分别是多少?(2)甲、乙两人分别从A,B两地同时出发后,经过多长时间两人相距20km?12.一个自行车队进行训练,训练时所有队员都以30km/h的速度前进.突然,1号队员以50 km/h的速度独自行进,行进20 km后掉转车头,仍以50km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?13.某市实验中学学生步行到郊外旅游.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?14.列方程解答下题:甲、乙两人同时骑摩托车从相距160千米的两地相向而行,经过4小时相遇,甲每小时比乙慢6千米,甲、乙的速度分别是多少?15.小明家和小刚家相距28千米,两人约定见面,他们同时从家出发,小明的速度为8千米/时,小刚的速度为6千米/时,小明的爸爸在小明出发30分钟后发现小明忘了带东西,于是就以10千米/时的速度追赶小明,当小明和小刚相遇时,爸爸追上小明了吗?若没有追上,他要想追上小明,速度至少为多少.16.一列动车从甲站开往乙站,若动车以180千米/小时的速度行驶,能准时到达乙站,现在动车以160千米/小时的速度行驶了2小时后把速度提高到240千米/小时,也能准时到达乙站,求甲、乙两站之间的距离.17.一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇,客车每小时行64千米,货车每小时行多少千米?(列方程解答)18.当甲在60m赛跑中冲过终点线时,比乙领先10m,比丙领先20m.如果乙和丙按各自原来的速度继续冲向终点,那么当乙到达终点时,将比丙领先几米?19.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙?(列方程解应用题)20.已知甲码头在江的上游,乙码头在江的下游.一艘船在静水中每小时航行20千米,在水流速度为每小时4千米的江中,往返甲、乙两码头共用了12.5小时,求甲、乙两码头之间的距离.21.甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(2)若两车相向而行,同时出发,多长时间两车相距54千米?22.(列方程解应用题)甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?23.面对突然暴发的新型冠状病毒肺炎,全国人民情系灾区,捐资捐物.淳朴善良的山东寿光菜农们把自己种植的新鲜蔬菜捐献出来运往武汉灾区.已知寿光距武汉1090千米,甲车装满蔬菜从寿光出发开往武汉,行驶100千米后,乙车从武汉出发返回寿光,乙车出发6小时后与甲车相遇,若甲车每小时行驶的路程比乙车每小时行驶的路程少35千米,那么甲车平均每小时行驶多少千米⋅24.(列方程解应用题)一个通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米,结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少?这段路程是多少?25.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,行程中小张必经过小李家.(1)若两人同时出发,小张车速为18千米每小时,小李车速为12千米每小时,经过多少小时两人能相遇?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?26.甲、乙两人练习跑步,从同一地点同时同向出发,甲每分钟跑250米,乙每分钟跑200米,甲比乙早3分钟到达终点,求两人所跑的路程.27.小明和小丽分别从甲、乙两地相向而行,假设他们在行走过程中各自保持一定的速度不小变.如果两人同时出发,那么经过32分钟两人相遇;如果小丽先出发半小时,那么再经过13时两人相遇.如果小丽的速度是每小时4千米,问小明的速度是每小时多少千米?28.周末小明坐车从家里出发到大剧场听音乐,去时汽车的速度为40千米/小时,回来时因道路受阻,汽车必须绕道而行,因此比去时多走了8千米,虽然车速增加了5千米/小时,但比去时还多用了8分钟,求小明家距大剧场多远?29.小明参加了一场1000米的赛跑,他以6米/秒的速度跑了一段路程,又以5米/秒的速度跑完了其余的路程,一共花了3分钟,小明以6米/秒的速度跑了多少米?30.一列火车匀速通过一座1200米长的桥,从火车上桥到火车完全离开桥经历50秒,整列火车在桥上的时间为30秒,求火车的长度.。

行程问题应用题练习

行程问题应用题练习

行程问题应用题练习一、第一层练习(只列式,不计算)1、两辆汽车同时从甲乙两地相向而行,其中客车每小时行40千米,吉普车每小时行60千米,15小时后两车在中途相遇,甲乙两地相距多少千米?2、甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中客车每小时行40千米,吉普车每小时行60千米,几小时后两车在中途相遇?3、两辆汽车同时从相距1500千米的甲乙两地相向而行,15小时后两车在途中相遇,已知其中一辆吉普车每小时行60千米,那么另一辆客车每小时行多少千米?4、两辆汽车同时从甲乙两地相向而行,其中客车每小时行40千米,吉普车每小时行60千米,相遇时吉普车比客车多行300千米,此时离出发已过几小时?二、第二层练习1、甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时行60千米,是另一辆客车的1.5倍,几小时后两车能在中途相遇?2、甲乙两地相距1500千米,一辆吉普车从甲地出发,每小时行60千米,当它行了100千米后一辆客车才以每小时40千米的速度从乙地相向而行,几小时后两车能在中途相遇?此时吉普车行了几千米?3、两辆汽车同时从甲乙两地相向而行,其中客车每小时行40千米,吉普车每小时行60千米,两车在离中点150千米处相遇,从出发到相遇过了多长时间?三、第三层练习1、甲乙两地相距1500千米,两辆车从两地同时相向而行,客车每小时行40千米,吉普车每小时行60千米,出发后不久客车因故抛锚,维修花去了0.5小时,然后继续前行,两车相遇时客车行了多少千米?2、一辆吉普车从甲地出发,当它行了900千米时与从乙地同时出发相向而行的一辆客车相遇了,此时离甲乙两地中点已有150千米,已知客车每小时行40千米,求相遇时吉普车行了几小时?甲乙两地相距多少千米?四、提高练习(选做)1、一辆客车从甲地出发开往乙地,一辆吉普车从乙地同时相向而行开往甲地,两车在途中相遇时,客车行了180千米,相遇后两车继续前进,到达目的地后即返回,在离乙地140千米处两车第二次相遇,求甲乙两地距离。

应用题专项训练之行程问题(含答案)

应用题专项训练之行程问题(含答案)

应用题专项训练三知识回顾1.行程问题速度×时间=路程时间相同时,路程比等于速度比路程相同时时间比等于速度比的反比2.相遇问题速度和×相遇时间=相遇路程3.追及问题速度差×追及时间=相差路程4.火车过桥桥长+车长=路程速度×过桥时间=路程5.流水行船船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度顺水船速=船速+水速=逆水船速+水速×2行程问题常用的解题方法有⑴公式法⑵图示法⑶比例法⑷分段法⑸方程法典型应用题例1、甲、乙两辆汽车从两地相向而行,甲车每小时行85千米,乙车每小时行76千米,甲车开出2小时,乙车才开出,又过了4小时两车相遇,两地间的距离是多少千米?例2、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?甲乙所行的路程比=甲乙的速度比=56:48=7:6 东西两地相距多少千米?(32+32)÷(7-6)×(7+6)=832千米解:设东西两地相距X千米。

(X÷2+32)÷56=(X÷2-32)÷48 (+32)÷56=()÷48 56=48+32) 7=6+32) =3X+192 =192+224 =416 X=832 答:东西两地相距832千米。

