语音识别字符分割算法_原创.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.设计方法
5.1概述
5.2硬件系统的设计
语音信号预处理
(1)预加重
预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱,以便于频谱分析或声道参数分析。在计算机里用具有6dB/频程升高频特性的预加重数字滤波器来实现,一般是一阶的FIR数字滤波器:
为预加重系数,值接近于l,在0.9和1之间,典型值为0.94。
预加重的DSPBuilder实现:
为了便于实现,将上式中的一阶FIR预加重滤波器用差分方程表示为:
其中,为原始语音信号序列,N为语音长度,上面的公式显示其在时域
上的特性。又因为0.94接近于15/16,所以将上面的式子变为
除以16可以用右移4位来实现,这样就将除法运算化简为移位运算,降低了计算复杂度。在后面的模块设计中,也乘以或者除以一些这样的数,这些数为2的幂次,都可以用移位来实现。
预加重的硬件实现框图如下:
预加重实现框图
DSP Builder中的图形建模为:
预加重滤波器的DSPBuilder结构图
(2)分帧
语音信号是一种典型的非平稳信号,其特性随时间变化,其在很短的时间内是平稳的,大概为1小20ms,其频谱特性和物理特征可近似的看做不变,这样就可以采用平稳过程的分析处理方法来处理。
分帧的DSP Builder实现:
语音信号在10到20ms之间短时平稳(这样可以保证每帧内包含1一7个基音周期),也就是说选取的帧长必须介于10到20ms之间,此外,在MFCC特征提取时要进行FFT变换,FFT点数一般为2的幂次,所以本文中选择一帧长度为16ms,帧移为1/2帧长,这样一帧就包含了16KHz*16ms=256个点,既满足短时平稳,又满足FFT变换的要求。
由于采集的语音是静态的,语音长度已知,很容易计算出语音的帧数,但是在硬件上或实时系统中,语音长度是无法估计的,而且还要考虑存储空间的大小和处理速度,采用软件实现时的静态分帧方法是行不通的,可以利用硬件本身的特点进行实时的动态分帧。
为了使帧与帧之间平滑过渡,保持连续语音流的自相关性和过渡性,采用交叠分帧的算法。帧移取1/2帧长,即128个数据点当作一个数据块。FIFO1大小为一帧语音长度,分成两个数据块,预加重后的数据写入这个FIFO。为了实现帧移交叠,在FIFO1读数据时,同时再用FIFO2保存起来,当FIFO的一块数据读完以后,紧接着从FIF22读出这一块的副本。写入的一块数据,相当于被重复读出2次,所以FIFO1的读时钟频率设计为写时钟频率的2倍,而FIFOZ的读写时钟频率和FIFO1的读时钟频率相同。分帧以后的数据在图中按时间标号为1、2、2、3.··…,1、2为第一帧,2、3为第二帧,以此类推。
分帧实现框图
FIFO1的写信号一直为1(写允许),等到写完第1块(128点)再允许读。
当FIFO1读第1块数据的时,FIFO2保存第1块的数据,两者时钟频率一致,同时FIF01也在写第2块数据。FIFO1读完第1块数据,FIFO2里为第1块数据,FIFO1中第2块数据写了一半,此时禁止FIFO1读,并使能FIF02的读信号,从FIFO2中将第1块数据再读一遍,读完时第2块数据己经完全写入FIFO1,再允许FIFO1读,同时禁止FIF02读,如此循环。图中,数据选择器就是为了实现两个FIFO的读出数据选通,第1次数据为FIFO1的读出内容,第2次数据为FIFO2读出内容,这样就实现将一块数据内容重复输出两次,读完两次的同时,写完下一块内容。
分帧的DSPBullder实现为:
分帧的DSPBuilder的结构图
Inc 模块是为了让FIFO1写入128个数据后才产生读使能信号,其时钟频率与写时钟相同。Counter 是模256的计数器,当计数值在0到127之间时输出FIFOI 的值,128到255之间输出FIFO2的值,时钟频率与读时钟相同,为写时钟的两倍。DMUX 为数据选择器。分帧后,波形平滑了许多,略微有了一点延时,这是因为FIFOI 的读使能比写使能晚了128个采样点。但这样实现的实时分帧,与静态分帧相比,速度提高了很多,有效的减少了存储空间的浪费。 (3) 加窗
加窗的目的是使主瓣更尖锐,旁瓣更低。语音信号数字处理中常用的窗函数是矩形窗和汉明窗,本文选取的是汉明窗。因为矩形窗虽然有较高的频率分辨率,但它的频谱泄露比较严重,相比较来说,虽然汉明窗频率分辨率没有矩形窗高,但它有更平滑的底通特性,能够在较高程度上反映短时语音信号的频率特性。
汉明窗公式如下(其中N 为帧长):
0.540.46cos[2/(1)],01n N n N π--≤≤-
()n ω=
{
0,n else =
设分帧后的信号为S(n),加窗就是窗函数诚w(n)来乘分帧后的信号S(n),从而形成加窗语音信号()()()*s n s n n ωω=
加窗的DSP Builder 实现:
分帧后数据为8位定点QO(即8位有符号整数),三角余弦函数的范围为-1到1,可以用Q15来表示,但是Q15能表示的范围为一1到32767/32768之间,原则上应该用Q14表示,但从方便和总体精度考虑,仍然用Q15,+l 用32767来表示。加窗后输出还是为8位定点QO 。具体方法是:
窗函数采取查表的方法,表的大小为帧长(本文为256),将窗函数()n ω中 的0.08~1的值用Q15表示,其数值上相当于小32768(2的15次方),保存在 windowTable[]中,然后用预加重的信号s(n)乘以WindowTable[i]来计算加窗后的语音信号,得到加窗后的语音信号[]s i ω,仍然与预加重后的位数相同,公式如下:
[]()[]*[]15S i S i WindowTable i ω=>>
其实,分帧和加窗是同时进行的,分帧时只要找到与窗函数中对应点的关系,然后相乘就能得到加窗的数据,下图表示了预加重、分帧和加窗的时序关系: