上海市虹口区2018年中考数学二模试题(附答案)

合集下载

2018届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析

2018届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析

2
2
2 …………………(1 分)

ME

5 2

m

2

5 2

m

9 2
,∴
M
(1

9) 2 .……………………(1
分)
10
2018 届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析 普陀区 21.(本题满分 10 分)
结 BE 并延长,交边 AD 于点 F.
(1)求证:DC=EC;
A
F
D
(2)求△EAF 的面积.
E H
B
C
第 21 题图
21.(本题满分 10 分, 第(1)小题 5 分,第(2)小题 5 分)
解:(1)∵正方形 ABCD,
∴DC=BC=BA=AD, ∠BAD=∠ADC=∠DCB=∠CBA=90°
A
F
D
AH=DH=CH=BH, AC⊥BD, ∴∠ADH=∠HDC=∠DCH=∠DAE= 45°.
…………(2 分)
E H
又∵DE 平分∠AD B ∴∠ADE=∠EDH
∵∠DAE+∠ADE=∠DEC, ∠EDH+∠HDC=∠EDC…………(1 分) B 第 21 题图 C
∴∠EDC=∠DEC
…………(1 分)
6
2018 届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析
2 在△ABH 中,AB=6,cosB= 3 ,∠AHB=90°,
26 4
得 BH= 3
,AH=
62 42 2
5 ,————————————(2 分)
则 BC=8,
12 58 8 5

〖汇总3套试卷〗上海市虹口区2018年中考数学毕业生学业模拟试题

〖汇总3套试卷〗上海市虹口区2018年中考数学毕业生学业模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.3.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A .B .C .D .【答案】C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形4.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.6.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 7.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A .70°B .44°C .34°D .24°【答案】C 【解析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.8.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个.A .4B .3C .2D .1【答案】C【解析】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.9.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .【答案】D【解析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.10.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .45【答案】C【解析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD , ∴EF AB = DF DB ,EF CD =BF BD , ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3, ∴1EF +3EF =1,∴EF=34. 故选C. 【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.二、填空题(本题包括8个小题)11.如图,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =k x(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为_____.【答案】1【解析】过A 作x 轴垂线,过B 作x 轴垂线,求出A (1,1),B (2,12),C (1,k ),D (2,2k ),将面积进行转换S △OAC =S △COM ﹣S △AOM ,S △ABD =S 梯形AMND ﹣S 梯形AAMNB 进而求解.【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴,∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OAC COM AOMk S S S k ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=,∴k=1,故答案为1.【点睛】本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.12.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD 上是解题的关键.13.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60,则该直尺的宽度为____________cm .【答案】533【解析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】考查垂径定理,熟记垂径定理是解题的关键.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .【答案】1.【解析】试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB=22512+=13,△ACF与△BDF的周长之和+=22AC BC=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.15.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.【答案】25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.16.分解因式:4ax2-ay2=________________.【答案】a(2x+y)(2x-y)【解析】首先提取公因式a,再利用平方差进行分解即可.【详解】原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.【答案】a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.18.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)【答案】52【解析】如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.【详解】如图,作BH⊥AC于H.在Rt△ABH中,∵AB=10海里,∠BAH=30°,∴∠ABH=60°,BH=12AB=5(海里),在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),∴BH=CH=5海里,∴2(海里).故答案为2.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本题包括8个小题)19.在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?【答案】(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P(一男一女)=1220=35.20.已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.【答案】(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB 是⊙O 的切线.考点:切线的判定.21.先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1.【答案】 (x ﹣y)2;2.【解析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x 2﹣4y 2+4xy(5y 2-2xy)÷4xy=x 2﹣4y 2+5y 2﹣2xy=x 2﹣2xy+y 2,=(x ﹣y)2,当x =2028,y =2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键. 22.如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.【答案】(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+ 353222⨯⨯=+ 10.5=. 23.某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y 与自变量x 之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.【答案】 (1)① 30;(2)y 1=0.1x +30,y 2=0.2x ;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y 1=k 1x+30,y 2=k 2x ,由题意得:将(500,80),(500,100)分别代入即可:500k 1+30=80,∴k 1=0.1,500k 2=100,∴k 2=0.2故所求的解析式为y 1=0.1x+30; y 2=0.2x ;(3)当通讯时间相同时y 1=y 2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.24.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【答案】(1)100、35;(2)补图见解析;(3)800人;(4)5 6【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n 的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为105 126=.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.【答案】x≥3 5【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】观景亭D到南滨河路AC的距离约为248米.【解析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【详解】过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DE BE,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°【答案】C【解析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.2.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.3.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【答案】C【解析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键. 4.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.81的算术平方根是()A.9 B.±9 C.±3 D.3【答案】D【解析】根据算术平方根的定义求解.【详解】∵81=9,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.即81的算术平方根是1.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.6.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.7.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A .m >﹣2B .m <﹣2C .m >2D .m <2【答案】B 【解析】根据反比例函数的性质,可得m+1<0,从而得出m 的取值范围.【详解】∵函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大, ∴m+1<0,解得m <-1.故选B .8.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 【答案】C【解析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <1,b >1,且|a|>|b|,∴a+b <1,ab <1,a ﹣b <1,a÷b <1.故选:C .9.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【答案】A 【解析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <2,故正确;②∵对称轴1,2b x a=-=∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).10.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B 逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12a B.a C.32a D3a【答案】A【解析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM ,∵CH 是等边△ABC 的对称轴,∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题(本题包括8个小题)11.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.【答案】5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>12.如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=35,则DE=_____.【答案】154【解析】∵在Rt △ABC 中,BC=6,sinA=35 ∴AB=10∴22AC 1068=-=.∵D 是AB 的中点,∴AD=12AB=1. ∵∠C=∠EDA=90°,∠A=∠A∴△ADE ∽△ACB ,∴DE AD BC AC= 即DE 568= 解得:DE=154. 13.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.【答案】1.5【解析】在Rt △ABC 中,225AC =AB +BC ,∵将△ABC 折叠得△AB′E ,∴AB′=AB ,B′E =BE ,∴B′C =5-3=1.设B′E =BE =x ,则CE =4-x .在Rt △B′CE 中,CE 1=B′E 1+B′C 1,∴(4-x )1=x 1+11.解之得32x=.14.分解因式:4ax2-ay2=________________.【答案】a(2x+y)(2x-y)【解析】首先提取公因式a,再利用平方差进行分解即可.【详解】原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.当x为_____时,分式3621xx-+的值为1.【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.16.已知a<0,那么2a|可化简为_____.【答案】﹣3a【解析】根据二次根式的性质和绝对值的定义解答.【详解】∵a<0,∴2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【点睛】本题主要考查了根据二次根式的意义化简.当a≥0a;当a≤0=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.17.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.。

<合集试卷5套>2018年上海市虹口区中考学业质量监测数学试题

<合集试卷5套>2018年上海市虹口区中考学业质量监测数学试题
∴OA=5,AB∥OC,
∴点B的坐标为(8,﹣4),
∵函数y= (k<0)的图象经过点B,
∴﹣4= ,得k=﹣32.
故选B.
【点睛】
本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
8.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()
5.如果解关于x的分式方程 时出现增根,那么m的值为
A.-2B.2C.4D.-4
【答案】D
【解析】 ,去分母,方程两边同时乘以(x﹣1),得:
m+1x=x﹣1,由分母可知,分式方程的增根可能是1.
当x=1时,m+4=1﹣1,m=﹣4,
故选D.
6.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()
【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE= (m),
∵背水坡的坡比为1.2:1,
∴ ,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6 =(7+6 )m,
故答案为(7+6 )m.
【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故本题选:D.
【点睛】
本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.

2018年上海市虹口区高三二模数学卷含答案

2018年上海市虹口区高三二模数学卷含答案

虹口区2017学年度第二学期期中教学质吊监控测试高三数学试卷(时间120分伸,満分150分)罚(4 7 12 r * 5 I,、:K稱分54 : i1. U知A »(-«c t a] • B =[1.2J . 11 AcB农©・曲实数a的范也是_______________________2. Att ax *<a -1)y >1 ・0 与去线4x *ay-2.0 OTW, IM实ST a- ________________4.长方体的对侑找与过同一个頂点的三个农面所成并角分别为a . B. 丫 .対co® + c6i ♦知_____________________25匚知函ftt f(Q=八•则f」["(〜)]= ____________________________________ ・2 -1 x <06从累合(-1, 1, 2, 3施片山? -个为m・从兔合(-2, -1, 1. 3随HUI?个为n.朝方程X=1表用双曲找的概半为_______________m n7. Cffltt列UiU公比为q的寺比牧刊,且a2, a«.為成寻荒数X, M q-小轨f (x) = J g I:;. f (x) p炖(x-1)令q(x-M ♦务(x-1)?♦川♦比“-卄則觅的值尊于____________ ・9.勿国•长方休 ABCD - A B C 0K边长AB= AA=1AD =逅.EfFJ讣佞球毘琢 O・噂A . A席冋点旳球庶比円寻于__________ ・10. ■(!的整林尊于m ■翩(帐尊于n ■则JRM曲内接魁形的■枫的■大值为笛・(X】是不世过x的处大则方岂(2¥・2・[2T」M ONA1 X<1的所右实教能12・两数f (x) =$in x .对T Xg<冷卅I qxfl斷,&・川.忌色(0. &】(n^10),兄M 咐(为)T(创H『g)T(冷)|r(4)-“xj4l)l牛(Xnj)T()q|・ MM 0»大偵第干-----------------------ai)K«-tt? Wt 4f( » ix 2018.43.巳知a •(()“).cos a =-- Nf tan(a +・rjtei 旳小已5分.满分20分)13A. f (x) > x B f ( x)B si nc ex C ・ f (x) ■ arccosx D ・ f (x) ■ 14 V RtMBC ip. AB = AC , > M - N 是线段 AC 卜 / P・ M BC 总动Fl 満定 Ftf =k BC*. PFf« k 的值为().1 o 1小 1. 1 A. - B -C. —D.-234815 Sm :kx-y *k *1=0«jfi X 2*/=8^ 于 A. B 两点.KIAB =4^/5 .过虑 A. B 分别作 I的乖钱厅y<*交尸点M . N . ijf MN 寻尸<A. 2>l2 B 4 C ・ 4湮 D ・ 8X ・4 3n > 416.巳知a 珂 g 冶汁绷a, =a , n.0<aS4・比參■ J 「S 汽此敬刊的曲n 网他S-3n 去 <4m KMitiEW 的圧()A.何,aWntt^ S n -2015B. a «1 n =2016C,;存在 aMn 便谢 5=2017D.f 仔花 afunfttt & -2018vna (本大at 肯分 m17.(厶也淸分14分.5? (1)小地7分•第(2)小越7分・) 81 IS .止三枝仏的底面余铮啜出付三命賂.AB - AC -1.ZBAC ■;.跡于 3,点 M ・,M 2, N, , N,为 浚段的三夸分点.<1)求此 餐林的体积和Wtt A -AM.Ni 的体机;(2)求异|&儿戈AN 2t AM 】所城的耶大小.18 (本览满分14分•第(1)小Ift 7分.第< 2)小H11 7分・) Z 2 -2*1 -omm. a »3.SIL]K«-tt7 Wt 4^ 第 2员若.求边长c 的低4(2)次AABC 曲机的鼓火偵・x x>0 -xx<0巳知 MBC 中.« A,B,C 所対更的边分别为a.b,c , z =cosA*i -sin A ( I .trlftt 单位)址力丹B2C19. 分14分•第(1)小運6分■第<2)小锂8分・) _丫町內的•ifijtt列・Qr如宋时干仟意的I「幣收n,均竹a^-a? -d . IM林此・口慣列-为审忑向Sdh ,:称为•公玉向定・・平向内的.咖列・Q}■如采6#6n对f任意的正肢n,铀一 -♦^4.«q bK ( q HO), mmt -|Mjfi^"为•输比l&Jttfl* ••KUq柠力-公比.・⑴椒•耐常 g}是•务郵川用•用:和•公齣站才衣示♦二;(2)巳知Q}足•写龙向泾列・••公差向畀d =(3, 0). ?=(!.眾2=(人・*);―斗呎TH斗■■♦T•等比向鼠列• ••公比・q・2, =(1f 3). b. =(nx. kJ•求a,t»♦坷鸟片)严比0・20 (本IM满分16分•第(1)小IB 4分•第<2)小M 5».第(3)小越7 5?.)处果£(如倆13只有一T衣点,^isatii^eilffi・《!线・・caw貝c:—*y2=1.点M(m.n)是2HI3 C上的任恵一点.宜线I过虑M且址情13 C的•切线・・⑴证明:过勵3 C上的直M(gn)的•切线•力程足—*ny =1; 2(2> fl A. B足純网C长IB上的曲个酬4,点M(m.n )不布4标驚匕Mi MA, MB分聘交y Ifi于木m 4贞» 3X3=- , C t点P . Q .过M 旳櫃网C 的•切th I 殳y 紬F 点D .迁明:贞D itm PO 的中点;(3i AM(m,n) x 】,id«H C 的胪MLi RfnF a ■判Itfht M D C 的 11,白线MF 1w M&所说淡角址否相等?并说明J?rti ・21. M 越满分18分•第(1)小連3分.第< 2"也7分.第(3)小!? 8分・) CfiUfitt f(x)・ax'・x-a (a€R t x€R h( xeR)U A(1)观集x=二扌一圧关Ff(x)sO 的岸・求艾数a 射取Cl 范也;<2» *!« x)(f ( -1.乎]和[护,1)的m 网化 n-Kur^iii ;⑶硕酿3的*师”qTWH 叶ill 皿的如件是 峠虹口区2017学年度第二学期崗三年级玻学学科期中教学质虽监控测试题答案、填空旳(—6何第小30 4分.7 12Mit 小何5分.本大通腾分54分)16・A一.朋答範4.木大牠満分 76分)2・2;队万;..10. - mn ; 32・ana 宙小包5分・满分20分)6・7.--; 213. B 17, (14 分} M : (1) •••1 3 1ABBA 的R 离?H' 1 ,・•• V AJWZ =\/町护人=x M3 Z Z・・.三梭住ABC-ARC,的体帜等丁 -(立方E 位)•丨馬显A _ AM N,的体枳每丁・-(立方单 2 2 位) ......... 7分・・・AN 「’PQ. AM 「RMi ・・・ /MfC 的父小爹于片创立怕 AN- AM (所成的角或其补角的人小•• ... 9分••・ RM 2 -AM, ^y/2. RC =>/2 ■ M 2C=V6 ・ “ 2*2-6 1.・・ cosZM ?RC = ---- 一—— =一一・2K 渥x 渥 2:.界Bifittft AN- AM 曲it 的角的-. .............................. "分318、( M 分)昭:(1) z -z*1 =0 的阿卜權为 z»-± —I. .............................. 2 分2 2 A cos A =— , sin A = — . A =—・ .................. 4 分2 2 3,.卯CM 的竺■应,亠■亠•側C ■返匝 ............................................ 7分12 4 sin C sin A 2<2i v a 2 =b 2 -2kx:cosA•・• 9 -b *c -bciax: -be ・bc •从而be 59 •爭弓M b-c 时皈立.此时2・门4分)M :⑴设1=(— yj t d =(d, dj ・•斯以朝列GJ 址以片为件项.公盖为a 的寻靈钦列;铁列{%}&以为甘険,公劲 dz 的需笊数列•・X “2 ♦ll(+a n =(x, ♦xj*||rx ni yi*y 2*IIPyJ= (nx, *2n(n -1)d b ny f *2n(n -1)d 2) =%斗.y,)+ ^0(0-1)(d 1t d 2)(2)取戻段AA A 零分广R ・R ・3 PM a ・PC—? "BC 細耐*大值奇于—14分iba^-a, =d.得=n? -*-ln(n -1)d.2J.鬲* ■(心4 ■ (Xn. % ) ■(心彳一Xn ・ y(i 4 * %) ■ (3・ 0)・从mjXn4・Xn・3, y n^-yn UJttil 1 ww,公龙为3的雪穴數判,从血j Xn・3n-2.敢外{%}足#效外,y n«1.山订! =2?得g.=加人.=2心•只m, =1・k, =3.・・・啟列{叽}是口1为白坪,公比为2的帑比数刘;效嵋(kjis以3勺冇项•公比为2的耳比数列,从而有rn, - 2nJ. kn・3 2 J.……K)分T T V T M —Ia, b,・a? * lira. d・x,m 叫♦心g ・y2b-III"> S =x.m l "x?叫♦ Ill^Xnnv =1X14-4K2*7X2: *|||*(3n -2)X 2 j................... 』25 =1x2 ^4x22+7x23 + |||*(3n-2)x2n............................... 区.3>-m t 5 十3(21 令2s+川令2^)-(3n・2) 0. ft S, =5*(3n-5)x 2n> T R = *y^2 *lll*y r k n,丿=3〈2” -1)1 -2-> -4 ―— V从血a bP b+IIHanb=S+h=(3n・2)・2 +2 ............................................. M分20. i 16分解:(1)由点M(m,n)生HR1 C 上,y *n2=1. • M(m,n)^Ktt y *ny = 1 上=Oaj. ill 弓一m2 - 2. AiUfjWfj x--■代入稀网方稈得『.丄屮得2 m m个交点(2 0)・2f饯I址懂関C切如m勺n# 0时.右竺♦(“,适綴为y S_J!L X4-1代入悟网方樫側丄J-mxr-『=0,有2 2n n 2A -m1 M g(1 *2 ) m2诃-2 铀爼MO C 切皱........................ ............. 4 分2 2丹轉:不讨— ^n2y2»n\ ny=1-—代入fl) y. x的•兀2 2(2 )・••点M(m,n)不在坐怎越上.AM :y = ---------------------------- (覧十厲 • ft P( 0 ,m *722过点M(m.n)的5塩为|:竺个吋』■静D (o,丄).由性J ■鮒 亦-2 =-2〃 •从而肖2 n 2Y 宀Q ■-+二・—^M ・ --2y D ・・••点D 是线段PO 的中点・・・・9分m+血 m -血 m -2 n(3)M (m.n).| >ny -1.1 的力|R|h|fit 3 ・(2n. un}, — >n a -1. ^(-1, 0) , F ?(1. 0),2 2Mh-f-l-m, «n)■詞-n)■记S 勺胡的史角a , 3勺晶的夬角B. ............................ 12 ;>所以cosa «cosP , f] a ・P ,从njft IMF, . MF 訂听成的文如4舟.…恂分21. ( 1«;» W: (1) ill a( )3⑵仏…4…哉说®品严当-1<片<片0乎 臥 Xf-x, >0 , 1-彳>0 ,¥<的<1. -2<為♦冷<-齿,冇《2<斗4斗怙)<-1・-1<1*)^x 2(x l *x 2)<0 ・・・・ aO-aivO-•…当-耳“ <冷 s0 时.冷-片>0 . 1 -X ; >0 . 1-x?>0. 0《冰2<乎.-V5<x, *$<0. H|n(m + 2)(1 *m)z2n *mncosa =£当0^x, <Xj <1W ・ Xj-X >0 ・ 1-)^ >0 . 1 -£>0. 1 *x l x i (x,4x 2)>0.g(卷)一g(x,)>0・\、0]卸P 1)上運增.从而a 【号■ 1)上逶堆. io 分⑶充分性;当a —晋叭有f (弓—[¥,= ■》・曽SO, 乂 f ⑴=1> aaq' +q-a = 0 . f? a,从向 a=q*q 4 卅| 2 *|||.……14 分1-A好性:半 q -ODj, a «0.当 q 社0 时.ilia -q +q“ -q? + IH+q""2 卄“成之.nj 科-1 <q'<1 从向特-l<q<l. a -y^3 .■■' 2中的结论可E 】g (x ) = •'I*-1. — f ]遥械,在【一^, 1)倉8 .川饥 ~^sg (x )v-寸战l-・・.a x)^( -1,在[ l(x) -ax'-tx-a ft不斯・故仏£,1)内 疋仔在茅心qfl|q<l ・.•.右从仙a-1 <q <U1,冇 ai- —3。

