2014-2015年广东省高考文科数学试题及答案

合集下载

2014年广东高考数学(文科)真题--word高清版

2014年广东高考数学(文科)真题--word高清版

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项符合题目要求(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的学科网最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是zxxk “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的学科网直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin co s 22=与1cos =θρ,以极点为平面直角坐标系的原点,学科网极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,学科网且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求zxxk ()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差. 学科网18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.zxxk (1)求1a 的值;学科网(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分)已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2015年广东省高考文科数学试题及答案

2015年广东省高考文科数学试题及答案

2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2. 已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3. 下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .25. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =cos A =,且b c <,则b =( )AB .2 C. D .3 6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .510. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示)12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13. 若三个正数a ,b ,c 成等比数列,其中5a =+5c =-则b = .(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . ()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.参考答案1-5 BADBC 6-10 DBBAA11、(-4,1) 12、10 13、1 14、(2,-4) 15、3 16、(1)解:tan tan4tan()41tan tan 4tan 11tan παπαπααα++=-+=- ∵ tan 2α= ∴21tan()34121πα++==-- (2)222222222sin sin cos cos 21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin 22sin cos ααα=∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式17、解:(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x = (2)众数:230中位数:取频率直方图的面积平分线 0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+=(3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯= [260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户 ∴[220,240)抽取:2511555⨯=户 18、解:(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面 ∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD ∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CD PE ⊂面PCD ,PE ⊥CD ∴ PE ⊥面ABCD 而BC ⊂面ABCD ∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E ∴ BC ⊥面PCD PD ⊂面PCD ∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯在等腰三角形PCD中,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯=∴P-ADC 1V 93==设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯=∴163h =⨯⨯∴h =,即:点C 到平面PDA19、解:(1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=2-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列(3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列111411()()22{}2,411()22=2+4()2121()()221n n n n n n n n n n na aa aan n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20、(1)解:2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kx x y x x k x x k x x x x k k ky y k x k k y k x xx x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即29535(,3]13x k ∴=∈+(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时:21、解:(1)222(0)||(1)||||f a a a a a a a a a a =+--=+-+=+ 10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述: (2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+>∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(min ==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点. 当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与aa g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >, 所以当),(+∞∈a x 时,)()(x g x f 与有一个交点; 故当2>a 时,()y f x =与xx g 4)(-=有两个交点.11 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。

2014年高考文科数学广东卷及答案解析

2014年高考文科数学广东卷及答案解析

数学试卷 第1页(共10页) 数学试卷 第2页(共10页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据1x ,2x ,…,n x 的方差2222121[()()()]n s x x x x x x n=-+-++-…, 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,3,4}M =,{0,2,3,5}N =,则M N =( ) A .{0,2} B .{2,3}C .{3,4}D .{3,5} 2.已知复数z 满足(34i)25z -=,则z =( ) A .34i -- B .34i -+ C .34i - D .34i + 3.已知向量(1,2)=a ,(3,1)=b ,则-=b a( ) A .(2,1)-B .(2,1)-C .(2,0)D .(4,3)4.若变量x ,y 满足约束条件28,04,03,x y x y +⎧⎪⎨⎪⎩≤≤≤≤≤则2z x y =+的最大值等于( ) A .7B .8C .10D .11 5.下列函数为奇函数的是( ) A .122x x-B .3sin x xC .2cos 1x +D .22x x +6.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20 7.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a b ≤”是“sin sin A B ≤”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等 9.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定10.对任意复数1ω,2ω定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数1z ,2z ,3z ,有如下四个命题:①1231323()*(*)(*)z z z z z z z +=+; ②1231213*()(*)(*)z z z z z z z ++=+ ③123123(*)**(*)z z z z z z =; ④1221**z z z z =. 则真命题的个数是( )姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------数学试卷 第3页(共10页) 数学试卷 第4页(共10页)A .1B .2C .3D .4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.曲线5e 3x y y =-+在点(0,2)-处的切线方程为 .12.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为 . 13.等比数列{}n a 的各项均为正数,且154a a =,则212223log log log a a a +++2425log log a a += .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为2cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中, 点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF =△的周长△的周长 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()3f x A x =+,x ∈R ,且5π()122f =. (Ⅰ)求A 的值;(Ⅱ)若()()f f θθ--=,π(0,)2θ∈,求π()6f θ-.17.(本小题满分13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 1 28329 3 30 5 31 4 32 3 40 1 合计20(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (Ⅲ)求这20名工人年龄的方差. 18.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==.作如图3折叠:折痕EF DC ∥,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥.(Ⅰ)证明:CF ⊥平面MDF ; (Ⅱ)求三棱锥M CDE -的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足22(3)n n S n n S -+--23()0n n +=,*n ∈N .(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有11221111+(1)(1)(1)3n n a a a a a a +++++…<.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为,.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点数学试卷 第5页(共10页) 数学试卷 第6页(共10页)P 的轨迹方程.21.(本小题满分14分)已知函数321()1()3f x x x ax a =+++∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =.{2,3,4}{0,2,3,5}={2,3}N =D 2525(34i)25(3=34i (34i)(34i)+==--+【答案】B【解析】(3,1)b a -=-【答案】C,a b ,,【解析】05k <<)21k -=-【答案】D312313231323)()()()()()z z z z z z z z z z z z ++===+,故①是真命题;12312312312131213()()()()()()()z z z z z z z z z z z z z z z z +=+=+=+=+,②对;()()()z z z z z z z z z z z z =*==,右边,≠左边右边,③错;(2)茎叶图如下图(1928329330531432340)+⨯+⨯+⨯+⨯+⨯+CD PD D=,所以MF AD M=,所以CF⊥平面ADF,DFBC PC==60,30CDF∠,38CD DE=,211111111111()()()(1)2323525722121n na a n n++<+-+-++-+⨯-+数学试卷第7页(共10页)数学试卷第8页(共10页)数学试卷 第9页(共10页) 数学试卷 第10页(共10页)1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,使得1124⎛+-+ ⎝ 1,12⎫⎛⎫⎪⎪⎭⎝⎭上有解1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有解,1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解;11a -+-1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解57,412⎫⎛⎫--⎪ ⎪⎭⎝⎭时1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,。

2015年普通高等学校招生全国统一考试文科数学(广东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试文科数学(广东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,文1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1}C.{0}D.{-1,1}答案:B解析:因为M,N的公共元素只有1,所以M∩N={1}.2.(2015广东,文2)已知i是虚数单位,则复数(1+i)2=()A.2iB.-2iC.2D.-2答案:A解析:(1+i)2=1+2i+i2=1+2i-1=2i.3.(2015广东,文3)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin 2xB.y=x2-cos xC.y=2x+12x D.y=x2+sin x答案:D解析:A为奇函数,B和C为偶函数,D既不是奇函数,也不是偶函数.4.(2015广东,文4)若变量x,y满足约束条件{x+2y≤2,x+y≥0,x≤4,则z=2x+3y的最大值为()A.2B.5C.8D.10 答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-23x+z3,z3表示直线y=-23x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.(2015广东,文5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=() A.3 B.2√2 C.2 D.√3答案:C解析:由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2·b·2√3×√32,即b2-6b+8=0,解得b=2或4.又因为b<c,所以b=2.6.(2015广东,文6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案:D解析:l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.7.(2015广东,文7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为 ( ) A.0.4 B.0.6 C.0.8 D.1 答案:B解析:设正品分别为A 1,A 2,A 3,次品分别为B 1,B 2,从中任取2件产品,基本事件共有10种,分别为{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.8.(2015广东,文8)已知椭圆x 225+y 2m2=1(m>0)的左焦点为F 1(-4,0),则m=( ) A.2 B.3 C.4 D.9 答案:B解析:由已知a 2=25,b 2=m 2,c=4,又由a 2=b 2+c 2,可得m 2=9.因为m>0,所以m=3.9.(2015广东,文9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 答案:A解析:AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(1,-2)+(2,1)=(3,-1),所以AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5.10.(2015广东,文10)若集合E={(p ,q ,r ,s )|0≤p<s ≤4,0≤q<s ≤4,0≤r<s ≤4且p ,q ,r ,s ∈N },F={(t ,u ,v ,w )|0≤t<u ≤4,0≤v<w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( ) A.200 B.150 C.100 D.50 答案:A解析:E 中有序数组的要求为s 均大于p ,q ,r ,当s 取4时,p 可取0,1,2,3,q 也可取0,1,2,3,r 也可取0,1,2,3,此时不同数组有4×4×4=64个;同理当s 取3时,p ,q ,r 均可从0,1,2中任取1个,此时不同数组有3×3×3=27个;当s 取2时,p ,q ,r 可从0,1中任取1个,不同数组有2×2×2=8个;当s 取1时,p ,q ,r 只能都取0,不同数组有1个,因此E 中不同元素共有64+27+8+1=100个.F 中元素要求为t<u ,v<w ,当u 取4时,t 可取0,1,2,3;当u 取3时,t 可取0,1,2;当u 取2时,t 可取0,1; 当u 取1时,t 取0,所以t ,u 的不同组合为10种.同理,v ,w 不同组合也有10种,故F 中元素个数为10×10=100,所以card(E )+card(F )=200. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.(2015广东,文11)不等式-x 2-3x+4>0的解集为 .(用区间表示) 答案:(-4,1)解析:不等式可化为x 2+3x-4<0,即(x-1)(x+4)<0,解得-4<x<1.12.(2015广东,文12)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为 . 答案:11解析:由题意,y i =2x i +1(i=1,2,…,n ),则y =2x +1=2×5+1=11.13.(2015广东,文13)若三个正数a ,b ,c 成等比数列,其中a=5+2√6,c=5-2√6,则b= . 答案:1解析:因为a ,b ,c 成等比数列,所以b 2=ac ,即b 2=(5+2√6)(5-2√6)=1. 又b 是正数,所以b=1.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,文14)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为{x =t 2,y =2√2t ,(t 为参数),则C 1与C 2交点的直角坐标为 . 答案:(2,-4)解析:∵ρ(cos θ+sin θ)=-2,∴曲线C 1的直角坐标方程为x+y=-2. 由已知得曲线C 2的普通方程为y 2=8x. 由{x +y =-2,y 2=8x ,得y 2+8y+16=0, 解得y=-4,x=2.所以C 1与C 2交点的直角坐标为(2,-4).15.(2015广东,文15)(几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D.若AB=4,CE=2√3,则AD= . 答案:3解析:由切割线定理得EC 2=EB ·EA ,即12=EB ·(EB+4),可求得EB=2. 连接OC ,则OC ⊥DE ,所以OC ∥AD ,所以EO EA=OC AD ,即46=2AD,所以AD=3.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,文16)已知tan α=2.(1)求tan (α+π4)的值;(2)求sin2αsin 2α+sinαcosα-cos2α-1的值.解:(1)tan (α+π4)=tanα+tan π41-tanαtan π4=tanα+11-tanα=2+11-2=-3. (2)sin2αsin 2α+sinαcosα-cos2α-1=2sinαcosαsin 2α+sinαcosα-(2cos 2α-1)-1=2sinαcosαsin 2α+sinαcosα-2cos 2α=2tanαtan 2α+tanα-2 =2×222+2-2=1.17.(本小题满分12分)(2015广东,文17)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230. 因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a , 由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,得a=224, 所以月平均用电量的中位数是224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户), 月平均用电量在[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量在[260,280)的用户有0.005×20×100=10(户),月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽取比例为1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).18.(本小题满分14分)(2015广东,文18)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6,BC=3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.(1)证明:因为四边形ABCD 是长方形,所以BC ∥AD.因为BC ⊄平面PDA ,AD ⊂平面PDA , 所以BC ∥平面PDA.(2)证明:因为四边形ABCD 是长方形,所以BC ⊥CD.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,BC ⊂平面ABCD , 所以BC ⊥平面PDC.因为PD ⊂平面PDC ,所以BC ⊥PD.(3)解:取CD 的中点E ,连接AE 和PE.因为PD=PC ,所以PE ⊥CD.在Rt △PED 中,PE=√PD 2-DE 2=√42-32=√7.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD. 由(2)知BC ⊥平面PDC. 由(1)知BC ∥AD. 所以AD ⊥平面PDC.因为PD ⊂平面PDC ,所以AD ⊥PD. 设点C 到平面PDA 的距离为h , 因为V 三棱锥C-PDA =V 三棱锥P-ACD ,所以13S △PDA ·h=13S △ACD ·PE , 即h=S △ACD ·PE S △PDA=12×3×6×√712×3×4=3√72, 所以点C 到平面PDA 的距离是3√72. 19.(本小题满分14分)(2015广东,文19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n+1+S n-1.(1)求a 4的值;(2)证明:{a n+1-12a n }为等比数列; (3)求数列{a n }的通项公式.(1)解:当n=2时,4S 4+5S 2=8S 3+S 1,即4(1+32+54+a 4)+5(1+32)=8(1+32+54)+1, 解得a 4=78. (2)证明:因为4S n+2+5S n =8S n+1+S n-1(n ≥2),所以4S n+2-4S n+1+S n -S n-1=4S n+1-4S n (n ≥2), 即4a n+2+a n =4a n+1(n ≥2).因为4a 3+a 1=4×54+1=6=4a 2, 所以4a n+2+a n =4a n+1(n ∈N *). 因为a n+2-12a n+1a n+1-12a n=4a n+2-2a n+14a n+1-2a n=4a n+1-a n -2a n+14a n+1-2a n=2a n+1-a n 2(2a n+1-a n )=12,所以数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列. (3)解:由(2)知数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n+1-12a n =(12)n -1, 即a n+1(12)n+1−a n(12)n =4,所以数列{a n(12)n }是以a 112=2为首项,公差为4的等差数列,所以a n(12)n =2+(n-1)×4=4n-2,即a n =(4n-2)×(12)n =(2n-1)×(12)n -1.所以数列{a n }的通项公式是a n =(2n-1)×(12)n -1. 20.(本小题满分14分)(2015广东,文20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A ,B.(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y=k (x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)圆C 1:x 2+y 2-6x+5=0可化为(x-3)2+y 2=4,所以圆C 1的圆心坐标为(3,0). (2)设线段AB 的中点M (x ,y ),由弦的性质可知C 1M ⊥AB ,即C 1M ⊥OM. 故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C (32,0),半径r=12|OC 1|=12×3=32, 其方程为(x -32)2+y 2=(32)2,即x 2+y 2-3x=0.又因为点M 为线段AB 的中点,所以点M 在圆C 1内, 所以√(x -3)2+y 2<2. 又x 2+y 2-3x=0,所以可得x>53. 易知x ≤3,所以53<x ≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0(53<x ≤3). (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线.结合图形,(x 0-32)2+y 02=94(53<x 0≤3)表示的是一段关于x 轴对称,起点为F (53,-2√53)按逆时针方向运动到E (53,2√53)的圆弧(不含端点). 根据对称性,只需讨论在x 轴下方的圆弧. 由F (53,-2√53),则k FT =2√534-53=2√57, 而当直线L 与轨迹C 相切时,|3k 2-4k |√k +132,解得k=±34.在这里暂取k=34,因为2√57<34,所以k FT <k.结合图形,可得对于x 轴下方的圆弧,当0≤k ≤2√57或k=34时,直线L 与x 轴下方的圆弧有且只有一个交点.根据对称性可知当-2√57≤k<0或k=-34时,直线L 与x 轴上方的圆弧有且只有一个交点. 综上所述,当-2√57≤k ≤2√57或k=±34时,直线L :y=k (x-4)与曲线C 只有一个交点.21.(本小题满分14分)(2015广东,文21)设a 为实数,函数f (x )=(x-a )2+|x-a|-a (a-1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数. 解:(1)f (0)=a 2+|a|-a 2+a=|a|+a.因为f (0)≤1,所以|a|+a ≤1. 当a ≤0时,0≤1,显然成立;当a>0时,则有2a ≤1,所以a ≤12.所以0<a ≤12.综上所述,a 的取值范围是a ≤12.(2)f (x )={x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a-1)x ,其图象的对称轴为x=2a -12=a-12<a ,开口向上, 所以f (x )在[a ,+∞)上单调递增;对于u 2=x 2-(2a+1)x+2a ,其图象的对称轴为x=2a+12=a+12>a ,开口向上, 所以f (x )在(-∞,a )上单调递减.综上,f (x )在[a ,+∞)上单调递增,在(-∞,a )上单调递减. (3)由(2)得f (x )在[a ,+∞)上单调递增,在(0,a )上单调递减, 所以f (x )min =f (a )=a-a 2.①当a=2时,f (x )min =f (2)=-2,f (x )={x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x=0,即f (x )=-4x(x>0). 因为f (x )在(0,2)上单调递减, 所以f (x )>f (2)=-2,而y=-4x 在(0,2)上单调递增,y<f (2)=-2, 所以y=f (x )与y=-4x在(0,2)上无交点. 当x ≥2时,令f (x )=x 2-3x=-4x, 即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0. 所以(x-2)2(x+1)=0.因为x ≥2,所以x=2,即当a=2时,f (x )+4x有一个零点x=2.②当a>2时,f (x )min =f (a )=a-a 2, 当x ∈(0,a )时,f (0)=2a>4,f (a )=a-a 2,而y=-4x在x ∈(0,a )上单调递增,当x=a 时,y=-4a.下面比较f (a )=a-a 2与-4a 的大小.因为a-a 2-(-4a)=-(a 3-a 2-4)a =-(a -2)(a 2+a+2)a<0,所以f (a )=a-a 2<-4a.结合图象不难得当a>2时,y=f (x )与y=-4x有两个交点. 综上,当a=2时,f (x )+4x 有一个零点x=2; 当a>2时,y=f (x )与y=-4x有两个零点.。

广东省文科数学试题卷真题答案-2014高考

广东省文科数学试题卷真题答案-2014高考

2014年全国各地文科数学试题(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(), A.x xx x x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2014广东文科数学高考试题

2014广东文科数学高考试题

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABC D 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF 三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2) 若()()(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2015年广东省高考数学试卷(文科)附详细解析

2015年广东省高考数学试卷(文科)附详细解析

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)24.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+===117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得,由此可得数列{}是以为首项,公比为的{为首项,公比为{为首项,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即参与本试卷答题和审题的老师有:wkl197822;changq;maths;双曲线;刘长柏;吕静;孙佑中;qiss;lincy;sxs123;cst(排名不分先后)菁优网2015年7月20日。

2014年高考广东文科数学试题及答案(word解析版)

2014年高考广东文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,文1,5分】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( )(A ){}0,2 (B ){}2,3 (C ){}3,4 (D ){}3,5 【答案】B 【解析】{}2,3MN =,故选B .【点评】本题主要考查集合的基本运算,比较基础. (2)【2014年广东,文2,5分】已知复数z 满足(34i)25z -=,则z =( )(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】D【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z ++===+--+,故选D .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年广东,文3,5分】已知向量(1,2)a =,(3,1)b =,则b a -=( )(A )(2,1)- (B )(2,1)- (C )(2,0) (D )(4,3) 【答案】B【解析】()2,1b a -=-,故选B .【点评】本题考查向量的坐标运算,基本知识的考查.(4)【2014年广东,文4,5分】若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( )(A )7 (B )8 (C )10 (D )11 【答案】C 【解析】作出不等式组对应的平面区域如图:由2z x y =+,得2y x z =-+,平移直线2y x z =-+, 由图象可知当直线2y x z =-+经过点()4,2B 时,直线2y x z =-+的截距最大,此时z 最大,此时24210z ==⨯+=,故选C . 【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. (5)【2014年广东,文5,5分】下列函数为奇函数的是( )(A )122x x - (B )3sin x x (C )2cos 1x + (D )22x x +【答案】A【解析】对于函数()122x x f x =-,()()112222x x x x f x f x ---=-=-=-,故此函数为奇函数;对于函数()3sin f x x x =,()()()()33sin sin f x x x x x f x -=--==,故此函数为偶函数;对于函数()2cos 1f x x =+,()()()2cos 12cos 1f x x x f x -=-+=+=,故此函数为偶函数;对于函数()22x f x x =+,()()()2222x x f x x x f x ---=-+=+≠-,同时()()f x f x -=≠故此函数为非奇非偶函数,故选A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.(6)【2014年广东,文6,5分】为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )(A )50 (B )40 (C )25 (D )20 【答案】C【解析】∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25,故选C . 【点评】本题主要考查系统抽样的定义和应用,比较基础. (7)【2014年广东,文7,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分非必要条件 【答案】A【解析】由正弦定理可知sin sin a bA B=,∵ABC ∆中,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sin A ,sin B 都是正数,sin sin a b A B ≤⇔≤.∴“a b ≤”是“sin sin A B ≤”的充分必要条件,故选A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.(8)【2014年广东,文8,5分】若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) (A )实半轴长相等 (B )虚半轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】当05k <<,则055k <-<,111616k <-<,即曲线221165x y k-=-表示焦点在x 轴上的双曲线,其中216a =,25b k =-,221c k =-,曲线221165x y k -=-表示焦点在x 轴上的双曲线,其中216a k =-,25b =,221c k =-,即两个双曲线的焦距相等,故选D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键. (9)【2014年广东,文9,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )1l 与4l 既不垂直也不平行 (D )1l 与4l 的位置关系不确定 【答案】D【解析】在正方体中,若AB 所在的直线为2l ,CD 所在的直线为3l ,AE 所在的直线为1l , 若GD 所在的直线为4l ,此时14//l l ,若BD 所在的直线为4l ,此时14l l ⊥,故1l 与4l 的位 置关系不确定,故选D .【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.(10)【2014年广东,文10,5分】对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题: ①1231323()()()z z z z z z z +=**+*②1231213()()()z z z z z z z +=**+*; ③123123()()z z z z z z *=***④1221z z z z *=*;则真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】①12312313231323()()()()()()z z z z z z z z z z z z z z +++*===*+*,正确;②12312312312131213()()()()()()()z z z z z z z z z z z z z z z z z +=+=+=+=**+*,正确;③123123123123123(),()()(),z z z z z z z z z z z z z z z ===≠左边=*=右边*左边右边,等式不成立,故错误;④12122121,,z z z z z z z z ==≠左边=*右边=*左边右边,等式不成立,故错误; 综上所述,真命题的个数是2个,故选B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13) (11)【2014年广东,文11,5分】曲线53x y e =-+在点()0,2-处的切线方程为 . 【答案】520x y ++= 【解析】'5x y e =-,'5x y =∴=-,因此所求的切线方程为:25y x +=-,即520x y ++=.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题. (12)【2014年广东,文12,5分】从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为 .【答案】25【解析】142542105C P C ===.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.(13)【2014年广东,文13,5分】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= . 【答案】5【解析】设2122232425log log log log log S a a a a a =++++,则2524232221log log log log log S a a a a a =++++,215225log ()5log 410S a a ∴===,5S ∴=.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易. (二)选做题(14-15题,考生只能从中选做一题) (14)【2014年广东,文14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 . 【答案】(1,2)【解析】由22cos sin ρθθ=得22cos =sin ρθρθ(),故1C 的直角坐标系方程为:22y x =,2C 的直角坐标系方程为:1x =,12,C C ∴交点的直角坐标为(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题. (15)【2014年广东,文15,5分】(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长. 【答案】3【解析】由于CDF AEF ∆∆∽,3CDF CD EB AEAEF AE AE∆+∴===∆的周长的周长.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2014年广东,文16,12分】已知函数()sin ,3f x A x x R π⎛⎫=+∈ ⎪⎝⎭,且512f π⎛⎫= ⎪⎝⎭.(1)求A 的值;(2)若()()0,2f f πθθθ⎛⎫--=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.解:(1)553()sin()sin 121234f A A ππππ=+==3A ∴.(2)由(1)得:()3sin()3f x x π=+,()()3sin()3sin()33f f ππθθθθ∴--=+--+3(sin coscos sin )3(sin()cos cos()sin )6sin cos 3sin 3333πππππθθθθθθ=+--+-===sin 0,2πθθ⎛⎫∴=∈ ⎪⎝⎭,cos θ∴==()3sin()3sin()3cos 36632f ππππθθθθ∴-=-+=-==【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查. (17)【2014年广东,文17,12分】某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21.(2)茎叶图如下: (3)年龄的平均数为:(1928329330531432340)3020+⨯+⨯+⨯+⨯+⨯+=,这20名工人年龄的方差为:2222222111(11)3(2)3(1)50413210(121123412100)25212.6202020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+=+++++=⨯=⎣⎦【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题. (18)【2014年广东,文18,14分】如图1,四边形ABCD 为矩形,PD ABCD ⊥平面,1,2AB BC PC ===,做如图2折叠:折痕//EF DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF MDF ⊥平面; (2)求三棱锥M CDE -的体积. 解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,MD ∴⊥平面PCD ,CF ⊂平面PCD ,CF MD ∴⊥,又 CF MF ⊥,MD ,MF ⊂平面MDF ,MD MF M =,CF ∴⊥平面MDF .(2)CF ⊥平面MDF ,CF DF ∴⊥,又易知060PCD ∠=,030CDF ∴∠=,从而11==22CF CD ,EF DC ∥,DE CFDP CP ∴=122,DE ∴=,PE ∴=12CDE S CD DE ∆=⋅=,2MD ===,1133M CDE CDE V S MD -∆∴=⋅== 【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.(19)【2014年广东,文19,14分】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0,n n S n n S n n n N *-+--+=∈.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.解:(1)令1n =得:211(1)320S S ---⨯=,即21160S S +-=,11(3)(2)0S S ∴+-=,10S >,12S ∴=,即12a =.(2)由222(3)3()0nn S n n S n n -+--+=,得:2(3)()0n n S S n n ⎡⎤+-+=⎣⎦,0()n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,∴当2n ≥时,221(1)(1)2n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,2()n a n n N *∴=∈. (3)当k N *∈时,22313()()221644k k k k k k +>+-=-+, 111111111111131111(1)2(21)4444()()()(1)()(1)2444444k k a a k k k k k k k k k k ⎡⎤⎢⎥∴==⋅<⋅=⋅=⋅-⎢⎥++⎡⎤⎢⎥+-+-+--⋅+-⎢⎥⎣⎦⎣⎦11221111111111()()111111(1)(1)(1)41223(1)444444n n a a a a a a n n ⎡⎤⎢⎥∴+++<-+-++-⎢⎥+++⎢⎥-----+-⎣⎦1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0111111()11434331(1)44n n =-=-<+-+-. 【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.(20)【2014年广东,文20,14分】已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)cc e a ===3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=. (2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为00()y y k x x -=-,即00()y k x x y =-+,将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=, 即22220000(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即22004()4(94)0y kx k --+=, 2220000(9)240x k x y k y ∴--+-=,两切线相互垂直,121k k ∴=-,即2020419y x -=--,220013x y ∴+=, 显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y 关系.(21)【2014年广东,文21,14分】已知函数321()1()3f x x x ax a R =+++∈.(1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()=()2f x f .解:(1)'2()2f x x x a =++,方程220x x a ++=的判别式:44a ∆=-,∴当1a ≥时,0∆≤,'()0f x ∴≥,此时()f x 在(,)-∞+∞上为增函数.当1a <时,方程220x xa ++=的两根为1-(,1x ∈-∞-时,'()0f x >,∴此时()f x为增函数,当(11x ∈--,'()0f x <,此时()f x 为减函数,当(1)x ∈-+∞时,'()0f x >,此时()f x 为增函数,综上,1a ≥时,()f x 在(,)-∞+∞上为增函数,当1a <时,()f x 的单调增函数区间为(,1-∞-,(1)-++∞,()f x的单调递减区间为(11---.(2)3232332200000001111111111()()1()()()1()()()2332223222f x f x x ax a x x a x ⎡⎤⎡⎤⎡⎤-=+++-+++=-+-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦200011()(414712)122x x x a =-+++∴若存在011(0,)(,1)22x ∈,使得01()()2f x f =, 必须2004147120x x a +++=在11(0,)(,1)2上有解.0a <,21416(712)4(2148)0a a ∴∆=-+=->,00x >,0x ∴ 01<,即711<,492148121a ∴<-<,即2571212a -<<-,12,得54a =-,故欲使满足题意的0x 存在,则54a ≠-,∴当25557(,)(,)124412a ∈----时,存在唯一的011(0,)(,1)22x ∈满足01()()2f x f =.当2575(,][,0)12124a ⎧⎫∈-∞---⎨⎬⎩⎭时,不存在011(0,)(,1)22x ∈使01()()2f x f =.【点评】(1)求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.(2)对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.。