例3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?设全程X千米。

1/2X-8=X-4×32 1/2X-8=X-128 1/2X=X-128+8 1/2X=X-120 120=1/2 X x=240240-32×4=112(千米)112÷56=2(小时)2+4=6(小时)例4、小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【解析】小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为100:9010:9=;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了91109910⨯=米,离终点还差1米,所以它还是比小狗晚到达终点.例5、甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).例6、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.【分析】甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034⨯=+千米,即A,B两地间的距离为20千米.例7、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

初一一元一次方程:行程问题应用题专题

初一一元一次方程:行程问题应用题专题

《一元一次方程:行程问题》解答题【基本知识】路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2一、【求距离】1、七年级列队以每小时6千米的速度去甲地,小刚从队尾以每小时10千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长。

【解】设队伍长度x 千米 ,等量:时间81164=+x x 52=∴x 答:略 2、队伍以每小时4千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了4.5分钟,求队伍的长。

【解】605.4168=+x x x = 0.4千米 3、队伍以每小时6千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了5分钟,求队伍的长。

【解】605186=+x x x = 0.375千米 4、一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x 千米,求x . 【解】565.4146--=-x x ∴ 13=x 5、已知某铁路桥长500m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30s ,整列火车完全在桥上的时间为20s ,则火车的长度为多少m ?【解】设火车的长度为x m ,根据火车的速度不变可得方程:2050030500x x -=+ 2(500+x )=3(500﹣x ) x =100. 答:火车的长度为100m .6、王先生计划骑车以每小时10千米的速度由A 地到B 地,这样便可在规定时间到达B 地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B 地,求A 、B 两地间的路程.【解】设由A 、B 两地的路程是 x 千米,则60560101210++=x x 解得:x=15,答:A 、B 两地间的路程是15千米 7、李明和王华步行同时从A 、B 两地出发,相向而行,在离A 地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A 地44米处相遇,求A 、B 两地距离多少米?解:(行程问题,全是路程比与比例)设AB 相距x 千米李明 王华 路程和52 x -52 x2x -44 3x31344252==-∴x x x 8、某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【解答】设小明家到西湾公园距离x 千米, 根据题意得:6.1408=-x x 解得:x =16. 答:小明家到西湾公园距离16千米.9、小张和父亲预定搭乘家门口的公交汽车赶往火车站,去家乡看望爷爷。

初中数学行程问题类题目及答案(完美版)

初中数学行程问题类题目及答案(完美版)

行程问题归纳1 •小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的丄倍原路步行回家.由于时间关系小明拿到作业后同样以之2前跑步的速度赶往学校,并在从家岀发后23分钟到校(小刚被爸爸追上时交流时间忽略不计)・两人之间相距的路程y (米)与小刚从家出发到学榜的减柠射问r (0轴)问的函豹i A米关系如图所示,则小刚家到学校的路程为2960 X,【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17- 15=2 (分钟),•••爸爸追上小刚后以原速的丄倍原路步行回家,2•••小刚打完电话到与爸爸相遇用的时间为1分钟,Y由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,•••小刚和爸爸相遇之后跑步的1分和爸爸2分钟上的路程是720米,•••小刚后来的速度为:1040 - 720=320 (米份钟)则小刚家到学校的路程为:1040+(23 - 17)×320=l040+6X320= 1040+1920=2960(•米), 故答案为:2960.2•已知A.B.C三地顺次在同一直线上,甲、乙两人均骑车从A地岀发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲.乙同时从B地以各自原速继续向C地行驶•当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A4地,而甲也立即提速为原速的号■倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y3(米)与甲出发的时间/(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;C两地相距7200米:③甲从A地到C地共用时2614 H甲乙两人刚开始的速度之差为:9∞÷ (23-14) =IOO (米/分),设甲刚开始的速度为X米/分,乙刚开始的速度为(x+100)米/分,IZV= (14-5)× (x+100),解得,X= 300,则丹IOo=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A> B两地之间的距离为:300X12 = 3600 (米),A. (7两地之间的距离为:400× (23 - 5) =7200 (米),故②正确:•••当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A地,而甲也立即提速4为原速的垒倍继续向C地行驶,3.•・后来乙的速度为:400×-∣-=5∞ (米/分),甲的速度为300×-⅛-=400 (米/分),•••甲从A地到C地共用时:23+(7200 - (23 - 2) X300)÷400=25^ (分钟),故③错误;4.∙.当甲到达C地时,乙距A地:7200- (25丄-23)×500=6075 (米),故④正确.4综上所述,正确的有①②④.3.尊老助老是中华民族的传统美徳,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了(/盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即耙速度提髙到之前的1.5倍跑回敬老院, 这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y (米)与小艾从敬老院出发的时间X (分)之间的关系如图所小艾的原来的速度为:180÷ (11-9)÷ 1.5=60 (米/分钟),爸爸的速度为:(990- 60×3)÷ (9 - 3) - 60=75 (米/分钟),9分钟的时候,小艾离敬老院的距离为:60X9=540 (米),小艾最后回到敬老院的时间为:9+540÷ (60X1.5) =15 (分钟),当小艾回到敬老院时,爸爸离敬老院还有:540- (15 - 11)×75=240 (米),故答案为:240.4•甲、乙分別骑摩托车同时沿同一条路线从A地岀发B地,已知爪B两地相距280亦,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B地.乙到达B地5小时后,甲车到达B地.整4个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(千米)与甲出发的时间X(小时)之间的关系如图所示,则当乙车修好时,甲车距B地的路程为130千米.【解答】解:Y甲车速度=—=40千米/时,T•••甲车走完全程时间=型=7小时,40•••乙车速度=40+ 5严! =70千米耐,7—4 4设乙车修了兀小时,由题意可得:70 ・40X丄殳=20, ∙∙∙x=工,4 4 4•••当乙车修好时,甲车距B地的路程=280-40× (2+2.) =I30千米,45.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一泄的速度匀速前往铁山坪体验“飞越丛林”・出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车.取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的仝倍匀速按原路赶往铁山坪,由3于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间X (小时)之间的部分图象如图所示,则乙车岀发—郑小时到达目的地.【解答】解:设甲车的速度为“千米/小时,乙车回家时即加=5, ∙'∙α=40, b=45, 设/小时两车相距3千米,(4)×45X∣=⅞÷3÷ (-∣-⅛) ×40,尸舒,6.小亮和妈妈从家岀发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线岀发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续 前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相 所以家到长嘉汇的距离为:60X (18 - 2) =960 (米), 由(18・12=6分钟)可知妈妈返回找到相机行走路程为6X50=300 (米),此时设小亮在长嘉汇等妈妈的时间为f 分钟,由图象知小亮与妈妈会合所用时间为27 -18=9分钟可建立方程如下:60X (9 -/) +50X9—960- (600- 300),解得 /=5.5(分钟),•••小亮开始返回时,妈妈离家的距离为:50X (18+5.5 - 6X2) =575 (米)・设 a=Sm f b=9m (m>0),由图象得乙车行畔小时两边相碍千米, ×8ι机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最可知是小亮到达长嘉汇所经历的时间, (分)7•甲、乙两人开车分别从A、B两地同时岀发到AB之间的C地办事(A、B、C三地在一条直线上)已知甲出发0.5小时时发现忘给乙带重要文件,于是立刻返回A地,拿文件后马上向C地赶去(中间拿文件的时间忽略不计).乙得知情况后决泄先见到甲拿到文件再返回C 地办事.两人分别在C地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间X (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A地时乙距B地50千米.【解答】解:乙的速度为:460- 360=100 (千米耐),甲的速度为:(460-370- 100X0.5)÷O.5=8O (千米/时),甲从出发到两人相遇所用时间为:(460-100)÷ (8O+146°4J(千米)•••A、C两地距离为:80× (3- D + (100 - 80)÷(^370360甲从A地到C地的时间为:220÷80=2.75 (小时),甲从出发到返回所需时间为十.75+⅛=护小时),当甲办完事再次返回到A地时,乙与B地的距离为「00X (f- 护=5° (米故答案为:50.&某周末,大海和大成两家人同时开车从国奥村岀发,以一泄的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头.取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度畤倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中TB伽司的距离【解答】解:设两家出发时,速度是“千米/小时,大海返回国奥村时速度是b 千米/小时, 由图象得:~~y t=("~~609"=8b, — z>^∙∙b 9(∕n>0)>设X 小时,两车的距离是辿千米,9根据题意得:45X 空任丄)=込40 (厂丄)Q, f=53,312 ; 3 12 9 36则国奥村与统景镇相距:(⅛-⅛) × 45X4=60 (千米),36 3639•暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了 15分钟, 为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不讣),小明家小亮的速度为:-^^=80 (千米/小时),^60^•••小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时, 根据题意得: —36 ^ 6O )⅛-⅛- ⅛⅛ 4,9Ir=V追上小亮家后以提髙后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间×8O= (-51- 1.05)加+0.8X90,20 20加=IoO, lf,2-0. 8×90 , k05f =O l(小时),=6 (分),80 100即小明家比小亮家早到景区6分钟.10•华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车•再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车・拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t分钟,与武汉站距禽5千米,S与/ AX kt m相遇到出租车堵车结朿,经过了22.5分钟.【解答】解:自行车速度8÷30=^ (千米/分钟), 15自行车到达终点用时为:20÷县=75 (分钟),15出租车到达洪崖洞用时75 - 3O- 30=15 (分钟);出租车速度20÷15=寻(千米/分钟),设自行车出发X分钟第一次相遇,根据题意得寻∙2Z∙∣∙(∕-30)'解得= 37.5’设第二次相遇时间为y,则(37. 5+10-30),15 3解得y=52.5, 75 - 52 - 5=22.5 (分钟)・所以第二次相遇后,出租车还经过了22.5分钟到达.。