上海市虹口区2018届高考二模数学试题含答案

上海市虹口区2018届高考二模数学试题含答案

上海市虹口区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知(,]A a =-∞,[1,2]B =,且AB ≠∅,则实数a 的范围是2. 直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a =3. 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=4. 长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++=5. 已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=6. 从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 7. 已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q = 8. 若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于9. 如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于10. 椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的 内接矩形的面积的最大值为11. []x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是 12. 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于二. 选择题(本大题共4题,每题5分,共20分) 13. 下列函数是奇函数的是( )A. ()1f x x =+B. ()sin cos f x x x =⋅C. ()arccos f x x =D. 0()0x x f x x x >⎧=⎨-<⎩14. 在Rt ABC ∆中,AB AC =,点M 、N 是线段AC 的三等分点,点P 在线段BC 上运 动且满足PC k BC =⋅,当PM PN ⋅取得最小值时,实数k 的值为( ) A.12 B. 13 C. 14D. 1815. 直线:10l kx y k -++=与圆228x y +=交于A 、B 两点,且||AB =,过点A 、B 分别作l 的垂线与y 轴交于点M 、N ,则||MN 等于( )A.16. 已知数列{}n a 的首项1a a =,且04a <≤,14464n n n n n a a a a a +->⎧=⎨-≤⎩,n S 是此数列的前n项和,则以下结论正确的是( )A. 不存在a 和n 使得2015n S =B. 不存在a 和n 使得2016n S =C. 不存在a 和n 使得2017n S =D. 不存在a 和n 使得2018n S =三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱的底面是等腰直角三角形,1AB AC ==,2BAC π∠=,高等于3,点1M 、2M 、1N 、2N 为所在线段的三等分点. (1)求此三棱柱的体积和三棱锥112A AM N -的体积; (2)求异面直线12A N 、1AM 所成的角的大小.18. 已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是 虚数单位)是方程210z z -+=的根,3a =. (1)若4B π=,求边长c 的值;(2)求ABC ∆面积的最大值.19. 平面内的“向量列” {}n a ,如果对于任意的正整数n ,均有1n n a a d +-=,则称此“向量列”为“等差向量列”, d 称为“公差向量”,平面内的“向量列” {}n b ,如果对于任意的正整数n ,均有1n n b q b +=⋅(0q ≠),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列” {}n a 是“等差向量列”,用1a 和“公差向量” d 表示12n a a a ++⋅⋅⋅+; (2)已知{}n a 是“等差向量列”,“公差向量” (3,0)d =,1(1,1)a =,(,)n n n a x y =,{}n b 是“等比向量列”,“公比” 2q =,1(1,3)b =,(,)n n n b m k =,求1122n n a b a b a b ⋅+⋅+⋅⋅⋅+⋅.20. 如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”,已知椭圆22:12x C y +=,点(,)M m n 是椭圆C 上的任意一点,直线l 过点M 且是椭圆C 的“切线”. (1)证明:过椭圆C 上的点(,)M m n 的“切线”方程是12mxny +=; (2)设A 、B 是椭圆C 长轴上的两个端点,点(,)M m n 不在坐标轴上,直线MA 、MB 分别交y 轴于点P 、Q ,过M 的椭圆C 的“切线” l 交y 轴于点D ,证明:点D 是线段PQ 的中点;(3)点(,)M mn 不在x 轴上,记椭圆C 的两个焦点分别为1F 和2F ,判断过M 的椭圆C 的“切线” l 与直线1MF 、2MF 所成夹角是否相等?并说明理由.21. 已知函数3()f x ax x a =+-(a ∈R ,x ∈R ),3()1xg x x=-(x ∈R ).(1)如果2x =x 的不等式()0f x ≤的解,求实数a 的取值范围;(2)判断()g x 在(-和的单调性,并说明理由; (3)证明:函数()f x 存在零点q ,使得4732n a q q q q -=+++⋅⋅⋅++⋅⋅⋅成立的充要条件是3a ≥.上海市虹口区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅,则实数a 的范围是【解析】画数轴,1a ≥2. 直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a = 【解析】由24(1)02a a a --=⇒=3. 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=【解析】4tan 3α=-,∴1tan()47πα+=- 4. 长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++=【解析】设三边为a 、b 、c ,对角线为d ,∴2222a b c d ++=2222cos a b d α+=,2222cos b c d β+=,2222cos c a dγ+=,∴222cos cos cos 2αβγ++= 也可取正方体的特殊情况去求5. 已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=【解析】120()log (1),0x f x x x -≤=-+>⎪⎩,1(9)3f --=,111[(9)](3)2f f f ----==-6. 从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【解析】32121442⨯+⨯=⨯7. 已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q = 【解析】22342210a a a q q +=⇒--=,∴1q =或12q =-8. 若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于【解析】66[(1)1]x x =-+,33620a C == 9. 如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于【解析】外接球半径为1,3πα=,球面距离为3π10. 椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为 【解析】根据本公众号“上海初高中数学”2018年3月28日推文中的性质,最大值为2mn11. []x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是 【解析】当01x ≤<,[2]1x =,∴21(2)22x x =⇒=;当0x <,[2]0x =,21(2)4x =, ∴1x =-,∴满足条件的所有实数解为0.5x =或1x =-12. 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于【解析】在[0,8]π有4个周期,最大值为4416⨯=二. 选择题(本大题共4题,每题5分,共20分) 13. 下列函数是奇函数的是( )A. ()1f x x =+B. ()sin cos f x x x =⋅C. ()arccos f x x =D. 0()0x x f x x x >⎧=⎨-<⎩【解析】由()()f x f x -=-,选B14. 在Rt ABC ∆中,AB AC =,点M 、N 是线段AC 的三等分点,点P 在线段BC 上运 动且满足PC k BC =⋅,当PM PN ⋅取得最小值时,实数k 的值为( ) A.12 B. 13 C. 14D. 18【解析】建系,设(,3)P x x -,(1,0)M ,(2,0)N ,22911PM PN x x ⋅=-+,[0,3]x ∈,∴94x =时取到最小值,此时14PC k BC ==,选C15. 直线:10l kx y k -++=与圆228x y +=交于A 、B 两点,且||AB =,过点A 、B 分别作l 的垂线与y 轴交于点M 、N ,则||MN 等于( )A.【解析】AB 长为直径,∴:10l kx y k -++=经过原点,1k =-,8MN ==,选D 16. 已知数列{}n a 的首项1a a =,且04a <≤,14464n n n n n a a a a a +->⎧=⎨-≤⎩,n S 是此数列的前n项和,则以下结论正确的是( )A. 不存在a 和n 使得2015n S =B. 不存在a 和n 使得2016n S =C. 不存在a 和n 使得2017n S =D. 不存在a 和n 使得2018n S =【解析】令11a =,则所有奇数项都为1,偶数项都为5,排除B 、C ;令12a =,则所有奇数项都为2,偶数项都为4,排除D ,故选A.三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱的底面是等腰直角三角形,1AB AC ==,2BAC π∠=,高等于3,点1M 、2M 、1N 、2N 为所在线段的三等分点. (1)求此三棱柱的体积和三棱锥112A AM N -的体积; (2)求异面直线12A N 、1AM 所成的角的大小. 【解析】(1)13322V =⨯=;1121121311322A AM N M A AN V V --==⨯⨯=(2)相当于正方体同一顶点的面对角线所成的角,为3π18. 已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是 虚数单位)是方程210z z -+=的根,3a =. (1)若4B π=,求边长c 的值;(2)求ABC ∆面积的最大值.【解析】(1)解为12,∴3A π=,由正弦定理b =c =(2)画出△ABC 的外接圆可知,3AB AC ==.19. 平面内的“向量列” {}n a ,如果对于任意的正整数n ,均有1n n a a d +-=,则称此“向量列”为“等差向量列”, d 称为“公差向量”,平面内的“向量列” {}n b ,如果对于任意的正整数n ,均有1n n b q b +=⋅(0q ≠),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列” {}n a 是“等差向量列”,用1a 和“公差向量” d 表示12n a a a ++⋅⋅⋅+; (2)已知{}n a 是“等差向量列”,“公差向量” (3,0)d =,1(1,1)a =,(,)n n n a x y =,{}n b 是“等比向量列”,“公比” 2q =,1(1,3)b =,(,)n n n b m k =,求1122n n a b a b a b ⋅+⋅+⋅⋅⋅+⋅. 【解析】(1)121(1)2n n n a a a na d -++⋅⋅⋅+=+; (2)111(32,1)(2,32)(31)2n n n n n a b n n ---⋅=-⋅⋅=+⋅u u r u r,错位相减求和为(32)22n n -⋅+20. 如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”,已知椭圆22:12x C y +=,点(,)M m n 是椭圆C 上的任意一点,直线l 过点M 且是椭圆C 的“切线”. (1)证明:过椭圆C 上的点(,)M m n 的“切线”方程是12mxny +=; (2)设A 、B 是椭圆C 长轴上的两个端点,点(,)M m n 不在坐标轴上,直线MA 、MB 分别交y 轴于点P 、Q ,过M 的椭圆C 的“切线” l 交y 轴于点D ,证明:点D 是线段PQ 的中点;(3)点(,)M mn 不在x 轴上,记椭圆C 的两个焦点分别为1F 和2F ,判断过M 的椭圆C 的“切线” l 与直线1MF 、2MF 所成夹角是否相等?并说明理由. 【解析】(1)设直线()y k x m n =-+, 联立椭圆,0∆=,可证结论; (2):MA l y x =+,∴P y =,同理Q y =,1D y n =24222P Q D n y y y m n-+===-,即点D 是线段PQ 的中点(3)相等,11MF n k m =+,21MF n k m =-,2mk n-=切,由夹角公式 1111tan ||1MF MF k k k k n θ-==+切切,2221tan ||1MF MF k k k k nθ-==+切切,所以所成夹角相等.21. 已知函数3()f x ax x a =+-(a ∈R ,x ∈R ),3()1xg x x=-(x ∈R ). (1)如果2x =x 的不等式()0f x ≤的解,求实数a 的取值范围;(2)判断()g x在(1,2-和[2的单调性,并说明理由; (3)证明:函数()f x 存在零点q ,使得4732n a q q q q -=+++⋅⋅⋅++⋅⋅⋅成立的充要条件是3a ≥.【解析】(1)(023f a ≤⇒≥; (2)根据单调性定义分析,在(1,2-上递减,在[2上递增; (3)“函数()f x 存在零点q ,使得4732n a q q q q-=+++⋅⋅⋅++⋅⋅⋅成立”说明 473231n qa q q q q q-==+++⋅⋅⋅++⋅⋅⋅-成立,根据无穷等比数列相关性质,(1,1)q ∈-, 结合第(2)问,31qa q =-在(-上递减,在上递增,∴min 3()1q a g q ≥==-,反之亦然.。

2018年上海市虹口区中考数学二模试卷含答案解析

2018年上海市虹口区中考数学二模试卷含答案解析

2018年上海市虹口区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.(4分)下列实数中,有理数是()A.B.C.πD.02.(4分)如果关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k<1且k≠0 C.k>1 D.k>1且k≠0.3.(4分)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2D.y=(x﹣1)2.4.(4分)如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为()A.0.4 B.0.36 C.0.3 D.0.245.(4分)数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定6.(4分)如图,在矩形ABCD中,点E是CD的中点,联结B E,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()A.外离B.外切C.相交D.内切二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)a6÷a2=.8.(4分)某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为毫米.9.(4分)不等式组的解集是.10.(4分)方程的解为.11.(4分)已知反比例函数,如果当x>0时,y随自变量x的增大而增大,那么a的取值范围为.12.(4分)请写出一个图象的对称轴为y轴,开口向下,且经过点(1,﹣2)的二次函数解析式,这个二次函数的解析式可以是.13.(4分)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.14.(4分)在植树节当天,某校一个班的学生分成10个小组参加植树造林活动,如果10个小组植树的株数情况见下表,那么这10个小组植树株数的平均数是株.。

上海市虹口区2018年中考数学二模试题(附答案)

上海市虹口区2018年中考数学二模试题(附答案)

乘车步行骑车出行方式O B上海市虹口区2018年中考数学二模试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,有理数是A.3;B.39;C.π;D.0.2.如果关于x的一元二次方程x2-2x+k=0有两个不相等的实数根,那么k的取值范围是A.k<1;B.k<1且k≠0;C.k>1;D.k>1且k≠0.3.如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是A.y=x2+1;B.y=x2-1;C.y=(x+1)2;D.y=(x-1)2.4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A.0.4;B.0.36;C.0.3;D.0.24.20人数AA D12DCP E0E 第4题图第5题图B第6题图C5.数学课上,小明进行了如下的尺规作图(如图所示):(△1)在AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;1(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;2(3)作射线OC交AB边于点P.2x < 4.y那么小明所求作的线段 OP 是△AOB 的A .一条中线;B .一条高;C .一条角平分线;D .不确定.6.如图,在矩形 ABCD 中,点 E 是 CD 的中点,联结 BE ,如果 AB =6,BC =4,那么分别以AD 、BE 为直径的⊙M 与⊙N 的位置关系是A .外离;B .外切;C .相交;D .内切.二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)[请将结果直接填入答题纸的相应位置]7.计算: a 6 ÷ a 2 =▲ .8. 某病毒的直径是 0.000 068 毫米,这个数据用科学记数法表示为▲毫米.⎧- x > 1, 9.不等式组 ⎨ 的解集是▲ . ⎩10.方程 - x + 2 = x 的解为▲.11.已知反比例函数 y = 3 - a,如果当 x > 0 时, 随自变量 x 的增大而增大,那么 a 的取值范围为 x▲ .12.请写出一个图像的对称轴为 y 轴,开口向下,且经过点(1,-2)的二次函数解析式,这个二次函数的解析式可以是▲ .13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是▲.14. 在植树节当天,某校一个班的学生分成 10 个小组参加植树造林活动,如果 10 个小组植树的株数情况见下表,那么这 10 个小组植树株数的平均数是▲ 株.植树株数(株)小组个数53 64 7315.如果正六边形的两条平行边间的距离是2 3 ,那么这个正六边形的边长为▲ .16.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,如果 AC = a , BD = b ,那么用向量 a 、 b 表示向量 AB 是▲ .17.如图,在 △R t ABC 中,∠ACB =90°,AB=10,sin A = 3 5,CD 为 AB 边上的中线,以点 B 为圆心,r 为半径作⊙B .如果⊙B 与中线 CD 有且只有一个公共点,那么⊙B 的半径 r 的取值范围为▲ .△18.如图,在 ABC 中,AB =AC ,BC=8,tan B = 3,点 D 是 AB 的中点,如果把△BCD 沿直2BADD线CD翻折,使得点B落在同一平面内的B′处,联结A B′,那么A B′的长为▲.A DBO第16题图C三、解答题(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:(a-1-3a2-4a+4)÷a+1a+1,其中a=3.20.(本题满分10分)⎧x2-4xy+4y2=4,①解方程组:⎨⎩x+2y=6.②21.(本题满分10分)如图,在△ABC中,sin B= BF的长与sin C的值.45,点F在BC上,AB=AF=5,过点F作EF⊥CB交AC于点E,且AE:E C=3:5,求AEC F第21题图B22.(本题满分10分,第(1)小题6分,第(2)小题4分)甲、乙两车需运输一批货物到600公里外的某地,原计划甲车的速度比乙车每小时多10千米,这样甲车将比乙车早到2小时.实际甲车以原计划的速度行驶了4小时后,以较低速度继续行驶,结果甲、乙两车同时到达.(1)求甲车原计划的速度;y(千米)600BA(2)如图是甲车行驶的路程y(千米)与时间x(小时)的不完整函数图像,那么点A的坐标为▲,点B的坐标为▲,4小时后的y与x的函数关系式为▲(不要求写定义域).23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,四边形ABCD是矩形,E是对角线AC上的一点,EB=ED且∠ABE=∠ADE.(1)求证:四边形ABCD是正方形;(2)延长DE交BC于点F,交AB的延长线于点G,求证:EF⋅AG=BC⋅BE.DECFA第23题图24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)B G如图,在平面直角坐标系xOy中,抛物线y=ax2-2x+c与直线y=-B、C两点,抛物线的顶点为点D,联结CD交x轴于点E.(1)求抛物线的解析式以及点D的坐标;(2)求tan∠BCD;(3)点P在直线BC上,若∠PEB=∠BCD,求点P的坐标.yC 12x+3分别交于x轴、y轴上的O ED第24题图B x25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD为半径的⊙C与以AB为半径的⊙B相交于点E、F,且点E在BD上,联结EF交BC于点G.(1)设BC与⊙C相交于点M,当BM=AD时,求⊙B的半径;(2)设BC=x,EF=y,求y关于x的函数关系式,并写出它的定义域;(3)当BC=10时,点P为平面内一点,若⊙P与⊙C相交于点D、E,且以A、E、P、D为顶点的四边形是梯形,请直接写出⊙P的面积.(结果保留)A DEB M G CF第25题图⋅初三数学评分参考建议2018.4说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.D2.A3.C4.B5.C6.B二、填空题本大题共12题,每题4分,满分48分)7.a48.6.8⨯10-59.x<-110.x=111.a>312.y=-x2-1等(答案不唯一)13.1214.615.2112416.a-b17.5<r≤6或r=22518.255三、解答题(本大题共7题,满分78分)19.解:原式=a2-1-3a+1⋅a+1a2-4a+4………………………………………………………(3分)(a+2)(a-2)a+1 =………………………………………………………(3分)a+1(a-2)2=a+2a-2……………………………………………………………………………(2分)当a=3时,原式=3+2=-7-43……………………………………………(2分)3-2.20.解:由①得,x-2y=2或x-2y=-2……………………………………………(2分)⎩x+2y=6;⎩x+2y=6.y=1;⎩y=2.∵sin B=4在Rt△ABD中,BD=AB⋅cos B=5⨯=3…………………………………(2分)∵EF⊥CB AD⊥CB∴EF∥AD∴DF将它们与方程②分别组成方程组,得:⎧x-2y=2,⎧x-2y=-2,⎨⎨……………………………………………………(4分)分别解这两个方程组,⎧x=4,⎧x=2,得原方程组的解为⎨1⎨2⎩12.…………………………………………(4分)(代入消元法参照给分)21.解:过点A作AD⊥CB,垂足为点D3∴cos B=……………………………………………………(1分)5535∵AB=AF AD⊥CB∴BF=2BD=6………………………………………(1分)AE=…………………(2分)CF EC∵AE:EC=3:5DF=BD=3∴CF=5∴CD=8………………………(1分)在Rt△ABD中,AD=AB⋅sin B=5⨯4=4……………………………………(1分)5在Rt△ACD中,AC=AD2+CD2=45……………………………………(1分)∴sin C=AD5=AC5………………………………………………………………(1分)22.解:(1)设甲车原计划的速度为x千米/小时由题意得600600-=2…………………………………………………………(3分)x-10x解得x1=-50x2=60经检验,x1=-50x2=60都是原方程的解,但x1=-50不符合题意,舍去∴x=60……………………………………………………………………………(2分)答:甲车原计划的速度为60千米/小时.………………………………………(1分)(2)(4,240)(12,600)…………………………………………………(1分,1分)y=45x+60…………………………………………………………………………(2分)23.(1)证明:联结BD…………………………………………………………………(1分)∵EB=ED∴∠EBD=∠EDB…………………………………………………(2分)∵∠ABE=∠ADE∴∠ABD=∠ADB…………………………………………(1分)∴ EF ⎧0 = 36a - 12 + c,⎪a = ,⎪⎩c = 3.= …………………………………………(1 分)(3)设点 P (m , - m + 3 )24 1 解得 m = ………………………………………………(1 分)∴ 2 = 5 ∴AB=AD …………………………………………………………………………(1 分)∵四边形 ABCD 是矩形∴四边形 ABCD 是正方形………………………(1 分)(2)证明:∵四边形 ABCD 是矩形∴AD ∥BC∴ EF EC = ………………………………………………(2 分)DE EA同理 DC EC= ……………………………………………………………(2 分)AG EA∵DE=BE∵四边形 ABCD 是正方形 ∴BC=DC …………………………………………(1 分)BC =BE AG∴ EF ⋅ AG = BC ⋅ BE……………………………………………………………(1 分)24.解:(1)由题意得 B (6,0)C (0,3) ………………………………………(1 分)把 B (6,0) C (0,3)代入 y = ax 2 - 2x + c⎧ 1 得 ⎨解得 ⎨ 4⎩3 = c.∴ y = 14x 2 - 2 x + 3 ……………………………………………………………(2 分)∴D (4,-1) ………………………………………………………………(1 分)(2)可得点 E (3,0)………………………………………………………………(1 分)OE=OC=3,∠OEC =45°过点 B 作 BF ⊥CD ,垂足为点 F在 △R t OEC 中, EC = OE= 3 2cos ∠CEO在 △R tBEF 中, BF = BE sin ∠BEF = 3 22 ……………………………………(1 分)同理, EF = 3 3 92 ∴ CF =3 2 + 2 = 2 ……………………………………·(1 分)2 2 2在 △R t CBF 中, tan ∠BCD =12BF 1CF 3∵∠PEB=∠BCD ∴tan ∠PEB= tan ∠BCD =13①点 P 在 x 轴上方1- m + 3 m - 3 31解得 m = 12 …………………………………………………(1 分)∴ 2 ∴点 P ( 24 , 3) ………………………………………………………………………(1 分)5 5②点 P 在 x 轴下方1m - 3 =m - 3 3∴点 P (12,-3) ………………………………………………………………………(1 分)综上所述,点 P (24 3, ) 或 (12,-3) 5 525.(1)联结 DM在 △R t DCM 中, DM = DC 2 + CM 2 = 5 2 …………………………………(2 分)∵AD ∥BCBM =AD ∴四边形 ABMD 为平行四边形……………………(1 分)∴AB= DM = 5 2即⊙B 的半径为 5 2 ……………………………………………………………(1 分)(2)过点 C 作 CH ⊥BD ,垂足为点 H在 △R t BCD 中, BD = BC 2 + CD 2 = x 2 + 25∴ sin ∠DBC =5x 2 + 25可得∠DCH =∠DBC∴ sin ∠DCH =5x 2 + 25在 △R t DCH 中, DH = DC ⋅ s in ∠DCH = 25x 2 + 25 …………………………(1 分)∵CH ⊥BD ∴ DE = 2DH =50x 2 + 25 …………………………………………(1 分)∴ BE = x 2 + 25 - 50x 2 + 25= x2 - 25 x 2 + 25 ………………………………………(1 分)∵⊙C 与⊙B 相交于点 E 、F ∴EF=2EG BC ⊥EF在 △R t EBG 中, EG = BE ⋅ s in ∠DBC =5x 2 -125 x 2 + 25…………………………(1 分)10x 2 - 250∴ y = ( x > 5 3 )…………………………………………(1 分,1 分)x 2 + 25(3)25 4π 或 (29 - 8 5)π 或 (75+30 5)π………………………………………(做对一个得 2 分,其余 1 分一。

★试卷3套精选★上海市虹口区2018年中考数学第二次适应性考试题

★试卷3套精选★上海市虹口区2018年中考数学第二次适应性考试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c【答案】A 【解析】观察日历中的数据,用含a 的代数式表示出b ,c ,d 的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b =a+1,c =a+7,d =a+1.A 、∵a ﹣d =a ﹣(a+1)=﹣1,b ﹣c =a+1﹣(a+7)=﹣6,∴a ﹣d≠b ﹣c ,选项A 符合题意;B 、∵a+c+2=a+(a+7)+2=2a+9,b+d =a+1+(a+1)=2a+9,∴a+c+2=b+d ,选项B 不符合题意;C 、∵a+b+14=a+(a+1)+14=2a+15,c+d =a+7+(a+1)=2a+15,∴a+b+14=c+d ,选项C 不符合题意;D 、∵a+d =a+(a+1)=2a+1,b+c =a+1+(a+7)=2a+1,∴a+d =b+c ,选项D 不符合题意.故选:A .【点睛】考查了列代数式,利用含a 的代数式表示出b ,c ,d 是解题的关键.2.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些【答案】B【解析】试题解析:方差越小,波动越小. 22,A B s s >数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.实数21-的相反数是()A.21--B.21+C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.4.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.10【答案】B【解析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.5.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯D.5⨯C.62.5100.2510⨯B.7⨯2510【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.6.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.7.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数4 5 6 7 8每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6 【答案】A【解析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.某青年排球队12名队员年龄情况如下:则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,20【答案】D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.10.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用二、填空题(本题包括8个小题)11.如图,C 为半圆内一点,O 为圆心,直径AB 长为1 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 1.【答案】4π 【解析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=12OB=1 则边BC 扫过区域的面积为:22112012012=3603604πππ⎛⎫⨯ ⎪⨯⎝⎭- 故答案为4π. 【点睛】考核知识点:扇形面积计算.熟记公式是关键. 12.计算:12466=______. 【答案】13【解析】分析:先把括号内的二次根式进行化简,然后再利用乘法分配律进行计算即可得解.详解:原式=66+6() =12+1=13.点睛:考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 13.如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF=__.【答案】15°【解析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得1152BAF BOF∠=∠=,故答案为15°.14.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=12xx,连接CE,CF,则△CEF 周长的最小值为_____.【答案】25【解析】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC =FH ,∵FA =FC ,∴EC+CF =FH+AF =AH ,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵CH ∥DB ,∴AC ⊥CH ,∴∠ACH =90°,在Rt △ACH 中,AH =22AC CH +=45,∴△EFC 的周长的最小值=22+45,故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.15.若332y x x =-+-+,则y x = . 【答案】1.【解析】试题分析:332y x x =-+-+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=1.故答案为1.考点:二次根式有意义的条件.16.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.【答案】72【解析】分析:延长AB 交2l 于点F ,根据12//l l 得到∠2=∠3,根据五边形ABCDE 是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB 交2l 于点F ,∵12//l l ,∴∠2=∠3,∵五边形ABCDE 是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.17.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____. 【答案】16【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21=126, 故答案为16. 18.如图:图象①②③均是以P 0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P 1P 2P 3,第二次移动后图形①②③的圆心依次为P 4P 5P 6…,依此规律,P 0P 2018=_____个单位长度.【答案】1【解析】根据P 0P 1=1,P 0P 2=1,P 0P 3=1;P 0P 4=2,P 0P 5=2,P 0P 6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P 2018在正南方向上,P 0P 2018=672+1=1. 【详解】由图可得,P 0P 1=1,P 0P 2=1,P 0P 3=1;P 0P 4=2,P 0P 5=2,P 0P 6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3;∵2018=3×672+2,∴点P 2018在正南方向上,∴P 0P 2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题(本题包括8个小题)19.解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 【答案】﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,20.如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).【答案】【解析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tan CD CAD ∠=3x,根据AD+BD=AB列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tan CDCADAD∠=,∴AD=tanCDCAD∠=tan30x︒=3=3x,由AD+BD=AB可得3x+x=10,解得:x=53﹣5,答:飞机飞行的高度为(53﹣5)km.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=12,求⊙O 的半径.【答案】(1)证明见解析;(2)352r =. 【解析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【详解】(1)证明:连接OD ,OB OD =,3B ∴∠=∠,1B ∠=∠,13∴∠=∠,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt ABC ∆中,tan 4AC BC B ==,根据勾股定理得:224845AB =+=45OA r ∴=,在Rt ACD ∆中,1tan 1tan 2B ∠==, tan 12CD AC ∴=∠=,根据勾股定理得:22216420AD AC CD =+=+=,在Rt ADO ∆中,222OA OD AD =+,即()22520rr =+, 解得:352r =. 【点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°,故答案为:120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230=70人.点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?【答案】(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C 市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.24.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.【答案】(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积25.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.【答案】(1)答案见解析;(2)13.【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种,则P=412= 13. 26.计算532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 【答案】26m + 【解析】分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.2.4 的相反数是()A.4 B.4-C.14-D.14【答案】A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.3.下列二次根式中,最简二次根式的是()A B C D【答案】C【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A A选项错误;B2,被开方数为小数,不是最简二次根式;故B选项错误;C C选项正确;D D选项错误;故选C.考点:最简二次根式.4.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()A.14,9 B.9,9 C.9,8 D.8,9【答案】C【解析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C .【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 5.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些【答案】B【解析】试题解析:方差越小,波动越小. 22,A B s s >数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .【答案】B【解析】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时,ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确. 【点睛】考点:1.动点问题的函数图象;2.三角形的面积. 7.如果2(2)2a a -=-,那么( ) A .2x < B .2x ≤C .2x >D .2x ≥【答案】B【解析】试题分析:根据二次根式的性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩可求解.8.下列图标中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .【答案】D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知: A 既不是轴对称图形,也不是中心对称图形,故不正确; B 不是轴对称图形,但是中心对称图形,故不正确; C 是轴对称图形,但不是中心对称图形,故不正确; D 即是轴对称图形,也是中心对称图形,故正确. 故选D.考点:轴对称图形和中心对称图形识别9.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y < B .12y y >C .12 y y =D .1y 、2y 的大小不确定【答案】A【解析】根据x 1、x 1与对称轴的大小关系,判断y 1、y 1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-b2a =-()-82-2⨯=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.10.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A.45B.54C.43D.34【答案】D【解析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA=BCAC =34,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.二、填空题(本题包括8个小题)11.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.【答案】4或8【解析】由平移的性质可知阴影部分为平行四边形,设A′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。

上海市虹口区中考二模数学试题及答案

上海市虹口区中考二模数学试题及答案

虹口区数学学科中考练习题(满分150分,考试时间100分钟).4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1. 在下列各数中,属于无理数的是A . 53; B . π; C .4; D .3272. 在下列一元二次方程中,没有实数根的是A . 20x x -=; B . 210x -=; C . 2230x x --=; D . 2230x x -+=. 3. 在平面直角坐标系xoy 中,直线2y x =-+经过A .第一、二、三象限 ;B .第一、二、四象限;C .第一、三、四象限 ;D .第二、三、四象限. 4. 某小区20户家庭某月的用电量如下表所示:用电量(度) 120 140 160 180 200 户数 2 3 672则这20 A .180,160;B .160,180;C .160,160;D .180,180.5.已知两圆内切,圆心距为5,其中一个圆的半径长为8 ,那么另一个圆的半径长是 A .3; B .13; C .3或13; D .以上都不对. 6. 在下列命题中,属于假命题...的是 A .对角线相等的梯形是等腰梯形;B .两腰相等的梯形是等腰梯形;C .底角相等的梯形是等腰梯形;D .等腰三角形被平行于底边的直线截成两部分,所截得的四边形是等腰梯形.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:22-= ▲ .8.不等式组240,50.x x +>⎧⎨-<⎩的解集是 ▲ .9.用换元法解分式方程13201x x x x +-+=+时,如果设1x y x+=,那么原方程化为关于y 的整式方程可以是 ▲ .1023x x +=的解是 ▲ . 11. 对于双曲线1k y x-=,若在每个象限内,y 随x 的增大而增大,则k 的取值范围是 ▲ .12.将抛物线23y x =向左平移2个单位,所得抛物线的表达式为 ▲ .13. 在一个不透明的盒子中装有8个白球和若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出1个球,它恰好是白球的概率是23,则该盒中黄球的个数为 ▲ .14.为了解某校九年级学生体能情况,随机抽查了其中的25名学生,测试了1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在20~25的频率是 ▲ .15.若正六边形的边长是1,则它的半径是 ▲ .16.在□ABCD 中,已知AC a =,DB b =,则用向量a 、b 表示向量AB 为 ▲ . 17.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′ ,即如图①,∠BAB′ =θ,AB B C AC n AB BC AC ''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF 中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n = ▲ .18.如图,在直角梯形纸片ABCD 中,AD ∥BC ,∠A =90°, ∠C =30°,点F 是CD 边上一点,将纸片沿BF 折叠,点C 落在E 点,使直线BE 经过点D ,若BF=CF=8,则AD 的 长为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:22244(4)2x x x x x-+÷-+,其中5x =20.(本题满分10分)① AB CD 第18题图 3 第14题图 5 12 人数/人 次数/次 (每组含最小值,不含最大值)15 20 25 30 35 A B C B′ 第17题图 C ′ DE E ′F ′ F 图① 图②解方程组: 2223,2 1.x y x x y y +=⎧⎨-+=⎩21.(本题满分10分)如图,在△ABC 中,AB=AC=10,3sin 5ABC ∠=,圆O 经过点B 、C ,圆心O 在△ABC 的内部,且到点A 的距离为2,求圆O 的半径.22.(本题满分10分,第(1)小题4分,第(2)小题6分)某超市进了一批成本为6元/个的文具.调查后发现:这种文具每周的销售量y (个)与销售价x (元/个) 89.51114销售量y (个)220 205 190 160(1)求与之间的函数解析式(不必写出定义域);(2)已知该超市这种文具每周的销售量不少于60个,若该超市某周销售这种文具(不考虑其它因素)的利润为800元,求该周每个文具的销售价.23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,∠BAE =∠DAF . (1)求证:BE = DF ;(2)联结AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,联结EM 、FM .求证:四边形AEMF 是菱形.A B C O 第21题图 A DB E F O CM 第23题图24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知:直线24y x =-+交x 轴于点A ,交y 轴于点B ,点C 为x 轴上一点,AC =1, 且OC <OA .抛物线2 (0)y ax bx c a =++≠经过点A 、B 、C . (1)求该抛物线的表达式;(2)点D 的坐标为(-3,0),点P 为线段AB 上一点,当锐角∠PDO 的正切值为12时,求点P 的坐标;(3)在(2)的条件下,该抛物线上的一点E 在x 轴下方,当△ADE 的面积等于四边形APCE 的面积时,求点E 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在Rt △ABC 中,∠A =90°,AB=6,AC=8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上一动点,点Q 为边AC 上一动点,且∠PDQ =90°.(1)求ED 、EC 的长;(2)若BP=2,求CQ 的长;(3)记线段PQ 与线段DE 的交点为点F ,若△PDF 为等腰三角形,求BP 的长.ABEC D ABCED第25题图(备用图)-1 O 1 2 -1 12-3 -2 yx -3 3-2 3 4 -4 -4 4虹口区中考数学模拟练习卷答案要点与评分标准.4说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题:(本大题共6题,满分24分)1.B ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C .二、填空题:(本大题共12题,满分48分)7.14; 8. 25x -<<; 9.2230y y +-=; 10.3x =; 11.k <1; 12.23(2)y x =+; 13.4; 14.0.2;15.1; 16.1122a b +; 17.2; 18.3三、解答题:(本大题共7题,满分78分)19.解:原式=2(2)(2)44(2)x x x x x x x+--+÷+………………………………………………(3分)2(2)(2)(2)(2)x x xx x x +-=⋅+- …………………………………………………(2分)12x =- ………………………………………………………………………(2分)当5x ==52…………………………………………………(3分)20.解:由②得:2()1x y -=,∴ 1x y -=或1x y -=- ……………………………………………………(2分)把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,23,1x y x y +=⎧⎨-=-⎩ …………………………………………………(4分)解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩222353x y ⎧=⎪⎪⎨⎪=⎪⎩.……………………………………………(4分)注:用代入消元法解,请参照给分.21.解:过点A 作AD ⊥BC ,垂足为点D …………………………………………………(1分)∵3sin 5ABC ∠=∴4cos 5ABC ∠=………………………………………………(1分) 在Rt △ABD 中,4cos 1085BD AB ABC =⋅∠=⨯=………………………………(1分)3sin 1065AD AB ABC =⋅∠=⨯=…………………………………(1分)∵AB=AC=10 AD ⊥BC ∴BC=2BD=16…………………………………………(1分) ∵AD 垂直平分BC ∴圆心O 在直线AD 上………………………………………(2分) ∴OD=6-2=4 ……………………………………………………………………………(1分)联结BO ,在Rt △OBD 中,2245BO OD BD =+=…………………………(2分)∴圆O 的半径为4522.解:(1)设所求函数解析式为y =kx +b (0k ≠)…………………………………(1分)由题意得:220819011k b k b =+⎧⎨=+⎩解之得:10300k b =-⎧⎨=⎩………………………(2分)∴y 与x 之间的函数解析式为y =-10x +300. ………………………………(1分)(2)由题意得(x -6)(-10x +300)=800 ……………………………………………(2分)整理得,x 2-36x +260=01210,26x x ==…………………………………………………………………(2分)当x =10时,y =200当x =26时,y =40<60 ∴x =26舍去 ……………………………………………(1分)答:该周每个文具销售价为10元. ………………………………………………(1分)23.证明:(1)∵正方形ABCD ,∴AB=AD ,∠B =∠D =90°…………………………(2分)∵∠BAE = ∠DAF∴△ABE ≌△ADF ……………………………………………………………(1分)∴BE = DF ……………………………………………………………………(2分)(2)∵正方形ABCD ,∴∠BAC =∠DAC ………………………………………(1分)∵∠BAE =∠DAF ∴∠EAO =∠FAO ……………………………………(1分)∵△ABE ≌△ADF ∴AE = AF …………………………………………(1分) ∴EO=FO ,AO ⊥EF …………………………………………………………(2分)∵OM = OA ∴ 四边形AEMF 是平行四边形……………………………(1分) ∵AO ⊥EF ∴四边形AEMF 是菱形……………………………………(1分)24.解:(1)易得:A (2,0),B (0,4)∵AC =1且OC <OA ∴点C 在线段OA 上∴C (1,0) …………………………………………………………………(1分)∵A (2,0),B (0,4),C (1,0)在抛物线2(0)y ax bx c a =++≠上,∴42040a b c c a b c ++=⎧⎪=⎨⎪++=⎩ 解得: 264a b c =⎧⎪=-⎨⎪=⎩∴所求抛物线的表达式为2264y x x =-+………………………………(3分)(2)∵锐角∠PDO 的正切值为12, 1tan 2ABO ∠= (ABO ∠为锐角)∴ABO PDA ∠=∠,∵点P 为线段AB 上一点,∴BAO DAP ∠=∠∴△ABO ∽△ADP ……………………………………………………………(1分)∴AP ADAO =, 又AO =2 , AB =5,AD =5 ∴5AP =1分)过点P 作PF AO ⊥于点F ,可证PF ∥BO ,∴AP PFAB BO= 可得:P F=2,即点P 的纵坐标是2.∴可得P (1,2)………………………………………………………………(2分) (3)设点E 的纵坐标为m (m <0), ∴1522ADE S AD m m =⋅=-△∵P (1,2),∴11()(2)22p APCE S AC y m m =⋅+=-四 由ADEAPCE S S =△四得:15(2)22m m -=- ……………………………………(2分)解得:12m =-∴点E 31(,)22-…………………………………………………………………(2分)25.解:(1)在Rt △ABC 中,∠A =90°,AB=6,AC=8 ∴BC=10……………………(1分)点D 为BC 的中点 ∴CD =5 可证△ABC ∽△DEC∴DE EC CD AB BC AC ==, 即56108DE EC ==………………………………(1分)∴154DE =,254CE =……………………………………………………(2分)(2)①当点P 在AB 边上时,在Rt △ABC 中,∠B +∠C =90°,在Rt △EDC 中,∠DEC +∠C =90°, ∴∠DEC=∠B ∵DE ⊥BC ,∠PDQ =90° ∴∠PDQ =∠BDE =90° ∴∠BDP =∠EDQ∴△BPD ∽△EQD ……………………………………………………………(1分)∴EQ DE BP BD =, 即15425EQ =, ∴32EQ = ………………………………………………………………………(2分)∴CQ=EC -EQ 194=……………………………………………………………(1分)②当点P 在AB 的延长线上时,同理可得:32EQ =, ∴CQ=EC +EQ 314=…………………………………………………………(1分)(3)∵线段PQ 与线段DE 的交点为点F ,∴点P 在边AB 上∵△BPD ∽△EQD ∴43BP BD PD EQ ED QD === 若设BP =x ,则34EQ x =,25344CQ x =- …………………………………(1分)可得4cot cot3QPD C∠==∴∠QPD=∠C又可证∠PDE=∠CDQ ∴△PDF∽△CDQ∵△PDF为等腰三角形∴△CDQ为等腰三角形………………………(1分)①当CQ=CD时,可得:253544x-=解得:53x=………………………(1分)②当QC=QD时,过点Q作QM⊥CB于M,∴1522CM CD==,5525248CQ=⨯=∴25325448x-=,解得256x=……………………………………………(1分)③当DC=DQ时,过点D作DN⊥CQ于N,∴4545CN=⨯=,28CQ CN==∴253844x-=,解得73x=-(不合题意,舍去)…………………………(1分)∴综上所述,53BP=或256.。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