2014年广东省高考文科数学答案

2014年广东省高考文科数学答案

.3.2232243sin )3125sin()125(.223)125(),3sin()(=∴=⋅==+=∴=+=A A A A f f x A x f ππππππ且 6cos 32sin 336sin 3)6(.36sin 1cos 20.33sin .3sin 33cos sin 23sin 3cos cos 3sin 3sin cos 3cos sin 3)3sin(3)3sin(3)()(.3)()(),3sin(3)(2==⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=-=-=∴∈=∴==⋅=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=+--+=--∴=--+=θθππθπθπθθπθθθπθθπθππθπθπθπθθθθθπf f f f f x x f ),(且且2014年普通高等学校招生全国统一考试(广东卷)数学(文科)答案解析一、选择题1-5BDBCA 6-10 CADDB二、填空题11. 520x y ++= 12. 2513. 5 14. ()1,2 15. 3三、解答题 16.(1)(2)17. 解:(1)由图可知,众数为30.极差为:40-19=21.()()()()()()[]05.133041303143030530293302833019201302040332431530329328192222222=-+-+-+-+-+-=∴=+⨯+⨯+⨯+⨯+⨯+=s x18.解:证明:(1)解: (2)19.解:(1)由 ()()*∈=+--+-N n n n S n n S n n ,033222,令1n =,得211(1)S 60S ---=, 即21160a a +-=.解得12a =或13a =-,由于数列{}n a 为正项数列,所以12a =;(2)由()()*∈=+--+-N n n n S n n S n n ,033222,因式分解得()()2320n n S S n n +--=.16231.834312121.433,.26,1,210210,.23.23212,211,602,1.,.31==∴=⨯⨯=⋅=∴=∴====∆∴=⊥=∴=-==∴=︒=∠∴==∆⊥∴⊆⊥⋅⋅=∴⊥∆-∆∆-DM S V DE CD S DE PD E PD CP F DM CD CM MDC RT CM MF CF MF PF CF CD PCD PC CD PCD RT DF CF MDF DF MDF CF MD S V PCD MD CDECDE M CDECDE CDE M 的三分点,故为且的三分点点位于又得中,在故利用勾股定理得:又故且中,在面面面 MDF CF M MF MD CF MF CF MD PCD CF PCD MD ABCD AD CD AD ABCD CD ABCD PCD PCD ABCD PD 面且面又由于面面为矩形,四边形又交线为面面面且面⊥∴=⋂⊥⊥∴⊆⊥∴⊆⊥⊥∴⊆⊥,.,,.,.PD ,由数列{}n a 为正项数列可得220n S n n --=,即22n S n n =+,当2n ≥时,()()22121212n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,由12a =可得,n N *∀∈,2n a n =(3)由(2)可知()()111221n n a a n n =++()()()()1111111221212122121n n n N a a n n n n n n *⎛⎫∀∈=<=- ⎪++-+-+⎝⎭当1n =时,显然有()11111163a a =<+; 当2n ≥时,()()()1122111111n n a a a a a a ++++++()11111111221235572121n n ⎛⎫<+-+-++- ⎪⋅+-+⎝⎭=111132213n -⋅<+ 所以,对一切正整数n ,有()()().311111112211<+++++n n a a a a a a20.解:(1)149.2,335,522=+=====yx b a a c e c 椭圆方程为:得:由 (2))点坐标为(,椭圆长轴与短轴的端点两点分别位于、率不存在时,即当两条切线中有一条斜、设两个切点分别为2,3①±±P B A BA)3131-949442)9()(490△0369189)1818(49149)(y -y )(y -y P k ②02020*******02021212000222002200020202022220000±≠=+=--=∙∴--=∙=-+--⇒-=+⇒==-+-+-++⎪⎩⎪⎨⎧=+-=-=x y x x y k k PB PA x y k k k k PB PA y k y x k x y kx k y y kx x k x x k ky x k y x x x k x x k (化简得互相垂直,、又,则、斜率分别为、设)(,得联立的椭圆切线方程为,过点设椭圆切线斜率为切线斜率均存在时,当两条.13132,3222020上在圆点上)在(又=+∴=+±±y x P y x P21.解:(1)由()32113f x x x ax =+++,求导得()'22f x x x a =++,令()'0f x =即220x x a ++=,44a ∆=-,① 当0∆≤,即1a ≥时,()'0f x ≥恒成立,()f x 在R 上单调递增;② 当0∆>,即1a <时,方程220x x a ++=的两根分别为:11x =-21x =-当(()()',1,0,x fx f x ∈-∞->单调递增;当(11x ∈--+,()'0f x <,()f x 单调递减;当()()()'1,0,x f x f x ∈-+∞>单调递增。

14年高考真题——文科数学(广东卷)

14年高考真题——文科数学(广东卷)

2014年普通高等学校招生全国统一考试(广东卷)参考公式: 锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高; 一组数据12,,,n x x x 的方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 表示这组数据的平均数。

一.选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2,3,4M =,{}0,2,3,5N =,则MN =( )(A ){}3,5 (B ){}3,4 (C ){}2,3, (D ){}0,22.已知复数z 满足()3425i z -=,则z =( )(A )34i + (B )34i - (C )34i -+ (D )34i --3.已知向量()1,2a =,()3,1b =,则b a -=( )(A )()4,3 (B )()2,0 (C )()2,1- (D )()2,1-4.若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( )(A )11 (B )10 (C )8 (D )75.下列函数为奇函数的是( )(A )22x x + (B )2cos 1x + (C )3sin x x (D )122xx-6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) (A )20 (B )25 (C )40 (D )507.在A B C ∆中,角C B A ,,所对应的边分别为c b a ,,,则“a b ≤ ”是“sin sin A B ≤”的( )(A )充要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) (A )焦距相等 (B )离心率相等 (C )虚半轴长相等 (D )实半轴长相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )1l 与4l 既不垂直也不平行 (D )1l 与4l 的位置关系不确定10.对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数。

2015年广东高考(文科)数学试卷及答案-解析版【1】汇编

2015年广东高考(文科)数学试卷及答案-解析版【1】汇编

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.若集合{1,1}M =-,{2,1,0}N =-,则M N ⋂=A.{0,1}-B.{1}C.{0}D.{1,1}-【答案】B【解析】}1{=⋂N M 2.已知i 是虚数单位,则复数2(1)i +=A.2iB.2i -C.2D.2-【答案】A 【解析】()()i i i i 221122=++=+3. 下列函数中,既不是奇函数,也不是偶函数的是A.sin 2y x x =+2B.cos y x x =- 1C.22x x y =+ 2D.sin y x x =+【答案】D 【解析】A 为奇函数,B 和C 为偶函数,D 为非奇非偶函数4. 若变量,x y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为A.2B.5C.8D.10【答案】B【解析】由题意可做出如图所示阴影部分可行域,则目标函数 23z x y =+过点(4,-1)时z 取得最大值为max 243(1)5z =⨯+⨯-=5. 设ABC ∆的内角A,B,C 的对边分别为a,b,c,若=b c <,则b =A.3B. C.2 D.【答案】C 【解析】由余弦定理得,23344122cos 2222=-+=-+=bb bc a c b A ,化简得0862=+-b b ,解得42或=b ,因为b c <,2b =所以,6. 若直线1l 与2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是12A.,l l l 与都不相交 12B.,l l l 与都相交12C.,l l l 至多与中的一条相交12D.,l l l 至少与中的一条相交 【答案】D7. 已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.8D.1【答案】B 【解析】设5件产品中2件次品分别标记为A ,B ,剩余的3件合格品分别设为a ,b ,c. 则从5件产品中任取2件,共有10种情况,分别为(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c )、(a ,b )、(a ,c )、(b ,c )、(A ,B )其中,恰有一件次品的情况有6种,分别是(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c ),则其概率为0.6106= 8. 已知椭圆2221025x y m m +=>()的左焦点为1-F (4,0),则=m A.2B.3C.4D.9【答案】B【解析】因为椭圆的左焦点为(-4,0),则有4=c ,且椭圆的焦点在x 轴上,所以有916252522=-=-=c m ,因为,0>m 所以3=m9. 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,(1,2),(2,1)AB AD 则AD ACA.5B.4C.3D.2【答案】A【解析】因为四边形ABCD 是平行四边形,所以)1,3()1,2()2,1(-=+-=+=AD AB AC ,则5)1(132=-⨯+⨯=⋅AC AD10. 若集合{}(,,,)|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,{}(,,,)|04,04,,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=A.200B.150C.100D.50 【答案】A【解析】当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种;当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种;当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种;当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=.当0t =时,u 取1,2,3,4中的一个,有4种;当1t =时,u 取2,3,4中的一个,有3种;当2t =时,u 取3,4中的一个,有2种;当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=所以()()card card F 100100200E +=+=二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11. 不等式2340x x --+>的解集为 .(用区间表示)【答案】(-4,1)【解析】解不等式2340x x --+> 得14<<-x ,所以不等式的解集为(-4,1)12. 已知样本数据12,,,n x x x 的均值5x =,则样本1221,21,,21n x x x +++的均值为 .【答案】10【解析】由题意知,当样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =时,样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=13. 若三个正数a,b,c 成等比例,其中526,526a c =+=-,则b = .【答案】1【解析】由等比中项性质可得,1)62(5)625)(625(222=-=-+==ac b ,由于b 为正数,所以b=1(二)选做题(14-15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程(cos sin )2ρθθ+=-,曲线2C 的参数方程为222x t y t⎧=⎪⎨=⎪⎩(t 为参数). 则1C 与2C 交点的直角坐标为 .【答案】(2,-4)【解析】曲线1C 的直角坐标系方程为2-=+y x ,曲线2C 的直角坐标方程为x y 82=.联立方程⎩⎨⎧=-=+x y y x 822,解得⎩⎨⎧-==42y x ,所以1C 与2C 交点的直角坐标为(2,-4) 15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 延长线上一点,过点E 作圆O 的切线,切点为C 过点A 作直线EC 的垂线,垂足为D ,若4,23AB CE ==,则AD = .【答案】3【解析】由切割线定理得:2CE =BE AE ,所以,BE BE (+4)=12解得:BE=2BE 或=-6(舍去)连结OC ,则OC DE AD DE OC//AD ∴⊥,⊥,OC OE 26=,3AD AE 4OC AE AD OE ⨯∴∴===图1三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知tan 2.(1)求tan()4的值; (2)求2sin 2sin sin cos cos21的值. 【解析】(1) tan tan 4tan()41tan tan 4tan 11tan παπαπααα++=-+=-∵ tan 2α= ∴21tan()34121πα++==-- (2) 222222222sin sin cos cos21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin22sin cos ααα= ∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式 17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图2,(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240的用户中应抽取多少户?【解析】(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x =(2)众数:230中位数:取频率直方图的面积平分线0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+= (3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯=[260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户∴[220,240)抽取:2511555⨯=户 18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.【解析】(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CDPE ⊂面PCD ,PE ⊥CD∴ PE ⊥面ABCD而BC ⊂面ABCD∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E∴ BC ⊥面PCDPD ⊂面PCD∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯ 在等腰三角形PCD 中,PE=7,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯= ∴P-ADC 1V 79373=⨯⨯= 设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯ 而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯= ∴13763h =⨯⨯∴h =,即:点C 到平面PDA19.(本小题满分14分) 设数列n a 的前n 项和为*,n S n N ,已知123351,,,24a a a 且当2n 时,211458n n n n S S S S . (1)求4a 的值;(2)证明:112n n a a 为等比数列;(3)求数列n a 的通项公式. 【解析】 (1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n nn n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=12-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列 (3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列 111411()()22{}2,411()22=2+41()2121()()221n n n nn nn n n n n a a a a a n n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20.(本小题满分14分)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B. (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L yk x 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1) 2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kxx y x x k x x k x x x x k k ky y k x k ky k x yx x x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即2229535(,3]13530(,3]3x k x x y x ∴=∈+∴-+=∈轨迹方程:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时: 21.(本小题满分14分)设a 为实数,函数2()()(1)f x x a x a a a .(1)若(0)1f ,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a 时,讨论4()f x x 在区间0,内的零点个数.【解析】(1) 222(0)||(1)||||f a a a a a a a a a a=+--=+-+=+10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述:(2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+> ∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-.①当2a =时,-22()(m in==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点.当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x 综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与a a g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >,所以当),(+∞∈a x 时,)()(x g x f 与有一个交点;故当2>a 时,()y f x =与x x g 4)(-=有两个交点. 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。

