教材修订要点分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材修订要点分析
七——九年级新课标的修订要点
全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。
1.“数与代数”领域主要是最基本的数、式、方程(不等式)、函数的内容,在编排方式上有以下特点。
(1)螺旋上升地呈现重要的概念和思想,不断深化对它们的认识。本套教科书改变了以往代数教科书“先集中出方程,后集中出函数”的做法,而是按照“一次”和“二次”的数量关系,使方程和函数交替出现,即按一次方程(组)、一次函数、二次方程、二次函数的顺序螺旋上升。这样处理,一方面克服直线式发展所产生的不易理解消化的弊病,分阶段地不断地深化对方程和函数的理解;另一方面强化基本概念之间的内在联系,从函数角度提高对方程等内容的认识,“14.3用函数观点看方程(组)与不等式”等就是为此而特意安排的。
(2)联系实际,体现知识的形成和应用过程,突出建立数学模型的思想。教科书中方程、函数等内容均注意尽可能以实际问题为出发点和归宿,在分析和解决实际问题的过程中,建立数学模型,讨论有关概念和方法,然后再运用所学知识进一步探究新的实际问题,提高对数学内容及其应用的理解,从而体现“实践—理论—实践”的认识过程。例如,第3章“一元一次方程”分为以下四节:
3.1 从算式到方程
3.2 一元一次方程的讨论(1)———移项与合并
3.3 一元一次方程的讨论(2)———去括号与去分母
3.4 实际问题与一元一次方程
全章改变了“概念——解法——应用”的传统教材结构,而以实际问题为主要线索,将概念与解法融于对实际问题的分析和解决过程之中。
2.“空间与图形”的内容包括了“图形的认识”“图形与变换”“图形与坐标”“图形与证明”等,在编排上,以图形的认识为主线,将其他内容与它有机的整合,螺旋上升。
(1)加强数形结合思想的渗透,体现各部分知识之间的横向联系。例如,为更好地反映数与形之间的内在联系,提前安排了平面直角坐标系的内容(七年级下学期,第6章),使坐标这种能充分体现数形结合思想的工具能更早更多地得到使用(用坐标方法分析平移变换、对称变换等的本质特征,处理某些图形问题,加深对函数及二元一次方程组、不等式等的认识等)。
(2)循序渐进地培养推理能力,作好由实验几何到论证几何的过渡。对于推理能力的培养,按照“说点儿理”“说理”“简单推理”“符号表示推理”等不同层次分阶段逐步加深地安排,使推理论证成为学生通过观察、探究得到数学结论的自然延续。教科书从七年级开始渗透推理的初步训练,到七年级下学期的“第7章三角形”中结合三角形内角和开始正式出现证明。对于推理能力的培养不拘泥于形式,不局限于“空间与图形”,而是结合各领域内容中适宜的内容自然地进行(如在3.4节的问题探究中就已渗透反证法的思想)。
(3)从感性到理性,从静到动提高对图形的认识能力。学习“空间与图形”这部分内容的重要目的,是提高对图形的认识能力。这套教科书按照“从感性直观认识逐步上升到理性本质认识,从对静止状态的认识发展到对运动状态的认识,从定性描述向定量刻画过渡”的顺序编排这个领域的内容,注意在教科书各处对于“图形的认识”“图形与变换”“图形与坐标”“图形与证明”把握到适宜程度,并注意这四个方面之间的联系。例如,在第5章“相交线与平行线”的最后部分,初步介绍了平移;在学习了第6章“平面直角坐标系”之后,又进一步从坐标的角度对平移变换作了描述;在第19章“四边形”中,对平移的“对应点连线平行且相等”的特征又作了进一步的阐释;在第22章中的“课题学习图案设计”中,再将平移与其他几何变换结合,进行综合性应用的讨论。
3.“统计与概率”的内容在前面学段已有一定基础,这套教科书(7~9年级)将它分专题编排为三章,依次安排于三个年级,即第10章“数据的收集、整理与描述”,安排于七年级下学期;第20章“数据的分析”,安排于八年级下学期;第24章“概率初步”,安排于九年级上学期。在编写时,注意突出以下特点:
(1)侧重于统计和概率中蕴涵的基本思想。编写教科书时,改变了以往处理这部分内容时过于偏重计算的做法,而特别注意体现“通过统计数据探究规律”的归纳思想,重视反映统计与概率之间的联系,通过频率来估计事件的概率,通过样本的有关数据对总体的可能性作出估计等。
(2)注重实际,发挥案例的典型性。这部分的四章都注意加强探究性和活动性,各章都安排实践性较强的“课题学习”,都结合现代社会生活中丰富的实例,发挥典型案例的引导作用,避免脱离实际例子的讲述概念与计算。
(3)注意与前面学段的衔接,持续地发展提高。编写教科书时,注意了有关内容在前面学段已经具备的基础,明确了在本学段应进一步发展到什么水平,在内容和要求方面体现螺旋式发展上升。
4.“实践与综合应用”的内容与前三个领域有密切联系,又具有综合性。课程标准将它作为与“数与代数”“空间与图形”“统计与概率”并列的内容,足见标准对这一领域的重视。“实践与综合应用”是新数学课程中一个全新的内容,它为学生进行实践性、探索性和研究性的学习提供了一种课程渠道。编写这套教科书时,我们认为既要充分注意这一领域内容对培养创新意识和实践能力的重要作用,又要认识到在初中阶段它与数学基础知识的关系,要为学习它作必要铺垫。因此,在这套教科书中,“实践与综合应用”不作为独立的一块内容,而是同与其最接近的知识内容相结合,教科书在每一册都安排了1~2个“课题学习”,每一章都安排了2~4“数学活动”。这样处理,使得“实践与综合应用”以多种形式分散编排,能以多种形式进行,化整为零,经常化和生活化。