(完整word版)2018年虹口区初三数学二模试卷及参考答案(2).docx

(完整word版)2018年虹口区初三数学二模试卷及参考答案(2).docx

2018 年虹口区初三数学二模试卷及参考答案(满分 150 分,考试时间100 分钟)2018 .0 4考生注意:1.本试卷含三个大题,共25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 6 题,每题 4 分,满分24 分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上. ]1.下列实数中,有理数是A. 3 ;B.3 9 ;C.;D. 0.2.如果关于 x 的一元二次方程x22x k 0 有两个不相等的实数根,那么k 的取值范围是A.k 1;B.k 1且k0 ;C.k 1;D.k 1且k 0 . 3.如果将抛物线y x2向左平移 1 个单位,那么所得新抛物线的表达式是A.y x21;B.y x2 1 ;C.y ( x 1)2;D.y ( x 1)2 .4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A. 0.4;B. 0.36;C. 0.3;D. 0.24.人数A D A2012P E DC0乘车步行骑车出行方式O EB B C第 4 题图第 5 题图第 6 题图5.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△ AOB ( OA<OB)边 OA、 OB 上分别截取 OD、OE,使得 OD=OE ;( 2)分别以点 D、 E 为圆心,以大于1D E 为半径作弧,两弧交于△AOB 内的一点 C;( 3)作射线 OC 交 AB 边于点 P.2那么小明所求作的线段OP 是△ AOB 的A.一条中线;B.一条高;C.一条角平分线;D.不确定.6.如图,在矩形 ABCD 中,点 E 是 CD 的中点,联结 BE ,如果 AB=6,BC=4 ,那么分别以AD 、 BE 为直径的⊙ M 与⊙ N 的位置关系是A.外离;B.外切;C.相交;D.内切.二、填空题:(本大题共12 题,每题 4 分,满分48 分)[请将结果直接填入答题纸的相应位置]7.计算: a 6 a 2 = ▲.8. 某病毒的直径是 0.000 068 毫米,这个数据用科学记数法表示为▲毫米 .9.不等式组x 1,的解集是▲.2x4.10.方程x2 x 的解为 ▲ .11.已知反比例函数 y 3 ax 0时, y 随自变量 x 的增大而增大,那么a 的取值,如果当 x范围为▲.12.请写出一个图像的对称轴为y 轴,开口向下,且经过点(1, - 2)的二次函数解析式,这个二次函数的解析式可以是▲.13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是▲.14. 在植树节当天,某校一个班的学生分成10 个小组参加植树造林活动,如果 10 个小组植 树的株数情况见下表,那么这10 个小组植树株数的平均数是▲株.植树株数(株)5 6 7小组个数34315.如果正六边形的两条平行边间的距离是 2 3 , 那么这个正六边形的边长为▲ .16.如图,在uuur r uuur r □ABCD 中,对角线 AC 与 BD 相交于点 O ,如果 AC a , BDb ,那么用向r ruuur量 a 、 b 表示向量 AB 是▲.17.如图,在 Rt △ ABC 中,∠ ACB=90 °, AB= 10,sinA=3, CD 为 AB 边上的中线,以点B5为圆心, r 为半径作⊙ B .如果⊙ B 与中线 CD 有且只有一个公共点,那么⊙ B 的半径 r 的取值范围为 ▲ .18.如图,在△ ABC 中, AB =AC ,BC= 8,tanB3,点 D 是 AB 的中点,如果把△ BCD 沿直2线 CD 翻折,使得点 B 落在同一平面内的B ′处,联结 A B ′,那么 A B ′的长为 ▲.BAADODDBCC第 17 题图ABC第 16 题图第 18 题图三、解答题(本大题共 7 题,满分 78 分)19.(本题满分 10 分)a 2先化简,再求值: ( a 13 ) 4a 4,其中 a3 .a 1 a 120.(本题满分 10 分)x 2 4xy 4y 2 4, ①解方程组:2y6.x ②21.(本题满分 10 分)4,点 F 在 BC 上, AB=AF= 5,过点 F 作 EF ⊥ CB 交 AC 于点E ,如图,在△ ABC 中, sin B5A且 AE : EC 3:5 ,求 BF 的长与 sinC 的值.ECFB第 21 题图22.(本题满分 10 分,第( 1)小题 6 分,第( 2)小题 4 分)甲、乙两车需运输一批货物到600 公里外的某地,原计划甲车的速度比乙车每小时多 10千米,这样甲车将比乙车早到2 小时.实际甲车以原计划的速度行驶了 4 小时后,以较低速 度继续行驶,结果甲、乙两车同时到达.( 1)求甲车原计划的速度;y (千米)( 2)如图是甲车行驶的路程y (千米)与时间 x (小时)BA 的坐标为600的不完整函数图像,那么点 ▲,点 B 的坐标为 ▲,4 小时后的 y 与 x 的函数关 A系式为▲(不要求写定义域) .O4x (小时)第 22 题图23.(本题满分 12 分,第( 1)小题 6 分,第( 2)小题 6 分)如图,四边形 ABCD 是矩形, E 是对角线 AC 上的一点, EB =ED 且∠ ABE=∠ ADE . ( 1)求证:四边形 ABCD 是正方形;( 2)延长 DE 交 BC 于点 F ,交 AB 的延长线于点 G ,求证: EF AG BC BE .DCEFABG第 23 题图24.(本题满分 12 分,第( 1)小题 4 分,第( 2)小题 4 分,第( 3)小题 4 分)如图,在平面直角坐标系xOy 中,抛物线 y ax22x c 与直线 y1x 3 分别交于2x 轴、 y 轴上的 B、C 两点,抛物线的顶点为点D,联结 CD 交 x 轴于点 E.(1)求抛物线的解析式以及点D 的坐标;(2)求 tan∠ BCD ;( 3)点 P 在直线 BC 上,若∠ PEB= ∠ BCD,求点 P 的坐标.yCO E B xD第 24 题图25.(本题满分14 分,第( 1)小题 4 分,第( 2)小题 6 分,第( 3)小题 4 分)如图,在梯形 ABCD 中, AD ∥ BC,∠ C=90°, DC=5 ,以 CD 为半径的⊙ C 与以 AB 为半径的⊙ B 相交于点 E、 F ,且点 E 在 BD 上,联结 EF 交 BC 于点 G.(1)设 BC 与⊙ C 相交于点 M,当 BM=AD 时,求⊙ B 的半径;(2)设 BC= x ,EF=y ,求 y 关于 x 的函数关系式,并写出它的定义域;( 3)当 BC=10 时,点 P 为平面内一点,若⊙P 与⊙ C 相交于点D、 E,且以 A、E、 P、 D 为顶点的四边形是梯形,请直接写出⊙P 的面积.(结果保留)A DEBM G CF第 25 题图2018 年虹口区初三数学二模参考答案及评分建议2018.4明:1.解答只列出 的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中 分 准相 分;2.第一、二大 若无特 明,每 分只有 分或零分;3.第三大 中各 右端所注分数,表示考生正确做 一步 得分数;4. 卷,要 持每 到底,不能因考生解答中出 而中断 本 的 .如果考生的解答在某一步出 ,影响后 部分而未改 本 的内容和 度, 影响的程度决定后 部分的 分,但原 上不超 后 部分 得分数的一半;5. 分 , 分或扣分均以 1 分 基本 位.一、 (本大 共 6 ,每4 分, 分24 分)1. D2. A3. C4. B5.C6.B二、填空 本大 共12 ,每 4 分, 分48 分)7. a 4 8. 6.8 10 59. x 1 10. x 1 11. a 312.yx 2 1 等(答案不唯一) 13.1 14. 6rr224 18.215. 217. 5 r 6 或 r516. 1a1 b2255三、解答 (本大 共 7 , 分 78 分)19.解:原式 =a 21 3 a 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)a 1a 2 4a 4(a 2)(a 2) a 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)a 1 ( a 2)2a2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)a 2当 a3 ,原式 = 32 7 4 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)32.20.解:由①得,x 2y 2 或 x 2 y 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)将它 与方程②分 成方程 ,得:x 2 y 2, x 2 y2,4 分)x 2y 6;x 2 y 6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(分 解 两个方程 ,得原方程 的解x 14, x 22, . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)y 1 1;y 22.(代入消元法参照 分)21.解: 点A 作 AD ⊥ CB ,垂足 点D∵sin B 4∴ cosB 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5 53在 Rt △ ABD 中, BDAB cosB5 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)∵ AB=AF5AD ⊥ CB∴ BF=2 BD=6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∵ EF ⊥ CB AD ⊥ CB∴ EF ∥ AD∴ DFAE⋯⋯⋯⋯⋯⋯⋯( 2 分)∵ AE : EC3:5CFECDF=BD= 3 ∴CF= 5 ∴ CD= 8⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)在 Rt △ ABD 中, ADAB sin B5 4 4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5在 Rt △ ACD 中, ACAD2CD 2 4 5 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∴sin C AD5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)AC 522.解:( 1) 甲 原 划的速度x 千米 /小由 意得600600 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)x 10x解得 x 1 50 x 2 60, x 150 x 2 60 都是原方程的解,但 x 1 50 不符合 意,舍去∴ x 60 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分) 答:甲 原 划的速度60 千米 /小 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ( 2)(4, 240) ( 12, 600) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分, 1 分)y 45 x 60 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)23.( 1) 明: BD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∵ EB=ED ∴∠ EBD =∠ EDB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分) ∵∠ ABE=∠ ADE ∴∠ ABD =∠ADB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ∴ AB=AD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分) ∵四 形 ABCD 是矩形∴四 形 ABCD 是正方形⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)( 2) 明:∵四 形 ABCD 是矩形∴ AD ∥ BC∴ EFEC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)DCECDEEA同理 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)AGEA∵ DE=BE∵四 形 ABCD 是正方形∴ BC=DC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∴ EFBCBE AG∴ EF AG BC BE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)24.解:( 1)由 意得 B ( 6, 0)C ( 0, 3) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)把 B ( 6, 0) C ( 0, 3)代入 yax 2 2x c得36a12 c,解得a1, 43c.c3.∴ y1 x2 2 x 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)4∴ D ( 4, - 1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)( 2)可得点 E ( 3,0)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)OE=OC= 3,∠ OEC=45 ° 点 B 作 BF ⊥ CD ,垂足 点 F在 Rt △ OEC 中, ECOE32CEOcos3在 Rt △ BEF 中, BF BE sin BEF2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分) 2同理, EF 32 ∴CF 3 23292⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯·(1 分)2 2 2BF 1在 Rt △ CBF 中, tan BCD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)CF3( 3) 点 P ( m ,13 )m21 ∵∠ PEB= ∠ BCD ∴ tan ∠ PEB= tan ∠ BCD3①点 P 在 x 上方1 m 3124∴2解得 m⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)33 5m∴点 P ( 24 , 3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5 5②点 P 在 x 下方1 m 31∴ 2解得 m 12⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)m 3 3∴点 P (12, 3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)上所述,点P ( 24 , 3) 或 (12, 3)5 525.( 1) DM在 Rt △ DCM 中, DM DC 2 CM 25 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分) ∵ AD ∥ BC BM =AD ∴四 形 ABMD 平行四 形⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∴ AB= DM = 52即⊙ B 的半径5 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)( 2) 点 C 作 CH ⊥BD ,垂足 点 H在 Rt △ BCD 中, BDBC 2 CD 2x 2 25∴sin DBC5x 2 25可得∠ DCH =∠DBC∴sin DCH5x 2 25在 Rt △ DCH 中, DHDC sin DCH25 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)x 225∵ CH ⊥ BD∴DE2DH50⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)x 2 25∴BEx 2 2550 x 2 25 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)x 225x 2 25∵⊙ C 与⊙ B 相交于点 E 、F∴ EF=2EG BC ⊥ EF在 Rt △ EBG 中, EGBE sin DBC5x 2125⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)10x 2x 225∴y250 ( x5 3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分, 1 分)( 3)25x 2 25或 (29 8 5) 或 (75+30 5)4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(做 一个得 2 分,其余 1 分一个)。