初一应用题训练——行程问题

初一应用题训练——行程问题

行程问题1.甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?2.甲、乙两人相距285米,相向而行,甲从A 地每秒走8米,乙从B 地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?3.甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到同时达同一中途机场,如果甲飞机的速度是乙飞机的1.5倍,求乙飞机的速度。

4.一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?5.甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为每小时45千米,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为每小时60千米,求快车开出后几小时与慢车相遇?6.某人从甲地去乙地,去时速度是每分钟走80米,回来时骑车,每分钟240米,求往返平均速度?7.某同学步行前往学校时的行进速度是6千米/小时,从学校返回时的行进速度是4千米/小时,那么该同学往返学校的平均速度是 千米/小时中等题8.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?9.初一一班同学去春游途经一条长108m 的桥用了100秒钟,整个队伍在桥上的时间是80秒,他们的速度是多少?队伍长多少米?10.从甲地到乙地,海路比陆路近40千米,上午10点,一艘轮船从甲地驶往乙地,下午1点,一辆汽车从甲地开往乙地,它们同时到达乙地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,那么从甲地到乙地海路与陆路各是多少千米?11.小明和小丽同时从学校出发到运动场看体育比赛,小明每分钟走80米,他走到运动场等了5分钟,比赛才开始,小丽每分钟走60米,她进入运动场时,比赛已经开始3分钟,问学校到运动场有多远?12.某人从甲地去乙地,如果每分走75米,则要迟到8分钟;如果每分走80米,要迟到6分钟,他以每分多少米的速度才能准时到达?13.A 、B 两地相距360千米,甲车从A 地出发开往B 地,每小时行驶72千米,甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?14.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过 秒钟两人首次相遇;(2)两人同时同地同向而行时,经过 秒钟两人首次相遇.15.小明在360米的环形跑道上跑了一圈,前一半时间里,他每秒跑5米,后一半时间里每秒跑4米,他跑后半圈用了多少秒?16.甲、乙两人在长为400米的环形跑道上练习跑步,甲的速度为7.5米/秒,乙的速度为8.5米/秒,若甲、乙在相距160米的两处同时出发,同向而行,则两人第一次相遇所用的时间是多少秒。

(完整版)七年级数学应用题专题---行程问题【精】整理版

(完整版)七年级数学应用题专题---行程问题【精】整理版

行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。

3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。

4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。

⑴两人同时同向从同地出发经过多少分钟两人再相遇。

⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。

12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。

初中数学行程问题类题目及答案(完美版)

初中数学行程问题类题目及答案(完美版)