2015年广东高考数学文科试卷带详解

2015年广东高考数学文科试卷带详解

2015年高考数学 广东卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{1,1}M =-,{2,1,0}N =-,则M N = ( )A. {0,-1}B. {0}C. {1}D. {-1,1} 【参考答案】 C【测量目标】集合交集及其运算 【试题分析】{1}M N = ,故选C.2.已知i 是虚数单位,则复数2(1i)+=( ) A. -2 B. 2 C.-2i D. 2i 【参考答案】 D【测量目标】复数的乘法运算.【试题分析】22(1i)12i i 12i 1+=++=+-=2i ,故选D.3. 下列函数中,既不是奇函数,也不是偶函数的是( ) A. 2sin y x x =+ B. 2cos y x x =-C. 122xxy =+D. sin 2y x x =+ 【参考答案】 A【测量目标】函数奇偶性的判断【试题分析】函数2()sin f x x x =+的定义域为R ,因为(1)1sin1,(1)1sin1f f =+-=- ,所以函数2()sin f x x x =+既不是奇函数,也不是偶函数;函数2cos y x x =-的定义域为R ,关于y 轴对称,因为22()()cos()cos ()f x x x x x f x -=---=-=, 所以函数2cos y x x =-是偶函数;函数122x xy =+的定义域为R , 关于y 轴对称,因为11()22(),22x x x x f x f x ---=+=+=所以函数122x x y =+是偶函数;函数sin 2y x x=+的定义域为R , 关于原点对称,因为()sin(2)sin 2(),f x x x x x f x -=-+-=--=-所以函数sin 2y x x =+是奇函数.故选A.4 . 若变量,x y 满足约束条件2204x y x y x +⎧⎪+⎨⎪⎩≤≥≤, 则23z x y =+的最大值为( )A. 10B. 8C. 5D. 2 【参考答案】 C 【测量目标】线性规划.【试题分析】作出可行域如图所示:第4题图作直线0:230,l x y +=再作一组平行于0l 的直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得41x y =⎧⎨=-⎩, 所以点A 的坐标为(4 ,-1),所以max z =243(1)5⨯+⨯-=, 故选C.5.设ABC △的内角,,A B C 的对边分别为,,.a b c若2,a c A ===且,b c <则b =( )A.B. 2C. D. 3【参考答案】 B【测量目标】余弦定理【试题分析】由余弦定理得:2222cos ,a b c bc A =+-所以2222b =+2b -⨯⨯2, 即2680b b -+=, 解得:2b =或4,b =因为,b c <所以2b =,故选 B. 6. 若直线1l 和2l 是异面直线, 1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A. l 至少与1l ,2l 中的一条相交B. l 与1l ,2l 都相交C. l 至多与1l ,2l 中的一条相交D. l 与1l ,2l 都不相交 【参考答案】 A【测量目标】空间点、线、面的位置关系.【试题分析】直线1l 和2l 是异面直线, 1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,若l 与1l ,2l 都不相交,即1l //l ,2l //l ,即1l //2l ,1l 与2l 在同一平面,与题意不符,则l 至少与1l ,2l 中的一条相交, 故选A.7. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A. 0.4B. 0.6C. 0.8D. 1 【参考答案】 B 【测量目标】古典概型【试题分析】5件产品中有2件次品,记为,a b , 有3件合格品,记为,,,c d e 从这5件产品中任取2件,有10种,分别是(,)a b ,(,),(,),(,),(,),a c a d a e b c (,),(,),(,),(,),b d b e c d c e(,),d e 恰有一件次品,有6种,分别是(,),(,),(,),(,),(,),(,),a c a d a e b c b d b e 设事件A =“恰有一件次品”,则)P A (=610=0.6,故选B. 8. 已知椭圆222125x y m+=(m >0)的左焦点为1(4,0),F -则m =( ) A. 9 B. 4 C. 3 D. 2 【参考答案】 C【测量目标】椭圆的简单几何性质.【试题分析】由题意得:222549,m =-=因为0,m >所以3,m =故选C.9. 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形, (1,2),AB =-(2,1),AD =则AD AC ⋅= ( )A. 2B. 3C. 4D. 5 【参考答案】 D【测量目标】平面向量的加减运算和坐标运算.【试题分析】因为四边形ABCD 是平行四边形, 所以(1,2)(2,1)AC AB AD =+=-+=(3,1),-所以AD AC ⋅=231(1)5,⨯+⨯-=故选D.10. 若集合{(,,,)|04,04,04E p q r s p s q s r s =<<<≤≤≤≤≤≤且,,,p q r s ∈N},{(,,,)|04,04F t u v w t u v w =<<≤≤≤≤且,,,t u v w ∈N },用()card X 表示集合X 中的元素个数,则()()card E card F +=( ) A. 50 B. 100 C. 150 D. 200 【参考答案】D【测量目标】推理与证明.【试题分析】当4s =时,,,p q r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,,,p q r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,,,p q r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,,,p q r 都取0,有1种,所以()card E =64+27+8+1=100,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有1+2+3+4=10种,同理,v 、w 的取值也有10种,所以()card F =10⨯10=100,所以()()c a r d Ec a rd F +=100+100=200,故选D.一、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为_________. 【参考答案】 (-4,1) 【测量目标】一元二次不等式.【试题分析】由2340x x +-<得:41,x -<<所以不等式2340x x --+>的解集为 (-4,1),所以答案应填(-4,1).12. 已知样本数据12,,...,n x x x 的均值x =5,则样本数据1221,21,...,21n x x x +++的均值为__________. 【参考答案】 11 【测量目标】均值的性质.【试题分析】因为样本数据12,,...,n x x x 的均值x =5,所以样本数据1221,21,...,21n x x x +++的均值为2125111,x +=⨯+=所以答案应填:11.13. 若三个正数,,a b c 成等比数列,其中55a c =+=-则b =__________. 【参考答案】1【测量目标】等比中项.【试题分析】因为三个正数,,a b c成等比数列,所以2(51b ac ==+-=,因为0,b >所以1,b =所以答案应填:1.(二)选作题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系xoy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为(cos sin )2,ρθθ+=-曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为__________. 【参考答案】 (2,-4)【测量目标】1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.【试题分析】曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28,y x =由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为(2,-4),所以答案应填:(2,-4). 15. (几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE=则AD =____________.第15题图【参考答案】 3【测量目标】切线的性质、平行线分线段成比例定理、切割线定理.【试题分析】连接OC ,则OC ⊥DE ,所以OC //,AD 所以,OC OEAD AE=由切割线定理得:2,CE BE AE =⋅所以(4)12,BE BE +=即24120,BE BE +-=解得:2BE =或6BE =-(舍去),所以263,4OC AE AD OE ⋅⨯===所以答案应填:3.三、解答题(本大题共6小题,满分80分.解答题写出文字说明、证明过程和演算步骤.) 16. (本小题满分12分)已知tan 2.α= (1)求πtan()4α+的值. (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【测量目标】(1)两角和的正切公式;(2)二倍角的正、余弦公式,同角三角函数的基本关系.【试题分析】(1)tan tantan 1214tan()341tan 121tan tan4παπααπαα++++====----(2)2sin 2sin sin cos cos 21ααααα+--=222sin cos sin sin cos (2cos 1)1αααααα+---=222sin cos sin sin cos 2cos αααααα+- =22tan tan tan 2ααα+- =222222⨯+-=117. (本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280.300]分组的频率分布直方图如图.