2018年上海市虹口区中考二模数学试题含答案 精品

2018年上海市虹口区中考二模数学试题含答案 精品

第5题图虹口区2018学年度第二学期初三质量调研数学试卷2018.4一、选择题:(本大题共6题,每题4分,满分24分) 1、计算3)2(-的结果是( )A 、6;B 、6-;C 、8;D 、8-; 2、下列根式中,与3是同类二次根式的是( ) A 、6; B 、12; C 、23; D 、18; 3、不等式042≤+x 的解集在数轴上表示正确的是( )A 、 ;B 、 ;C 、 ;D 、 ;4、李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是( )A 、12;B 、3.0;C 、4.0;D 、40;5、如图所示的尺规作图的痕迹表示的是( )A 、尺规作线段的垂直平分线;B 、尺规作一条线段等于已知线段;C 、尺规作一个角等于已知角;D 、尺规作角的平分线; 6、下列命题中,真命题是( )A 、四条边相等的四边形是正方形;B 、四个角相等的四边形是正方形;C 、对角线相等的平行四边形是正方形;D 、对角线相等的菱形是正方形; 二、填空题:(本大题共12题,每题4分,满分48分) 7、当1=a 时,3-a 的值为 ;某班学生最喜欢的体育项目的频数分布直方图 第4题图第15题图 第18题图8、方程x x =+32的根是 ;9、若关于x 的方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是 ; 10、试写出一个二元二次方程,使该方程有一个解是⎩⎨⎧=-=21y x ,你写的这个方程是 (写出一个符合条件的即可);11、函数121-=x y 的定义域是 ; 12、若),23(1y A -、),52(2y B 是二次函数3)1(2+--=x y 图像上的两点,则1y 2y (填“>”或“<”或“=”);13、一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是 ; 14、已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是 分;15、如图,在梯形ABCD ∆中,E 、F 分别为腰AD 、BC 的中点,若3= DC m ,5=EF m ,则向量=AB (结果用 m 表示);16、若两圆的半径分别为cm 1和cm 5,圆心距为cm 4,则这两圆的位置关系是 ; 17、设正n 边形的半径为R ,边心距为r ,如果我们将rR的值称为正n 边形的“接近度”,那么正六边形的“接近度”是 (结果保留根号);18、已知ABC ∆中,5==AC AB ,6=BC (如图所示),将ABC ∆沿射线BC 方向平移m 个单位得到DEF ∆,顶点A 、B 、C 分别与D 、E 、F 对应,若以点A 、D 、E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是 ; 三、解答题:(本大题共7题,满分78分) 19、(本题满分10分)先化简,再求值:4216442+÷-+-x x x x ,其中8=x ;第21题图20、(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 已知一个二次函数的图像经过)10(-,A 、)51(,B 、)31(--,C 三点. (1)求这个二次函数的解析式;(2)用配方法...把这个函数的解析式化为k m x a y ++=2)(的形式;21、(本题满分10分)如图,在∆ABC 中,CD 是边AB 上的中线,B ∠是锐角,且22sin =B ,21tan =A ,22=BC ,求边AB 的长和CDB ∠cos 的值;22、(本题满分10分)社区敬老院需要600个环保包装盒,原计划由初三(1)班全体同学制作完成。

上海市虹口区2018年最新中考数学二模试卷及答案解析

上海市虹口区2018年最新中考数学二模试卷及答案解析

2018年上海市虹口区中考数学二模试卷
一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]
1.(4分)下列实数中,有理数是()
A.B.C.πD.0
2.(4分)如果关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,那么k的取值范围是()
A.k<1B.k<1且k≠0C.k>1D.k>1且k≠0.
3.(4分)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2.
4.(4分)如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为()
A.0.4B.0.36C.0.3D.0.24
5.(4分)数学课上,小明进行了如下的尺规作图(如图所示):
(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;
(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;
(3)作射线OC交AB边于点P.
那么小明所求作的线段OP是△AOB的()
A.一条中线B.一条高C.一条角平分线D.不确定
6.(4分)如图,在矩形ABCD中,点E是CD的中点,联结B E,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()。