小中初数学教案等集合行程问题归纳1.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小刚从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小刚家到学校的路程为 2960 米. 【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17﹣15=2(分钟),∵爸爸追上小刚后以原速的倍原路步行回家, ∴小刚打完电话到与爸爸相遇用的时间为1分钟, ∵由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,∴小刚和爸爸相遇之后跑步的1分和爸爸2分钟走的路程是720米,∴小刚后来的速度为:1040﹣720=320(米/分钟)则小刚家到学校的路程为:1040+(23﹣17)×320=1040+6×320=1040+1920=2960(米),故答案为:2960. 2.已知A 、B 、C 三地顺次在同一直线上,甲、乙两人均骑车从A 地出发,向C 地匀速行驶.甲比乙早出发5分钟,甲到达B 地并休息了2分钟后,乙追上了甲.甲、乙同时从B 地以各自原速继续向C 地行驶.当乙到达C 地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C 地行驶,到达C 地就停止.若甲、乙间的距离y(米)与甲出发的时间t (分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;②A 、C 两地相距7200米;③甲从A 地到C 地共用时26分钟;④当甲到达C 地时,乙距A 地6075米;其中正确的是 ①②④ .12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),故②正确;∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),∴甲从A地到C地共用时:23+[7200﹣(23﹣2)×300]÷400=25(分钟),故③错误;∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故④正确.综上所述,正确的有①②④.3.尊老助老是中华民族的传统美德,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了U盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即把速度提高到之前的1.5倍跑回敬老院,这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y(米)与小艾从敬老院出发的时间x(分)之间的关系如图所示,则当小艾回到敬老院时,爸爸离敬老院还有240米.教案等集合练习9分钟的时候,小艾离敬老院的距离为:60×9=540(米),小艾最后回到敬老院的时间为:9+540÷(60×1.5)=15(分钟),当小艾回到敬老院时,爸爸离敬老院还有:540﹣(15﹣11)×75=240(米), 故答案为:240.4.甲、乙分别骑摩托车同时沿同一条路线从A 地出发B 地,已知A 、B 两地相距280km ,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B 地.乙到达B 地小时后,甲车到达B 地.整个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y (千米)与甲出发的时间x (小时)之间的关系如图所示,则当乙车修好时,甲车距B 地的路程为 130 千米. 【解答】解:∵甲车速度==40千米/时,∴甲车走完全程时间==7小时,∴乙车速度=40+=70千米/时, 设乙车修了x 小时,由题意可得:70(﹣x )﹣40×=20,∴x =,∴当乙车修好时,甲车距B 地的路程=280﹣40×(2+)=130千米,5.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一定的速度匀速前往铁山坪体验“飞越丛林”.出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车、取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的倍匀速按原路赶往铁山坪,由于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙年数学测试题车行驶时间x (小时)之间的部分图象如图所示,则乙车出发小时到达目的地.【解答】解:设甲车的速度为a 千米/小时,乙车回家时的速度是b 千米/小时,a =b ,,设a =8m ,b =9m (m >0),由图象得乙车行驶小时两边相距千米, ﹣=, m =5,∴a =40,b =45,设t 小时两车相距3千米,=+3+(t ﹣)×40,t =,6.小亮和妈妈从家出发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线出发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最终与妈妈会合,小亮和妈妈的速度始终不变,如图是小亮和妈妈两人之间的距离y (米)与妈妈出发的时间x (分钟)的图象;则小亮开始返回时,妈妈离家的距离为 575 米. 【解答】解:妈妈的速度为:100÷2=50(米/分),小亮的速度为:[100+50(12﹣2)]÷(12﹣2)=60(米/分),相遇时行走的路程为:12×50=600(米),观察图象在x =18时,小亮和妈妈的相距最大,可知是小亮到达长嘉汇所经历的时间,所以家到长嘉汇的距离为:60×(18﹣2)=960(米),由(18﹣12=6分钟)可知妈妈返回找到相机行走路程为6×50=300(米),此时设小亮在长嘉汇等妈妈的时间为t 分钟,由图象知小亮与妈妈会合所用时间为27﹣18=9分钟可建立方程如下: 60×(9﹣t )+50×9═960﹣(600﹣300),解得t =5.5(分钟), ∴小亮开始返回时,妈妈离家的距离为:50×(18+5.5﹣6×2)=575(米).小中初数学教案等集合向C 地赶去(中间拿文件的时间忽略不计).乙得知情况后决定先见到甲拿到文件再返回C 地办事.两人分别在C 地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间x (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A 地时乙距B 地 50 千米. 【解答】解:乙的速度为:460﹣360=100(千米/时), 甲的速度为:(460﹣370﹣100×0.5)÷0.5=80(千米/时), 甲从出发到两人相遇所用时间为:(460﹣100)÷(80+100)+1=3(小时), ∴A 、C 两地距离为:80×(3﹣1)+(100﹣80)÷()=220(千米),甲从A 地到C 地的时间为:220÷80=2.75(小时), 甲从出发到返回所需时间为:1+2.75+=(小时),当甲办完事再次返回到A 地时, 乙与B 地的距离为:100×(﹣﹣)=50(米). 故答案为:50.8.某周末,大海和大成两家人同时开车从国奥村出发,以一定的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头、取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度的倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中加油耽搁了5分钟,结果大海先到达目的地,两车之间的距离y (千米)与大成开车时间x (小时)之间的部分图象如图所示,则国奥村与统景镇相距 60 千米.测试题9a =8b ,, 设a =8m ,b =9m (m >0),()•8m ﹣()=, m =5,∴a =8m =40,b =9m =45,设x 小时,两车的距离是千米, 根据题意得:45×=+40(t ﹣)+,t =, 则国奥村与统景镇相距:(﹣)×=60(千米),9.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s (km )与出发时间t (h )之间的函数关系图象,则小明家比小亮家早到景区 6 分钟. 【解答】解:设出发时小明家的速度是a 千米/小时,小亮家的速度是b 千米/小时,且a >b ,由题意得:0.8(a ﹣b )=8,a =b +10,小明家因故停下来休息了15分钟,可知A (1.05,12),小亮的速度为:=80(千米/小时),∴小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时,根据题意得:×80=(﹣1.05)m +0.8×90,小中初数学m =100,﹣﹣1.05,=0.1(小时),=6(分), 即小明家比小亮家早到景区6分钟. 10.华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车,再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车.拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t 分钟,与武汉站距离s 千米,s 与t 的函数关系如图所示,则从第二次相遇到出租车堵车结束,经过了 22.5 分钟.【解答】解:自行车速度8÷30=(千米/分钟), 自行车到达终点用时为:20÷=75(分钟),出租车到达洪崖洞用时75﹣30﹣30=15(分钟); 出租车速度20÷15=(千米/分钟), 设自行车出发x 分钟第一次相遇,根据题意得 ,解得=37.5,设第二次相遇时间为y ,则, 解得y =52.5,75﹣52﹣5=22.5(分钟).所以第二次相遇后,出租车还经过了22.5分钟到达.。