第17题图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【测量目标】(1)频率分布直方图;(2)样本的数字特征(众数、中位数);(3)分层抽样.【试题分析】(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)⨯20=1得:x=0.0075,所以直方图中x的值是0.0075(2)月平均用电量的众数是2202402302+=因为(0.002+0.0095+0.011)⨯20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)⨯20+0.0125⨯(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.0125⨯20⨯100=25户,月平均用电量为[240,260)的用户有0.0075⨯20⨯100=15户,月平均用电量为[260,280)的用户有0.005⨯20⨯100=10户,月平均用电量为[280,300)的用户有0.0025⨯20⨯100=5户,抽取比例=111 25151055=+++,所以月平均用电量在[220,240)的用户中应抽取12555⨯=户18.(本小题满分14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,4,6, 3.PD PC AB BC====第18题图(1)证明://BC 平面PDA ; (2)证明:BC ⊥PD ; (3)求点C 到平面PDA 的距离.【测量目标】(1)线面平行;(2)线线垂直;(3)点到平面的距离.【试题分析】(1)因为四边形ABCD 是长方形,所以//BC AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以//BC 平面PDA(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC 平面,ABCD CD =BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面,PDC 平面PDC 平面,ABCD CD =所以BC ⊥PD(3)取CD 的中点E ,连结AE 和PE ,因为,PD PC =所以PE ⊥CD ,在Rt △PED中,PE因为平面PDC ⊥平面ABCD ,平面PDC 平面,ABCD CD =PE ⊂平面PDC ,所以PE ⊥平面ABCD ,由(2)知:BC ⊥平面PDC ,由(1)知://BC AD ,所以AD 垂直平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD ,设点C 到平面PDA 的距离为h ,因为C PDA P ACD V V --=三棱锥三棱锥,所以1133PDA ACD S h S PE ⋅=⋅△△,即ACD PDA S PE h S ⋅=△△=1362342⨯⨯=⨯⨯,所以点C 到平面PDA19.(本小题满分14分)设数列{n a }的前n 项和为n S ,n ∈*N .已知1a =1,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.(1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列;(3)求数列{}n a 的通项公式.【测量目标】(1)等比数列的定义;(2)等比数列的通项公式;(3)等差数列的通项公式. 【试题分析】(1)当n =2时,4231458S S S S +=+,即43534(1)5(1)242a +++++= 358(1)124+++,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2)n ≥,即214(2),n n n a a a n +++=≥因为312544164,4a a a +=⨯+==所以24n n a a ++=14n a +,因为2121111111114242212142422(2)22n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列.(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以1111()22n n n a a -+-=,即114,11()()22n n n n a a ++-=所以数列1()2n na ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以1212a =为首项,公差为4的等差数列,所以2(1)442,1()2n n an n =+-⨯=-即1(42)()2n n a n =-⨯,所以数列{}n a 的通项公式是11(21)()2n n a n -=-⨯.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线L :()4y k x =-与曲线C 只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【测量目标】(1)圆的标准方程;(2)直线与圆的位置关系;(3)圆锥曲线与圆的位置关系.【试题分析】 将圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0.(2)设线段AB 的中点()00,M x y ,由圆的性质可得1C M 垂直于直线l ,设直线l 的方程为y mx =(易知直线l 的斜率存在),所以11C M k m ⋅=-,00y mx =,所以000013y y x x ⋅=--,所以200030x x y -+=即22003924x y ⎛⎫-+= ⎪⎝⎭,因为动直线l 与圆1C 相交,所以2<,所以245m <,所以222200045y m x x =<,所以22000435x x x -<,解得053x >或00x <,又因为003x <≤,所以0533x <≤.所以()00,M x y 满足220003953243x y x ⎛⎫⎛⎫-+=<≤ ⎪⎪⎝⎭⎝⎭, 即M 的轨迹C 的方程为223924x y ⎛⎫-+=⎪⎝⎭533x ⎛⎫<≤ ⎪⎝⎭. (3)由题意知直线L 表示过定点()4,0T ,斜率为k 的直线结合图形,220003953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭表示的是一段关于x轴对称,起点为5,3⎛ ⎝⎭按逆时针方向运动到5,33⎛ ⎝⎭的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P 5,33⎛⎫- ⎪ ⎪⎝⎭,则3543PT k ==-,而当直线L 与轨迹C32=,解得34k =±.在这里暂取34k =,因为34<,所以PT k k <,第20题图结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤或43k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知77k -≤≤或43k =±.综上所述:当77k -≤≤43k =±时,直线L :()4y k x =-与曲线C 只有一个交点.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【测量目标】(1)绝对值不等式;(2)函数的单调性;(3)函数的最值和函数的零点. 【试题分析】 (1)()220f a a a a a a =+-+=+,因为()01f ≤,所以1a a +≤,当0≤a 时,01≤,显然成立;当0a >时,则有21a ≤,所以12a ≤,所以102a <≤.综上所述,a 的取值范围是12a ≤. (2)()()()2221,212,x a x x a f x x a x a x a⎧--≥⎪=⎨-++<⎪⎩,对于()2121u x a x =--,其对称轴为21122a x a a -==-<,开口向上,所以()f x 在(),a +∞上单调递增;对于()21212u x a x a =-++,其对称轴21122a x a a +==+> ,开口向上,所以()f x 在(),a -∞上单调递减.综上所述:()f x 在 (),a +∞上单调递增,在(),a -∞上单调递减.(3)由(2)得()f x 在(),a +∞上单调递增,在()0,a 上单调递减,所以()()2min f x f a a a ==-.(i )当2a =时,()()min 22,f x f ==-()223,254,2x x x f x x x x ⎧-≥=⎨-+<⎩令()40f x x +=,即()4f x x =-()0x >,因为()f x 在()0,2上单调递减,所以()()22f x f >=-而4y x=-在()0,2上单调递增,()22y f <=-,所以()y f x =与4y x=-在()0,2上无交点.当2x ≥时,()243f x x x x=-=-,即32340x x -+=,所以322240x x x --+=,所以()()2210x x -+=,因为2x ≥,所以2x =,即当2a =时()4f x x +有一个零点2x =.(ii )当2a >时,()()2m i n fx f a a a ==-,当()0,x a ∈时,()024f a =>,()2f a a a =-,而4y x =-在()0,x a ∈上单调递增,当x a =时,4y a=-.下面比较()2f a a a =-与4a -因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以aa a a f 4)(2-<-=第21题图结合图象不难得当2>a ,)(x f y =与xy 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点2x =;当2>a ,)(x f y =与xy 4-=有两个零点.。