2018学年虹口区初三数学二模

2018学年虹口区初三数学二模

虹口区2018学年度第二学期期中学生学习能力诊断测试初三数学 试卷(满分150分,考试时间100分钟) 2019.04考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.] 1.32()a 的计算结果为 A .5a ;B .6a ;C .8a ;D .9a . 23= 的解为 A .4x =;B .7x =;C .8x =;D .10x =.3.已知一次函数(3)3y a x =-+,如果y 随自变量x 的增大而增大,那么a 的取值范围为 A .3a <;B .3a >;C .3a <-;D .3a >-.4.下列事件中,必然事件是A .在体育中考中,小明考了满分;B .经过有交通信号灯的路口,遇到红灯;C .抛掷两枚正方体骰子,点数和大于1;D .四边形的外角和为180度.5.正六边形的半径与边心距之比为A.1:B;C2;D.26.如图,在△ABC 中,AB =AC ,BC=4,tan B =2,以AB 的中点D 为圆心,r 为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么r 可以取 A .2; B .3;C .4;D .5.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:12-= ▲ .8.在数轴上,表示实数2的点在原点的 ▲ 侧(填“左”或“右”). 9.不等式24x ->- 的正整数解为 ▲ .10.如果关于x 的方程2690kx x -+=有两个相等的实数根,那么k 的值为 ▲ . 11.如果反比例函数的图像经过(1,3),那么该反比例函数的解析式为 ▲ . 12.如果将抛物线22y x =向左平移3个单位,那么所得新抛物线的表达式为 ▲ .第6题图①② 13. 一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 ▲ 个.那么另一个圆的半径长为 ▲ . 16.如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果AO a =,OD b =,那么用a 、b表示向量AB 是 ▲ .17.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1cos α的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为 ▲ .18.如图,在矩形ABCD 中,AB =6,点E 在边AD 上且AE =4,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点A 1、B 1与点C 在同一直线上,A 1B 1与边AD 交于点G ,如果DG =3,那么BF 的长为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:35(2)242m m m m -÷+---,其中3m =.20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩第17题图1B 第18题图OE第23题图 C A B D F21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ▲ ; (2)联结AD ,AD=7,sin ∠DAC 17=,BC =9,求AC 的长.22.(本题满分10分,第(1)小题6分,第(2)小题4分) 甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量(件)与时间(小时)为一次函数关系,部分数据如下表所示.(1)求y 与x 之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的 时间忽略不计,求经过多长时间恰好装满第1箱? 23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD 中,AC 与BD 相交于点O ,过点B 作BE ∥AC ,联结OE 交BC 于点F ,点F 为BC 的中点.(1)求证:四边形AOEB 是平行四边形;(2)如果∠OBC =∠E ,求证:=BO OC AB FC ⋅⋅.C第21题图DB AE P Q第25题图24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,抛物线2+8y ax bx =+与x 轴相交于点A (-2,0)和点B (4,0),与y 轴相交于点C ,顶点为点P .点D (0,4)在OC 上,联结BC 、BD . (1)求抛物线的表达式并直接写出点P 的坐标; (2)点E 为第一象限内抛物线上一点,如果△COE 与△BCD 的面积相等,求点E 的坐标; (3)点Q 在抛物线对称轴上,如果△BCD ∽△CPQ ,求点Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,AD ∥BC ,∠ABC =90°,AD =3,AB =4,点P 为射线BC 上一动点,以P 为圆心,BP 长为半径作⊙P ,交射线BC 于点Q ,联结BD 、AQ 相交于点G ,⊙P 与线段BD 、AQ 分别相交于点E 、F .(1)如果BE=FQ ,求⊙P 的半径;(2)设BP=x ,FQ=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)联结PE 、PF ,如果四边形EGFP 是梯形,求BE 的长.第24题图 x B O C D A P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘车步行骑车出行方式O B上海市虹口区2018年中考数学二模试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,有理数是A.3;B.39;C.π;D.0.2.如果关于x的一元二次方程x2-2x+k=0有两个不相等的实数根,那么k的取值范围是A.k<1;B.k<1且k≠0;C.k>1;D.k>1且k≠0.3.如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是A.y=x2+1;B.y=x2-1;C.y=(x+1)2;D.y=(x-1)2.4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A.0.4;B.0.36;C.0.3;D.0.24.20人数AA D12DCP E0E 第4题图第5题图B第6题图C5.数学课上,小明进行了如下的尺规作图(如图所示):(△1)在AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;1(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;2(3)作射线OC交AB边于点P.2x < 4.y那么小明所求作的线段 OP 是△AOB 的A .一条中线;B .一条高;C .一条角平分线;D .不确定.6.如图,在矩形 ABCD 中,点 E 是 CD 的中点,联结 BE ,如果 AB =6,BC =4,那么分别以AD 、BE 为直径的⊙M 与⊙N 的位置关系是A .外离;B .外切;C .相交;D .内切.二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)[请将结果直接填入答题纸的相应位置]7.计算: a 6 ÷ a 2 =▲ .8. 某病毒的直径是 0.000 068 毫米,这个数据用科学记数法表示为▲毫米.⎧- x > 1, 9.不等式组 ⎨ 的解集是▲ . ⎩10.方程 - x + 2 = x 的解为▲.11.已知反比例函数 y = 3 - a,如果当 x > 0 时, 随自变量 x 的增大而增大,那么 a 的取值范围为 x▲ .12.请写出一个图像的对称轴为 y 轴,开口向下,且经过点(1,-2)的二次函数解析式,这个二次函数的解析式可以是▲ .13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是▲.14. 在植树节当天,某校一个班的学生分成 10 个小组参加植树造林活动,如果 10 个小组植树的株数情况见下表,那么这 10 个小组植树株数的平均数是▲ 株.植树株数(株)小组个数53 64 7315.如果正六边形的两条平行边间的距离是2 3 ,那么这个正六边形的边长为▲ .16.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,如果 AC = a , BD = b ,那么用向量 a 、 b 表示向量 AB 是▲ .17.如图,在 △R t ABC 中,∠ACB =90°,AB=10,sin A = 3 5,CD 为 AB 边上的中线,以点 B 为圆心,r 为半径作⊙B .如果⊙B 与中线 CD 有且只有一个公共点,那么⊙B 的半径 r 的取值范围为▲ .△18.如图,在 ABC 中,AB =AC ,BC=8,tan B = 3,点 D 是 AB 的中点,如果把△BCD 沿直2BADD线CD翻折,使得点B落在同一平面内的B′处,联结A B′,那么A B′的长为▲.A DBO第16题图C三、解答题(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:(a-1-3a2-4a+4)÷a+1a+1,其中a=3.20.(本题满分10分)⎧x2-4xy+4y2=4,①解方程组:⎨⎩x+2y=6.②21.(本题满分10分)如图,在△ABC中,sin B= BF的长与sin C的值.45,点F在BC上,AB=AF=5,过点F作EF⊥CB交AC于点E,且AE:E C=3:5,求AEC F第21题图B22.(本题满分10分,第(1)小题6分,第(2)小题4分)甲、乙两车需运输一批货物到600公里外的某地,原计划甲车的速度比乙车每小时多10千米,这样甲车将比乙车早到2小时.实际甲车以原计划的速度行驶了4小时后,以较低速度继续行驶,结果甲、乙两车同时到达.(1)求甲车原计划的速度;y(千米)600BA(2)如图是甲车行驶的路程y(千米)与时间x(小时)的不完整函数图像,那么点A的坐标为▲,点B的坐标为▲,4小时后的y与x的函数关系式为▲(不要求写定义域).23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,四边形ABCD是矩形,E是对角线AC上的一点,EB=ED且∠ABE=∠ADE.(1)求证:四边形ABCD是正方形;(2)延长DE交BC于点F,交AB的延长线于点G,求证:EF⋅AG=BC⋅BE.DECFA第23题图24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)B G如图,在平面直角坐标系xOy中,抛物线y=ax2-2x+c与直线y=-B、C两点,抛物线的顶点为点D,联结CD交x轴于点E.(1)求抛物线的解析式以及点D的坐标;(2)求tan∠BCD;(3)点P在直线BC上,若∠PEB=∠BCD,求点P的坐标.yC 12x+3分别交于x轴、y轴上的O ED第24题图B x25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD为半径的⊙C与以AB为半径的⊙B相交于点E、F,且点E在BD上,联结EF交BC于点G.(1)设BC与⊙C相交于点M,当BM=AD时,求⊙B的半径;(2)设BC=x,EF=y,求y关于x的函数关系式,并写出它的定义域;(3)当BC=10时,点P为平面内一点,若⊙P与⊙C相交于点D、E,且以A、E、P、D为顶点的四边形是梯形,请直接写出⊙P的面积.(结果保留)A DEB M G CF第25题图⋅初三数学评分参考建议2018.4说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.D2.A3.C4.B5.C6.B二、填空题本大题共12题,每题4分,满分48分)7.a48.6.8⨯10-59.x<-110.x=111.a>312.y=-x2-1等(答案不唯一)13.1214.615.2112416.a-b17.5<r≤6或r=22518.255三、解答题(本大题共7题,满分78分)19.解:原式=a2-1-3a+1⋅a+1a2-4a+4………………………………………………………(3分)(a+2)(a-2)a+1 =………………………………………………………(3分)a+1(a-2)2=a+2a-2……………………………………………………………………………(2分)当a=3时,原式=3+2=-7-43……………………………………………(2分)3-2.20.解:由①得,x-2y=2或x-2y=-2……………………………………………(2分)⎩x+2y=6;⎩x+2y=6.y=1;⎩y=2.∵sin B=4在Rt△ABD中,BD=AB⋅cos B=5⨯=3…………………………………(2分)∵EF⊥CB AD⊥CB∴EF∥AD∴DF将它们与方程②分别组成方程组,得:⎧x-2y=2,⎧x-2y=-2,⎨⎨……………………………………………………(4分)分别解这两个方程组,⎧x=4,⎧x=2,得原方程组的解为⎨1⎨2⎩12.…………………………………………(4分)(代入消元法参照给分)21.解:过点A作AD⊥CB,垂足为点D3∴cos B=……………………………………………………(1分)5535∵AB=AF AD⊥CB∴BF=2BD=6………………………………………(1分)AE=…………………(2分)CF EC∵AE:EC=3:5DF=BD=3∴CF=5∴CD=8………………………(1分)在Rt△ABD中,AD=AB⋅sin B=5⨯4=4……………………………………(1分)5在Rt△ACD中,AC=AD2+CD2=45……………………………………(1分)∴sin C=AD5=AC5………………………………………………………………(1分)22.解:(1)设甲车原计划的速度为x千米/小时由题意得600600-=2…………………………………………………………(3分)x-10x解得x1=-50x2=60经检验,x1=-50x2=60都是原方程的解,但x1=-50不符合题意,舍去∴x=60……………………………………………………………………………(2分)答:甲车原计划的速度为60千米/小时.………………………………………(1分)(2)(4,240)(12,600)…………………………………………………(1分,1分)y=45x+60…………………………………………………………………………(2分)23.(1)证明:联结BD…………………………………………………………………(1分)∵EB=ED∴∠EBD=∠EDB…………………………………………………(2分)∵∠ABE=∠ADE∴∠ABD=∠ADB…………………………………………(1分)∴ EF ⎧0 = 36a - 12 + c,⎪a = ,⎪⎩c = 3.= …………………………………………(1 分)(3)设点 P (m , - m + 3 )24 1 解得 m = ………………………………………………(1 分)∴ 2 = 5 ∴AB=AD …………………………………………………………………………(1 分)∵四边形 ABCD 是矩形∴四边形 ABCD 是正方形………………………(1 分)(2)证明:∵四边形 ABCD 是矩形∴AD ∥BC∴ EF EC = ………………………………………………(2 分)DE EA同理 DC EC= ……………………………………………………………(2 分)AG EA∵DE=BE∵四边形 ABCD 是正方形 ∴BC=DC …………………………………………(1 分)BC =BE AG∴ EF ⋅ AG = BC ⋅ BE……………………………………………………………(1 分)24.解:(1)由题意得 B (6,0)C (0,3) ………………………………………(1 分)把 B (6,0) C (0,3)代入 y = ax 2 - 2x + c⎧ 1 得 ⎨解得 ⎨ 4⎩3 = c.∴ y = 14x 2 - 2 x + 3 ……………………………………………………………(2 分)∴D (4,-1) ………………………………………………………………(1 分)(2)可得点 E (3,0)………………………………………………………………(1 分)OE=OC=3,∠OEC =45°过点 B 作 BF ⊥CD ,垂足为点 F在 △R t OEC 中, EC = OE= 3 2cos ∠CEO在 △R tBEF 中, BF = BE sin ∠BEF = 3 22 ……………………………………(1 分)同理, EF = 3 3 92 ∴ CF =3 2 + 2 = 2 ……………………………………·(1 分)2 2 2在 △R t CBF 中, tan ∠BCD =12BF 1CF 3∵∠PEB=∠BCD ∴tan ∠PEB= tan ∠BCD =13①点 P 在 x 轴上方1- m + 3 m - 3 31解得 m = 12 …………………………………………………(1 分)∴ 2 ∴点 P ( 24 , 3) ………………………………………………………………………(1 分)5 5②点 P 在 x 轴下方1m - 3 =m - 3 3∴点 P (12,-3) ………………………………………………………………………(1 分)综上所述,点 P (24 3, ) 或 (12,-3) 5 525.(1)联结 DM在 △R t DCM 中, DM = DC 2 + CM 2 = 5 2 …………………………………(2 分)∵AD ∥BCBM =AD ∴四边形 ABMD 为平行四边形……………………(1 分)∴AB= DM = 5 2即⊙B 的半径为 5 2 ……………………………………………………………(1 分)(2)过点 C 作 CH ⊥BD ,垂足为点 H在 △R t BCD 中, BD = BC 2 + CD 2 = x 2 + 25∴ sin ∠DBC =5x 2 + 25可得∠DCH =∠DBC∴ sin ∠DCH =5x 2 + 25在 △R t DCH 中, DH = DC ⋅ s in ∠DCH = 25x 2 + 25 …………………………(1 分)∵CH ⊥BD ∴ DE = 2DH =50x 2 + 25 …………………………………………(1 分)∴ BE = x 2 + 25 - 50x 2 + 25= x2 - 25 x 2 + 25 ………………………………………(1 分)∵⊙C 与⊙B 相交于点 E 、F ∴EF=2EG BC ⊥EF在 △R t EBG 中, EG = BE ⋅ s in ∠DBC =5x 2 -125 x 2 + 25…………………………(1 分)10x 2 - 250∴ y = ( x > 5 3 )…………………………………………(1 分,1 分)x 2 + 25(3)25 4π 或 (29 - 8 5)π 或 (75+30 5)π………………………………………(做对一个得 2 分,其余 1 分一。

相关文档
最新文档