初一数学一元一次方程行程问题专题训练

初一数学一元一次方程行程问题专题训练

初一一元一次方程行程问题训练专题1.〔2005•##〕A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是〔〕A.2或2.5 B.2或10 C.10或12.5 D.2或12.52.A和B两地相距140千米,甲、乙二人骑自行车分别从A和B两地同时出发,相向而行.丙驾驶摩托车,每小时行驶63千米,同时与甲从A出发,与乙相遇后立即返回,丙返回至甲时,甲、乙相距84千米.若甲车速是每小时9千米,则乙的速度为千米/时.3.〔2015秋•兴平市期末〕市实验中学学生步行到郊外旅行.高一〔1〕班学生组成前队,步行速度为4千米/时,高一〔2〕班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.〔1〕后队追上前队需要多长时间?〔2〕后队追上前队时间内,联络员走的路程是多少?〔3〕两队何时相距2千米?4.某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行.已知客车每小时行80千米,轿车每小时行100千米,问经过多少小时后,客车与轿车相距30千米.5.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.〔1〕这列队伍一共有多少名战士?〔2〕这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米〔不考虑战士身材的大小〕?6.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?7."五•一"长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?8.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.〔1〕慢车速度为每小时km;快车的速度为每小时km;〔2〕当两车相距300km时,两车行驶了小时;〔3〕若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.9.一艘轮船从A地到B地顺流而行,用了3个小时;从B地返回A地逆流而行,用了4小时;已知水流的速度是5km/h,求:〔1〕这艘轮船在静水中的平均速度;〔2〕AB两地之间的距离.10.A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A城市有多远?11.甲、乙两地相距450千米,一辆快车和一辆慢车上午7点分别从甲、乙两地以不变的速度同时出发开往乙地和甲地,快车到达乙地后休息一个小时按原速返回,快车返回1 / 9甲地时已是下午5点,慢车在快车前一个小时到达甲地.试根据以上信息解答以下问题:〔1〕分别求出快车、慢车的速度〔单位:千米/小时〕;〔2〕从两车出发直至慢车达到甲地的过程中,经过几小时两车相距150千米.12.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:〔1〕当快车与慢车相遇时,求慢车行驶的时间;〔2〕请从下列〔A〕,〔B〕两题中任选一题作答.我选择:.〔A〕当两车之间的距离为315千米时,求快车所行的路程;〔B〕①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;〔用含x的代数式表示〕②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.13.〔2015秋•故城县期末〕我市某初中每天早上总是在规定时间打开学校大门,七年级同学小明每天早上同一时间从家到学校,周一早上他骑自行车以每小时12千米的速度到校,结果在校门口等了6分钟才开门,周二早上他步行以每小时6千米的速度到校,结果校门已开了12分钟,请解决以下问题:〔1〕小明从家到学校的路程是多少千米?〔2〕周三早上小明想准时到达学校门口,那么他应以每小时多少千米度速度到学校?14.〔2015秋•昌平区期末〕某校开展社会实践大课堂活动,七年级学生8点钟从学校乘大客车去博物馆参观.小明同学由于在去学校的路上遇到了堵车情况,8:10才到学校,他的家长立刻开汽车从学校出发,沿相同的路线送小明追赶大客车,结果8:30追上了大客车.已知小明家长的汽车的速度比大客车的速度每小时多29千米,求大客车的速度是每小时多少千米?15.〔2015秋•荔湾区期末〕汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?16.〔2015秋•常州期末〕A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:〔1〕出发几小时后两车相遇?〔2〕出发几小时后两车相距80km?参考答案1.A[解析]试题分析:如果甲、乙两车是在环形车道上行驶,则本题应分两种情况进行讨论:一、两车在相遇以前相距50千米,在这个过程中存在的相等关系是:甲的路程+乙的路程=〔450﹣50〕千米;二、两车相遇以后又相距50千米.在这个过程中存在的相等关系是:甲的路程+乙的路程=450+50=500千米.已知车的速度,以与时间就可以列代数式表示出路程,得到方程,从而求出时间t的值.解:〔1〕当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得 t=2;〔2〕当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得 t=2.5.故选A.考点:一元一次方程的应用.2.7.[解析]试题分析:可设丙驾驶摩托车与乙相遇时,甲行驶的路程是x千米,根据等量关系:甲、乙相距84千米,列出方程求解即可.解:设丙驾驶摩托车与乙相遇时,甲行驶的路程是x千米,依题意有x+〔140﹣7x〕=140﹣84,解得x=18,x=31.5,〔140﹣7x〕=×〔140﹣126〕=24.5,31.5÷9=3.5〔小时〕,24.5÷3.5=7〔千米/时〕.答:乙的速度为7千米/时.故答案为:7.考点:一元一次方程的应用.3.〔1〕2小时;〔2〕24千米;〔3〕当1小时后或3小时后,两队相距2千米.[解析]试题分析:〔1〕设后队追上前队需要x小时,根据后队比前队快的速度×时间=前队比后队先走的路程可列出方程,解出即可得出时间;〔2〕先计算出联络员所走的时间,再由路程=速度×时间即可得出联络员走的路程.〔3〕要分两种情况讨论:①当〔2〕班还没有超过〔1〕班时,相距2千米;②当〔2〕班超过〔1〕班后,〔1〕班与〔2〕班再次相距2千米,分别列出方程,求解即可.解:〔1〕设后队追上前队需要x小时,由题意得:〔6﹣4〕x=4×1解得:x=2;故后队追上前队需要2小时;1 / 9〔2〕后队追上前队时间内,联络员走的路程就是在这2小时内所走的路,所以12×2=24答:后队追上前队时间内,联络员走的路程是24千米;〔3〕要分三种情况讨论:①当〔1〕班出发半小时后,两队相距4×=2〔千米〕②当〔2〕班还没有超过〔1〕班时,相距2千米,设〔2〕班需y小时与〔1〕相距2千米,由题意得:〔6﹣4〕y=2,解得:y=1;所以当〔2〕班出发1小时后两队相距2千米;③当〔2〕班超过〔1〕班后,〔1〕班与〔2〕班再次相距2千米时〔6﹣4〕y=4+2,解得:y=3答当1小时后或3小时后,两队相距2千米.考点:一元一次方程的应用.4.2小时[解析]试题分析:首先设出未知数,然后根据两车所行驶的路程之和加上30千米等于390千米列出一元一次方程,然后进行求解.试题解析:设经过x小时后,客车与轿车相距30千米由题意,列方程为80x+100x+30=390解得x=2〔小时〕经检验,符合题意答:经过2小时后,客车与轿车相距30千米.考点:一元一次方程的应用.5.〔1〕这列队伍一共有37名战士;〔2〕相邻两个战士间距离为5米.[解析]试题分析:〔1〕设这支队伍有x人,根据题中所述列出方程即可求出;〔2〕设相邻两个战士间距离为y米,队伍全部通过所经过的路程为〔320+36y〕米,根据"行军速度为5米/秒,用时100秒",列方程求解即可.试题解析:〔1〕设这支队伍有x人,根据题意得:1162(6) 22x x--+=⨯-,解得:x=37.〔2〕设相邻两个战士间距离为y米队伍全部通过所经过的路程为〔320+36y〕米,∴320316005y=+解得:y=5答:〔1〕这列队伍一共有37名战士;〔2〕相邻两个战士间距离为5米.考点:一元一次方程的应用.6.甲的速度为15千米/小时,乙的速度为5千米/小时.