广东高考数学文科试卷含答案(WORD版)

广东高考数学文科试卷含答案(WORD版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x xf x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336cos sin 333cos 31cos ,()336f A A A f x x f f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∴-=解由得1sin()3sin()3cos 3 1.6323πππθθθ-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式 (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,721484x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-<若存在使得必须在上有解方程的两根为只能是依题意即0000025711,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。

2014年广东高考文科数学试卷

2014年广东高考文科数学试卷

2014年广东文科数学考试时间:120分钟 总分:150姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.已知集合{}2,3,4M =,{}0,2,3,5N =,则MN =( ).A.{}0,2B.{}2,3C.{}3,4D.{}3,52.已知复数z 满足(34)25i z -= ,则z =( ).A. 34i --B.34i -+C.34i -D.34i +3.已知向量(1,2)=a ,(3,1)=b ,则-b a =( ).A. (2,1)-B.(2,1)-C.(2,0)D.(4,3)4.若变量x ,y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( ).A.7B.8C.10D.11 5.下列函数为奇函数的是( ).A. B. C. D.6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ).A.50B.40C.25D.207.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,则a b ≤是sin sin A B ≤的( ).A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ). A.实半轴长相等 B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( ).A. 14l l ⊥B. 14//l lC.1l 与4l 既不垂直也不平行D. 1l 与4l 的位置关系不确定10.对任意复数12,ωω ,定义1212ωωωω=* ,其中2ω是2ω的共轭复数,对任意复数1z ,2z , 3z 有如下四个命题:① ② ③ ④则真命题的个数是( ).A.1B.2C.3D.4.二 、填空题(本大题共5小题,每小题4分,共20分)11.曲线53xy e =-+在点(0,2)-处的切线方程为 .12.从子母a ,b ,c ,d 中任取两个不同子母,则取到字母a 的概率为 .13.等比数列的各项均为正数,且,则21log a 22log a + 23log a +24log a +25log a += .xx212-x x sin 31cos 2+x xx 22+1231323()()();z z z z z z z +*=*+*1231213()()()z z z z z z z *+=*+*123123()();z z z z z z **=**1221z z z z *=*{}n a 154a a =姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●14. (坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos=1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 .15.(几何证明选讲)如图1,在平行四边形ABCD 中,点E 在AB 上,且EB=2AE ,AC 与DE 交于点F ,CDF AEF ∆∆的周长的周长= .三 、解答题(本大题共6小题,共80分) 16.已知函数,且(1)求的值;(2)若,求17.某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.()sin(),3f x A x x R π=+∈5()12f π=A ()()(0,)2f f πθθθ--=∈()6f πθ-18.如图2,四边形ABCD 为矩形,PD ⊥平面ABCD 1AB =,2BC PC ==.作如图3折叠:折痕||EF DC , 其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥ (1)证明:CF ⊥平面MDF ; (2)求M-CDE 三棱锥的体积.19.设各项均为正数的数列{}n a 的前n 项和n S ,且n S 满足222(3)3()0n n S n n S n n -+--+=,n N *∈(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数,有n ()()().311111112211<+++++n n a a a a a a20.已知椭圆C : 22221x y a b +=(0)a b >>的一个焦点为,离心率为3(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线互相垂直,求点P 的轨迹方程.21.已知函数321()1().3f x x x ax a R =+++∈ (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()=()2f x f2014年广东文科数学答案解析一 、选择题 1.答案:B 解析:略 2.答案:D 解析:2525(34)25(34)=3434(34)(34)25i i z i i i i ++===+--+ ,故选D.3.答案:B 解析:略4.答案:C解析:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10,故选C.5.6.答案:A解析:设1()22x x f x =-,则()f x 的定义域为R ,1()22x x f x ---=-12()2xx f x =-=-,∴()f x 为奇函数,故选A.7.答案:C 解析:分段间隔为10002540=.8.答案:A 解析:由正弦定理知sin sin a bA B=,∵ a ,b ,sin A ,sin B 都是正数, ∴sin sin a b A B ≤⇔≤,故选A.9.答案:D解析:∵05,50,160k k k <<∴->->,从而两曲线均为双曲线,又16(5)21(16)5k k k +-=-=-+,故两双曲线的焦距相等,故选D.10.答案:D. 11.答案:B解析:①12312313231323()()()()()()z z z z z z z z z z z z z z +++*===*+*,对②12312312312131213()()()()()()()z z z z z z z z z z z z z z z z z +=+=+=+=**+*, 对③左边123123()z z z z z z =*=,右边123123123()()()z z z z z z z z z ===*,左边≠右边,错. ④左边1212z z z z ==*,右边2121z z z z ==*,左边≠右边,错. 综上,只有①②是真命题,故选B.二 、填空题12.答案:520x y ++= 解析:∵'5x y e =-,∴'5x y ==-,∴所求的切线方程为25y x +=-,即520x y ++=13.答案:25解析:142542105C P C ===14.答案:5解答:设2122232425log log log log log S a a a a a =++++ 则2524232221log log log log log S a a a a a =++++ ∴215225log ()5log 410S a a === ∴5S =15.答案:(1,2) 解析:由22cossin ρθθ=得22cos =sin ρθρθ(),故1C 的直角坐标方程为22y x =, 又2C 的直角坐标方程为1x =,∴1C ,2C 交点的直角坐标为(1,2).16.答案:3 解析:∵CDF AEF ∆∆ ∴CDF AEF ∆∆的周长的周长=CD AE=EB AEAE +=3三 、解答题 17.解:(1)∵553()sin()sin 1212342f A A ππππ=+== ∴3.A == (2)由(1)得,()3sin()3f x x π=+∴()()3sin()3sin()33f f ππθθθθ--=+--+3(sin coscos sin )3(sin()cos cos()sin )3333ππππθθθθ=+--+-6sin cos3sin 3πθθ===∴sin 3θ=(0,),2πθ∈∴cos θ=∴()3sin()3sin()3cos 36632f ππππθθθθ-=-+=-===18.解:(1)这20名工人年龄的众数为30,极差为40-19=21.(2)茎叶图如下:(3)年龄的平均数为:(1928329330531432340)3020+⨯+⨯+⨯+⨯+⨯+=,故这20名工人的年龄的方差为:22222221(11)3(2)3(1)5041321020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦ 11(121123412100)25212.62020=+++++=⨯=19.解:(1):,,,PD ABCD PD PCD PCD ABCD ⊥⊂∴⊥证明平面平面平面,,,,CD CD MD ABCD MD CD MD PCD =⊂⊥∴⊥平面平面PCDAB 平面平面 ,,CF PCD CF MD ⊂∴⊥平面CF MF ⊥又,,,MD MF MDF ⊂平面,MDMF M =.CF MDF ∴⊥平面(2),CF MDF ⊥平面0,60,CF DF PCD ∴⊥∠=又易知030CDF ∴∠=11==,22CF CD 从而,EF DC ∥,DE CF DP CP ∴=12,2DE ∴=PE ∴=12CDE S CD DE ∆=⋅=22MD ====11.338216M CDE CDE V S MD -∆∴=⋅==20.解:(1)令n =1,得,211(1)320S S ---⨯= , 21160,S S +-=即11(3)(2)0,S S ∴+-=10,S >112, 2.S a ∴==即(2)222(3)3()0,n n S n n S n n -+--+=由2:(3)()0,n n S S n n ⎡⎤+-+=⎣⎦得0(),n a n N *>∈0,n S ∴>30,n S +>从而2,n S n n ∴=+2,n ∴≥当时1n n n a S S -=-22(1)(1)n n n n ⎡⎤=+--+-⎣⎦2,n =1221,a ==⨯又2().n a n n N *∴=∈(3)解法一:,k N *∈当时2232216k k k k +>+-13()(),44k k =-+1(1)k k a a ∴+12(21)k k =+1114()2k k =⋅+11134()()44k k <⋅-+11114()(1)44k k =⋅⎡⎤-⋅+-⎢⎥⎣⎦111114(1)44k k ⎡⎤⎢⎥=⋅-⎢⎥⎢⎥-+-⎣⎦112211(1)(1)a a a a ∴++++1(1)n n a a ++1111111()()11111141223(1)444444n n ⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦111()1141(1)44n =--+-111.3433n =-<+ 解法二:11(1)2(21)k k a a k k =++1(21)(21)kk <-+111()22121k k =--+(以下略)21.解:(1) c ,3c e a a === 2223,954,a b a c ∴==-=-=221.94x y C ∴+=椭圆的标准方程为:(2),x 若一切线垂直轴,4y 则另一切线垂直于轴则这样的点P 共个,(3,2),(3,2).-±±它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为00(),y y k x x -=-00(),y k x x y =-+即将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40,k x k y kx x y kx ⎡⎤++-+--=⎣⎦,0,∆=依题意22220000(18)()36()4(94)0,k y kx y kx k ⎡⎤----+=⎣⎦即:22004()4(94)0,y kx k --+=即2220000(9)240,x k x y k y ∴--+-=,两切线相互垂直121,k k ∴=-20204:1,9y x -=--即220013,x y ∴+=(3,2),(3,2)-±±显然,这四点也满足以上方程22.解:(1)'2()2,f x x x a =++220:44,x x aa ++=∆=-方程的判别式1,0,a ∴≥∆≤当时'()0,f x ∴≥()(,).f x -∞+∞此时在上为增函数1,a <当时2201x x a ++=-方程的两根为(,1,x ∈-∞-当时'()0,f x >(),fx ∴此时为增函数(11),x ∈--当时'()0,f x <(),f x 此时为减函数(1),x ∈-+∞当时'()0,f x >(),f x此时为增函数,1,a ≥综上时()(,),f x -∞+∞在上为增函数1,a <当时()f x 的单调递增区间为(,1-∞-(1),-+∞()f x 的单调递减区间为(11).--(2)解法一:01()()2f x f -3232000111111()()()133222x x ax a ⎡⎤=+++-+++⎢⎥⎣⎦33220001111()()()3222x x a x ⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦2000000111111()()()()()3224222x x x x x a x ⎡⎤=-+++-++-⎢⎥⎣⎦20000111()()236122x x x x a =-+++++200011()(414712)122x x x a =-+++ 011(0,)(,1),22x ∴∈若存在01()(),2f x f =使得2004147120x x a +++=必须11(0,)(,1).22在上有解0,a <21416(712)4(2148)0,aa ∴∆=-+=->:方程的两根为=00,x >0x ∴,依题意01,<<711,<即492148121,a ∴<-<257,1212a -<<-即1=,42-又由5,4a =-得0,x 故欲使满足题意的存在5,4a ≠-则25557(,)(,),124412a ∴∈----当时011(0,)(,1)22x∈存在唯一的01()().2f x f =满足00111(0,)(,1)()()222x f x f ∈=不存在使 解法二:0,10,a <∴-(i )3,11,a ≤--若(1)()f x 从而由知(0,1),在区间上是减函数011(0,)(,1),22x∈故此时不存在01()=();2f x f 使得 (ii )30,a -<<若()f x 则函数在区间(0,1-,上递减(1,-在区间上递增1)511,()(0,),(,1),422a f x =-若则在上递减在上递增 0;x 显然此时不存在满足题意的2)513,11,42a -<<-<-<若则00,(1),x x ∈-若题意中的存在则 125(1)()0,0,2224a f f ->+>故只需即025255,;12124a a x >--<<-则故时存在满足题意的3)50,4a -<<若101,2<-+则0,x 若题意中的存在0(0,1x ∈-则1(0)()0,2f f ->故只需70,224a -->即0757,.12412a a x <--<<-则故时存在满足题意的:综上所述25557(,)(,),124412a ∴∈----当时00111(0,)(,1)()().222x f x f ∈=存在唯一的满足2575(,][,0),12124a ⎧⎫∈-∞---⎨⎬⎩⎭当时00111(0,)(,1)()()222x f x f ∈=不存在使。

Do_2014广东高考数学文科试卷含答案(WORD版)

Do_2014广东高考数学文科试卷含答案(WORD版)