[解析]试题分析:可设乙的速度为x千米/小时,则甲的速度为3x千米/小时,根据关于路程的等量关系:甲、乙两人行驶的路程和是两个25千米,列出方程求解即可.解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x〔3﹣〕+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.考点:一元一次方程的应用.7.哥哥能够追上.[解析]试题分析:等量关系为:哥哥所走的路程=弟弟和妈妈所走的路程.解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.考点:一元一次方程的应用.8.〔1〕75,150;〔2〕或;〔3〕150km或750km.[解析]试题分析:〔1〕由速度=路程÷时间计算即可;〔2〕需要分类讨论:相遇前距离300km和相遇后相距300km;〔3〕设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:慢车在前和慢车在后.解:〔1〕慢车速度为:900÷12=75〔千米/时〕.快车的速度:75×2=150〔千米/时〕.故答案是:75,150;〔2〕①当相遇前相距300km时,=〔小时〕;②当相遇后相距300km时,=〔小时〕;综上所述,当两车相距300km时,两车行驶了或小时;故答案是:或;〔3〕设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:①慢车在前,则75×3+75x﹣150=150x,解得x=1.此时900﹣150×〔3+1〕﹣150×1=150.②慢车在后,则75×3+75x+150=150x,解得x=5.3 / 9此时第一列快车已经到站,150×5=750.综上,第二列快车和慢车相距150km时,两列快车相距150km或750km.考点:一元一次方程的应用.9.〔1〕这艘轮船在静水中的平均速度是35km/h;〔2〕AB两地之间的距离是120千米.[解析]试题分析:〔1〕设这艘轮船在静水中的平均速度为xkm/h,根据顺流速度×顺流时间=逆流速度×逆流时间列出方程,求出方程的解即可;〔2〕根据路程=顺流时间×顺流速度,列出算式,进行计算即可.解:设这艘轮船在静水中的平均速度是xkm/h,则顺水速度是〔x+5〕km/h,逆水速度是〔x﹣5〕km/h,根据题意得:3〔x+5〕=4〔x﹣5〕,解得:x=35.答:这艘轮船在静水中的平均速度是35km/h;〔2〕3〔x+5〕=120.答:AB两地之间的距离是120千米.考点:一元一次方程的应用.10.127.5千米.[解析]试题分析:设两车经过x小时相遇,根据两车所行的路程和为300千米列方程求得相遇时间,进一步利用相遇时间乘客车速度得出答案即可.解:设两车经过x小时相遇,由题意得85x+115x=300解得:x=1.585x=85×1.5=127.5答:两车相遇时离A城市有127.5千米.考点:一元一次方程的应用.11.〔1〕求出快车、慢车的速度分别是100千米/小时,50千米/小时;〔2〕从两车出发直至慢车达到甲地的过程中,经过2小时或4小时、8小时两车相距150千米.[解析]试题分析:〔1〕根据速度=直接列算式计算即可;〔2〕设经过x个小时,分三种情形讨论①相遇前两车相距150千米②相遇后且快车未到达甲地时两车相距150千米〔或恰好到达但尚未休息〕③休息后快车从乙地出发在慢车后追至相距150千米,根据速度×时间=路程,列出方程,求出x的值即可.解:〔1〕根据题意得:v快=450÷4.5=100千米/小时,v慢=450÷9=50千米/小时;答:求出快车、慢车的速度分别是100千米/小时,50千米/小时;〔2〕设经过x个小时两车相距150千米,分三种情形讨论:①相遇前两车相距150千米:〔100+50〕x+150=450,解得x=2;②相遇后且快车未到达甲地时两车相距150千米〔或恰好到达但尚未休息〕:〔100+50〕x﹣150=450,解得x=4;③休息后快车从乙地出发在慢车后追至相距150千米:100〔x﹣5.5〕+150=50x,解得x=8;答:从两车出发直至慢车达到甲地的过程中,经过2小时或4小时、8小时两车相距150千米.考点:一元一次方程的应用.12.〔1〕当快车与慢车相遇时,慢车行驶了4小时;〔2〕见解析[解析]试题分析:〔1〕设慢车行驶的时间为x小时,根据相遇时,快车行驶的路程+慢车行驶的路程=900,依此列出方程,求解即可;〔2〕〔A〕当两车之间的距离为315千米时,分三种情况:①两车相遇前相距315千米,快车行驶的路程+慢车行驶的路程=900﹣315;②两车相遇后相距315千米,快车行驶的路程+慢车行驶的路程=900+315;③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在;〔B〕分三种情况:①慢车与快车相遇前;慢车与快车相遇后;快车到达乙地时;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,根据相遇时,快车行驶的路程+慢车行驶的路程=900,求出y的值,进而求解即可.解:〔1〕设慢车行驶的时间为x小时,由题意得120〔x+〕+90x=900,解得x=4.答:当快车与慢车相遇时,慢车行驶了4小时;〔2〕〔A〕当两车之间的距离为315千米时,有两种情况:①两车相遇前相距315千米,此时120〔x+〕+90x=900﹣315,解得x=2.5.120〔x+〕=360〔千米〕;②两车相遇后相距315千米,此时120〔x+〕+90x=900+315,解得x=5.5.120〔x+〕=720〔千米〕;③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在.答:当两车之间的距离为315千米时,快车所行的路程为360千米或720千米;〔B〕①当慢车与快车相遇前,即0≤x<4时,两车的距离为900﹣120〔x+〕﹣90x=840﹣210x;当慢车与快车相遇后,快车到达乙地前,即4≤x<7.5时,两车的距离为120〔x+〕+90x﹣900=210x﹣840;当快车到达乙地时,即7.5≤x≤10时,两车的距离为90x;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时5 / 9间为4++=5小时.设第二列快车行驶y小时与慢车相遇,由题意,得120y+×90=900,解得y=4,5﹣4=〔小时〕.答:第二列快车比第一列快车晚出发小时.考点:一元一次方程的应用.13.〔1〕3.6千米;〔2〕他应以每小时9千米度速度到学校.[解析]试题分析:〔1〕设准时到达学校门口所用时间t小时,则星期一中午小明从家骑自行车到学校门口所用时间为〔t﹣0.1〕小时,星期二中午小明从家骑自行车到学校门口所用时间为〔t+0.2〕小时,根据两次行驶的路程相等建立方程即可;〔2〕根据速度=路程÷时间,列出算式计算即可求解.解:〔1〕设准时到达学校门口所用时间t小时,依题意有12〔t﹣0.1〕=6〔t+0.2〕,解得t=0.4,12〔t﹣0.1〕=12×〔0.4﹣0.1〕=3.6.答:小明从家到学校的路程是3.6千米.〔2〕3.6÷0.4=9〔千米〕.答:他应以每小时9千米度速度到学校.考点:一元一次方程的应用.14.大客车的速度是每小时58千米[解析]试题分析:根据题意利用两车行驶的总路程不变,进而得出等式求出答案.解:设大客车的速度是每小时x千米,根据题意列方程,得:=,解方程,得x=58.答:大客车的速度是每小时58千米.考点:一元一次方程的应用.15.去时上、下坡路程各为42千米、70千米.[解析]试题分析:由已知设去时上坡路为x千米,则下坡路为〔2x﹣14〕千米,根据已知分别表示出去时和原路返回的时间,由原路返回比去时多用了12分钟列出方程求解.解:设去时上坡路为x千米,则下坡路为〔2x﹣14〕千米,根据题意得:+﹣〔+〕=,解得:x=42,则2x﹣14=2×42﹣14=70,答:去时上、下坡路程各为42千米、70千米.考点:一元一次方程的应用.16.〔1〕出发4小时后两车相遇;〔2〕出发3.6或4.4小时后两车相距80km.[解析]试题分析:〔1〕设出发x小时后两车相遇,根据题意列出方程解答即可.〔2〕设出发x小时后两车相距80km,分两种情况列出方程解答.解:〔1〕设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;〔2〕设出发x小时后后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.考点:一元一次方程的应用.7 / 9。

2024年七年级上册数学应用题

2024年七年级上册数学应用题

2024年七年级上册数学应用题一、行程问题。

1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。

根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。

所以2小时后两人相遇。

2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。

返回时速度为每小时45千米,求汽车往返的平均速度。

- 解析:A地到B地的距离为60×3 = 180千米。

返回时所用时间为180÷45=4小时。

往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。

则平均速度为360÷7=(360)/(7)≈51.43千米/小时。

3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。

求环形跑道的周长。

- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。

所以周长为40×40 = 1600米。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。

所以两人合作需要6天完成。

5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。

实际每天修500米,那么实际完成天数为10000÷500 = 20天。

(word完整版)初一数学“行程问题”应用题

(word完整版)初一数学“行程问题”应用题

“行程问题”应用题①相遇问题1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?①追及问题3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km 的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?①相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

两车同时开出,相背而行多少小时后两车相距600公里?①环形跑道问题(相遇问题)7.甲、乙两人从400米环形跑道的点A处背向同时出发,8分钟后两人第三次相遇.已知每分钟乙比甲多行6米,请问甲的速度是多少?乙总共走过的路程是多少?①环形跑道问题(追及问题)8.运动会前夕,爸爸陪小明在400米的环形跑道上训练,他们在同一地点沿着同一方向同时出发。

(1)请根据他们的对话内容,求出小明和爸爸的速度(2)爸爸追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸在跑道上相距50米?①火车过隧道问题10.小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话:小红:火车从开始进入隧道到完全开出隧道共用30s;小南:整列火车完全在隧道里的时间是20s;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500m.各位同学,请根据他们的对话求出这列火车的长.①行程问题11.一个通讯员骑自行车要在规定的时间内把信件送到某地.若每小时走15 km,可以早到24 min,若每小时走12 km就要迟到15 min.他去某地的路程是多少?12.小明在公路上行走,速度是6千米/时,一辆车身长20米的汽车从背后驶来,并从小明身旁驶过,驶过小明身旁的时间是1.5秒,则汽车行驶的速度是多少?①行程问题(其它综合问题)13.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.14. A、B两地间的距离为360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各车仍按原速度原方向继续行驶,直到两车相距100千米停止。

七年级上册数学应用题专项训练

七年级上册数学应用题专项训练

七年级上册数学应用题专项训练一、行程问题1. 甲、乙两人从相距240米的两地同时相向而行,甲每分钟走34米,乙每分钟走26米,从出发到两人相遇后又相距60米,要用几分钟?解析:首先明确两人从出发到相遇后又相距60米时,两人一共走的路程是公式米。

甲每分钟走34米,乙每分钟走26米,那么两人的速度和是公式米/分钟。

根据时间 = 路程÷速度,可得时间为公式分钟。

2. 一辆汽车以每小时60千米的速度从甲地开往乙地,4小时到达;若返回时每小时行驶80千米,几小时可以返回甲地?解析:根据路程 = 速度×时间,从甲地开往乙地的速度是每小时60千米,时间是4小时,所以甲乙两地的距离为公式千米。

返回时速度为每小时80千米,那么返回的时间为公式小时。

二、工程问题1. 一项工程,甲单独做8天完成,乙单独做12天完成。

现在甲、乙合作3天后,剩下的由乙单独做,还需几天完成?解析:把这项工程的工作量看作单位“1”。

甲单独做8天完成,则甲每天的工作效率是公式;乙单独做12天完成,则乙每天的工作效率是公式。

甲、乙合作3天完成的工作量为公式先算括号里的公式。

再乘以3得到公式。

剩下的工作量为公式。

乙单独做需要的时间为公式天。

2. 一个水池有甲、乙两个进水管,单开甲管6小时注满水池,单开乙管8小时注满水池。

如果甲、乙两管同时开,几小时可以注满水池的公式?解析:把水池的容积看作单位“1”。

甲管每小时的注水量是公式,乙管每小时的注水量是公式。

甲、乙两管同时开每小时的注水量为公式。

注满水池的公式需要的时间为公式小时。

三、销售问题1. 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:首先算出利润为公式元。

那么最低售价应该是公式元。

设打公式折,根据标价×折扣=售价,可得公式。

解方程公式,得公式,所以最低可以打7折。

2. 一种商品每件成本公式元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解析:原来按成本增加22%定出价格,则每件售价为公式元。

七年级一元一次方程解应用题

七年级一元一次方程解应用题

七年级一元一次方程解应用题一、行程问题。

1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。

- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。

- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。

2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。

- 设甲、乙两地的距离为x千米。

- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。

- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。

- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。

- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。

二、工程问题。

3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。

人教版七年级上册数学 第三章 一元一次方程 应用题 行程问题 专题训练

人教版七年级上册数学   第三章   一元一次方程   应用题   行程问题   专题训练

人教版七年级上册数学一元一次方程应用题行程问题专题训练二期工程完成后每月将产生不少于1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元;(2)请你求出用于二期工程的污水处理设备的所有购买方案.6.推进农村土地集约式管理,提高土地的使用效率,是新农村建设的一项重要举措.庐江县某村在小城镇建设中集约了1000亩土地,经投标,由甲工程队每天平可平整土地30亩,乙工程队每天可平整土地25亩,甲乙两工程队每天的工程费合计为4200元,而且甲工程队11天所需工程费与乙工程队10天所需工程费刚好相同.(1)甲乙两工程队每天各需工程费多少元?(2)现由甲乙两工人队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过76万元,有几种方案,并求出最低费用.7.如图,长方形PQMN是由六个正方形A,B,C,D,E,F拼接而成,已知最大的正方形B的边长是21米,最小正方形A的边长是a米.(1)用含a的式子分别表示正方形C,E,F的边长;(2)求a的值;(3)现有一项沿着长方形PQMN的四条边铺设管道的工程.甲、乙两个工程队共同参与这项工程,甲队单独铺设3天后,乙队加入,两队又共同铺设了6天,这项铺设管道的工程全部完成.已知甲队每天比乙队每天少铺设4米,则甲、乙两队每天各铺设多少米?8.为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,花桥街道进行住房改造工程,有甲乙两个工程队加入住房改造中来,如果由甲工程队单独做需要30天完成,如果由乙工程队单独做需要20天完成.(1)甲乙两个工程队合作,完成这项工程需要几天?(2)甲工程队先单独做6天,因特殊事情离开,余下的乙工程队单独做,为了使人民能够更快住上于净漂亮的房屋,要求乙工程队提高一倍的工作效率来完成房屋改造工程,问乙工程队完成此项工程还需要几天?9.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?10.“再穷不能穷教育,再苦不应苦孩子”,为了让我区中小学生能“温暖”过冬,自治区决定实施中小学校供暖工程.某学校的供暖工程需铺设热力管道6300米,甲工程队负责铺设.甲工程队施工一个周后发现,每天平均只能铺设200米,按此速度将无法按期完成任务.为能及时供上暖确保师生“温暖”过冬,甲工程队决定邀请乙工程队来共同铺设剩余的管道,如果乙工程队平均每天能铺设150米,问乙工程队参与铺设多少天才能完成这项工程?11.某市今年进行煤气工程改造,甲乙两个工程队共同承包这个工程.这个工程若甲队单独做需要10天完成;若乙队单独做需要15天完成.若甲乙两队同时施工4天,余下的工程由乙队完成,问乙队还需要几天能够完成任务?12.为加快乡村振兴步伐,不断改善农民生产生活条件,某乡镇计划修建一条长18千米的乡村公路,拟由甲、乙两个工程队联合完成.已知甲工程队每天比乙工程队每天少修路0.3千米,甲工程队单独完成修路15.问题提出:如图1,A、B、C、D表示四个村庄,村民们准备合打一口水井.(1)问题解决:若水井的位置现有P、Q两种选择方案.点P在线段BD上,点Q在线段AB上,哪一种方案的水井到各村庄的距离总和较小?请说明你判断的理由.(2)你能给出一种使水井到各村庄的距离之和最小的方案吗?若能,请图2中标出水井的位置点M,并说明理由.问题拓展:如果(2)问中找出的水井经过招标,由两个工程队修建(不存在同时修建).已知甲工程队单独完成需要80天,乙工程队单独完成需要120天,且甲工程队比乙工程队每天多修建0.5m.(3)问水井要修建几米?(4)若甲工程队每天的施工费为0.5万元,乙工程队每天的费用是0.25万元,为了缩短工期和节约资金,则甲工程队最多施工几天才能使工程款不超过35万元?(甲、乙两队的施工时间不足一天按一天算).。

行程问题应用题及答案

行程问题应用题及答案

行程问题应用题及答案一1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。

问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。

第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。

第二次相遇时离B地的距离是AB全程的1/5。

已知甲车在第一次相遇时行了120千米。

AB两地相距多少千米?10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。

如果水流速度是每小时2千米,求两地间的距离?11、快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、工资问题
1•自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、
促经济”政策,盐城市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额
X销售的件数)•下表是甲、乙两位职工今年十一月份的工资情况信息:
?
(2)若职工丙今年十二月份的工资为2200元,那么丙该月应销售多少件产品?
2. 自温家宝在北京某学校调研以来,教师的工资受到了不同程度的影响,为了落实“调动教
师积极性、不低于公务员人均水平”政策,宝应县政府2010年1月份调整了教师的月工资
分配方案,调整后月工资由基本保障工资和绩效工资两部分组成(绩效工资=每课的课时系数X课时总数)•下表是甲、乙两位教师今年1月份的工资情况信息:
(1)求工资分配方案调整后,若月基本工资为1540元,求每课的课时系数和乙处月课时数。

(2)宝应县政府根据地方的特点又制定了一项“惠师”政策,凡教师工作不超过5年,一律只享受基本工资1540元,工作满6到10年,获绩效工资的8折,工作超过10年但不超20年的获绩效工资的9折,并缴纳工资总数的千分之一的税收。

工作超过20年的一律教小学科,无绩效工资,并每月扣除基本工资的千分之一。

问:一个工作了25年零3个月的教师,总共拿了多少薪水?
1为节约能源,某单位按以下规定收每月电费:用电不超过140度,按每度0.43元收费;
如果超过了140度,超过部分按每度0.57收费,如果某用户四月份的电费,平均每度0.5元,问该用户四月份用电多少度?
2•为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计费:当用水量不超过10吨时,每吨的收费标准相同;当用水量超过10吨时,超出10吨的部分每吨收费
标准也相同•下表是小明家 1 -4月份用水量和交费情况:
(1 )若小明家5月份用水量为20吨,则应缴水费多少元?
(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?
3、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,
另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦•时
(1 )照明时间500小时选哪一种灯省钱?
(2)照明时间1500小时选哪一种灯省钱?
(3)照明多少时间用两种灯费用相等?
1•甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h ,乙步行,速度为6km/h. 若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往 B 地,结果甲、乙两人同时
到达 B 地,问A、 B 两地的路程是多少?
2、早晨8点多钟,有两辆汽车先后离开甲地向乙地开去,这两辆汽车的速度相同。

8点32分,第一辆汽车行驶的路程是第二辆汽车的 3 倍;到了8 点39 分,第一辆汽车行驶的路程是第二辆的 2 倍。

那么,第一辆汽车是几点几分离开甲地的?
3、某人沿公路匀速前进,每隔4min 就遇到迎面开来的一辆公共汽车,每隔6min 就有一辆
公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m ,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?
4、张老师骑摩托车的速度为每小时45千米,学生步行的速度是每小时5千米,学校与车站
相距15千米。

如果2名学生要在55分钟内从学校到车站,请张老师用摩托车送,但摩托车后座只能坐一人,学生不能驾车,请你设计一个方案(学生只能步行或乘摩托车,上下摩托车的时间不计),使2名学生能在55分钟内全部到达车站,并用方程的有关知识说明理由。

(如果方案能使2名学生在规定时间内全部到达车站,时间少于47分钟可得7分,时间在47—55分钟以内的可得5分)
车站
方案一: 理由及解答: 万案一: 理由及解答:
四、打折问题
1、七年级学生在5名教师的带领下去公园秋游。

公园的门票为每人30元,现有两种优惠方案,甲方案:带队老师免费,学生按8折收费;乙方案:师生都按7.5折收费。

(6分)(1)若有n名学生,用代数式表示两种优惠方案各需多少费用?
(2)当n=70时,采用哪种方案更优惠?
3)当n=100时,采用哪种方案更优惠?
2•甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多
4人,两团人数之和恰等
于两团人数之差的18倍.
(1) 问甲、乙两个旅行团的人数各是多少?
(2) 若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿
童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两
团儿童人数各是多少?
3•某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:
(1) 每件服装的标价是多少元?
(2) 每件服装的成本是多少元?
(3) 为保证不亏本,最多能打几折?
4. 某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠•
(1) _____________________________________________________________________ 如果设参加旅游的员工共有a( a 10 )人,则甲旅行社的费用为______________________________ 元, 乙旅行社的费用为__________________ 元;(用含a的代数式表示,并化简.)
(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家
旅行社比较优惠?请说明理由•
(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为•(用含a的代数式表示,并化简.)(2分)
假如这七天的日期之和为63的倍数,则他们可能于五月.几号出发?(写出所有符合条件的可能性,并写出简单的计算过程•)
5. 小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?
6、小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装,为了
缓解资金的压力,小张决定打折销售. 若每件服装按标价的五折出售将亏20 元,若按标价的八折出售将赚40 元.
(1) 每件服装的标价是多少元?每件服装的成本是多少元?
(2) 为了尽快减少库存, 又要保证不亏本,请你告诉小张最多能打几折?
五、其它问题
1•决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数2
的2,若提前购票,则给予不同程度的优惠,在五月份内,团体票每张12元,共售出团体3
3
票数的-;零售票每张16元,共售出零售票数的一半,如果在六月份内,团体票按每张16
5
元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月
的票款收入持平?
2、防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一
台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?
3全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源己成为一项十分紧迫的任务,某地区沙漠原有面积100万公顷。

为了解该地区沙漠面积的变化情况,进行了连续年的观察,并将每年年底的观察结果,记录如下表:
3
预计该地区沙漠的面积将继续按此趋势扩大。

(1) 如果不采取措施,那么到第m年年底,该地区沙漠面积将变为多少万公顷?
(2) 如果第5年后采取措施,每年改造0. 8万公顷沙漠,那么到第n年该地区沙漠的面积为
多少万公顷? ( n> 5)
(3 )第几年后,该地区沙漠面积是原有面积的一半?
4•某人去水果批发市场采购苹果,他看中了A、E两家苹果。

这两家苹果品质一样,零售价
都为6元/千克,批发价各不相同•
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,
按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:
【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6 X 95% X 500+6 X 85% X 1000+6 X 75% X( 2100 —1500)1
(1)如果他批发600千克苹果,则他在A家批发需要_______________________ 元,在B家批发
而玄* ________________________________ 丿匕-
(2)如果他批发x千克苹果(1500 v x V 2000),则他在A家批发需要_________________ 元,在B 家
批发需要_______________ 元(用含x的代数式表示).
(3) 现在他要批发1800 千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由。

相关文档
最新文档