20. 已知椭圆C的:一ax22个焦by22点为1(离a 心b率为0)
( 5, 0),
5.
3
21(.1已)求知椭函圆数C的f标(x准) 方1程x3 ;x2 ax 1(a R).
(2)若动点P为(椭x0,圆y0外)3 一点且C点到椭圆, 的两P条切线相C 互垂直求点的轨迹方, 程 P
.
(1)求函数f的(x单) 调区间 ;
2x
1 2x
B. x3 sin x
C. 2cosx 1
D. x2 2x
答案:A
提示设: 则f 的(x)定义2x域 为1 且, f (x) 2x
f (x)为奇函数,故选 A.
R,
f (x) 2x
1 2 x
1 2x
2x
f (x),
6. 为了解1名00学0生的学习情况采用,系统抽样的方法从中抽, 取容量为的样本40
(2)由S得n2 (n2 n 3)Sn 3(n2 n) 0, : (Sn 3) Sn (n2 n) 0,
an 0(n N ), Sn 0,从而Sn 3 0, Sn n2 n,
当n时 2 , an Sn Sn1 n2 n (n 1)2 (n 1) 2n,
20
故这名20工人年龄的方差为
:
1 20
(11)2
3
(2)2
3
(1)2
5
02
4
12
3
22
102
1 (12112 3 4 12 100) 20
1 252 20
12.6
18. 如图四2, 边形为A矩B形CD平面 , PD ABCD,
AB 1, BC PC 2.作如图折3 叠折: 痕 EF / /DC,
3

2014年广东高考数学(文科)真题及答案

2014年广东高考数学(文科)真题及答案

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={2,3,4},N=*0,2,3,5+,则M⋂N()A.{0,2} B. {2,3} C. {3,4} D. {3,5}2.已知复数 Z 满足(3−4i)z=25,则Z =()A.−3−4iB.−3+4iC. 3−4iD.3+4i3.已知向量a⃗=(1,2), b⃗⃗⃗=(3,1), 则b⃗⃗−a⃗=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)4.若变量x,y满足约束条件{x+2y≤80≤x≤40≤y≤3则 z=2x+y 的最大值等于()A.7B. 8C.10D.115.下列函数为奇函数的是()A.2x−12xB. x3sin xC.2cos x+1D.x2+2x6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.在∆ABC中,角A,B,C所对应的边分别为a, b, c, 则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数 k满足0<k<5, 则曲线x216−y25−k=1与曲线x216−k−y25=1的()A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线 l 1,l 2,l 3, l 4 ,满足l 1⊥l 2,l 1// l 2,l 3⊥l 4, 则下列结论一定正确的是( )A. l 1⊥l 4B. l 1// l 4C. l 1与 l 4既不垂直也不平行D. l 1与 l 4的位置关系不确定10.对任意复数w 1,w 2,定义w 1⋇w 2=w 1w 2̅̅̅̅,其中w 2̅̅̅̅是w 2的共轭复数,对任意复数z 1,z 2,z 3有如下四个命题:①(z 1②z 1∗③(z 1④z 1∗A.111121314.(sin θ 与 p 15.AC 与DE图 1EBA三.解答题:(本大题共6小题,满分80分)16.(本小题满分12分)已知函数f(x)=A sin(x+π3), x∈R,且f(5π12)=3√22(1)求 A 的值;(2)若f(θ)−f(−θ)=√3,θ∈(0,π2),求 f(π6−θ).其⊥CF.19.(本小题满分14分)设各项均为正数的数列*a n+的前 n 项和为 S n,且 S n满足S n2−(n2+n−3) S n−3(n2+n)=0,n∈N∗.(1)求 a1 的值;(2)求数列*a n+的通项公式;1+1+⋯1<1.(3)证明:对一切正整数 n , 有20.(1)(2) P 的21.(1)(2)参考答案二、填空题11. 5x+y+2=012. 2513. 514. (1,2)15. 3三、解答题。

2014广东高考(文数)【含答案--全WORD--精心排版】

2014广东高考(文数)【含答案--全WORD--精心排版】

2014年普通高等学校招生全国统一考试(广东卷)数 学(文科)参考公式:一组数据12,,,n x x x 的方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 表示平均数.一、选择题:1.已知集合{2,3,4}M =,{0,2,3,5}N =,则MN =( )A .{3,5}B .{3,4}C .{2,3}D .{0,2} 2.已知复数z 满足(34)25i z -=,则z =( )A .34i +B .34i -C .34i -+D .34i -- 3.已知向量(1,2)=a ,(3,1)=b ,则-=b a ( )A .(4,3)B .(2,0)C .(2,1)-D .(2,1)-4.若变量,x y 满足约束条件280403x y x y +⎧⎪⎨⎪⎩≤≤≤≤≤,则2z x y =+的最大值等于( )A .11B .10C .8D .7 5.下列函数为奇函数的是( )A .22x x +B .2cos 1x +C .3sin x xD .122xx-6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .20B .25C .40D .50 7.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,则“a b ≤ ”是“sin sin A B ≤”的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) A .焦距相等 B .离心率相等 C .虚半轴长相等 D .实半轴长相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥ B .14//l l C .1l 与4l 既不垂直也不平行 D .1l 与4l 的位置关系不确定 10.对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()()***z z z z z z z +=+; ②1231213()()()***z z z z z z z +=+; ③123123()()****z z z z z z =; ④1221**z z z z =. 则真命题的个数是( )图1AFE D CB(一)必做题(11 ~ 13题)11.曲线53x y e =-+在点(0,2)-处的切线方程为______________.12.从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为_______.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a _______. (二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐 标为 . 15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长= . 三、解答题:16.(本小题满分12分)已知函数()sin()3f x A x π=+,x ∈R,且5()122f π=.(1)求A 的值;(2)若()()f f θθ--)2,0(πθ∈,求()6f πθ-.17.(本小题满分13分)某车间20名工人年龄数据如下表: (1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.图3PA B CEDFMPA B CD图218.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==.作如图3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥.(1)证明:CF ⊥平面MDF ;(2)求三棱锥M CDE -的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0n n S n n S n n -+--+=,*n ∈N .(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++.20.(本小题满分14分)已知椭圆2222:1x y C a b +=(0)a b >>的一个焦点为(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)已知函数321()13f x x x ax =+++()a ∈R . (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =.2014年普通高等学校招生全国统一考试(广东卷)数 学(文科)参考答案二、填空题:本大题共小题,考生作答小题,每小题分,满分分.11.520x y ++= 12.2513.5 14.(1,2) 15.3 2.A 解析:2525(34)25(34)=3 4.34(34)(34)25i i z i i i i ++===+--+ 4.B 解析:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10.111()2,(),()5D 22(),22 2().x xx x x x f x f x R f x f x f x --=--=-=-=-∴解析:设则的定义域为且 为奇函数.100025.4B 06 =解析:分段的间隔为. ,,,sin ,sin ,sin sin .sin sin 7 A a ba b A B a b A B A B=∴≤⇔≤解析:由正弦定理知都为正数.05,50,160,16(5)21(16)58 ,A k k k k k k <<∴->->+-=-=-+解析:从而两曲线均为双曲线, 又故两双曲.线的焦距相等.123123132313231231231231213121312312312312312310 C ()()()()()();()()()()()()();(),()()(),z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====.①*===*+*,故①是真命题 ②**+*,②对 ③左边=*=右边*解析:左12122121,;,,,z z z z z z z z ≠==≠边右边③错 ④左边=*右边=*左边右边故④不是真命题. 综上,只有①②是真命题.''5,5,25,50.121x x y e y y x x y ==-∴=-∴+=-++=解析:所求切线方程为即.142542.15201C P C ===解析:.212223242525242322212152log log log log log ,log log log log log ,25log ()5log 410,13 5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=解析:设 则 .22212122cos sin 2cos =sin ,2,1,,(1,2).14C y x C x C C ρθθρθρθ===∴解析:由得()故的直角坐标方程为: 的直角坐标方程为:交点的直角坐标为.,5 3.1CDF CD EB AECDFAEF AEF AE AE∆+∆∆∴===∆的周长解析:显然的周长.16.解:(1)553()sin()sin 121234f A A ππππ=+==,解得 3.A = (2)由(1)得()3sin()3f x x π=+,所以()()3sin()3sin()3sin()3sin()3333f f ππππθθθθθθ--=+--+=++-3(sin coscos sin )3(sin cos cos sin )3333ππππθθθθ=++-6sin cos 3sin 3πθθ===所以sin θ=(0,)2πθ∈,所以cos θ==.所以()3sin()3sin()3cos 36632f ππππθθθθ-=-+=-===17.解:(1)这20名工人年龄的众数为30,极差为40-19=21(2)茎叶图如图所示: (3)年龄的平均数为(1928329330531432340)3020x +⨯+⨯+⨯+⨯+⨯+==所以这20名工人年龄的方差为222222221(1930)3(2830)3(2930)5(3030)4(3130)3(3230)(4030)20s ⎡⎤=-+⨯-+⨯-+⨯-+⨯-+⨯-+-⎣⎦1252(1211230412100)12.62020=++++++== 18.(1)证明:因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥. 因为在矩形ABCD 中CD AD ⊥,又CD PD D =,所以AD ⊥平面PCD .因为CF ⊂平面PCD ,所以AD CF ⊥.因为MF CF ⊥,MF AD M =,所以CF ⊥平面ADF . (2)解:因为CF ⊥平面ADF ,DF ⊂平面ADF ,所以CF DF ⊥. 因为1AB CD ==,2BC PC ==,所以60PCD ∠=,30CDF ∠=, 所以111242CF CD PC ===,PD .因为EF ∥DC,所以14DE PD ==34PE PD ==.所以4EM PE ==,2MD ==,128CDE S CD DE ∆=⋅=,因为MD ⊥平面CDE ,所以三棱锥M CDE -的体积11338216M CDE CDE V S MD -∆=⋅=⨯=. 19.解:(1)由222(3)3()0n n S n n S n n -+--+=,得2(3)()0n n S S n n ⎡⎤+-+=⎣⎦.因为{}n a 是正项数列,所以0n a >,0n S >,所以2n S n n =+. 当1n =时,112a S ==.(2)当2n ≥时,221[(1)(1)]2n n n a S S n n n n n -=-=+--+-=;当1n =时,2a =,满足上式, 所以数列{}a 的通项公式为2a n =,*n ∈N1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)因为111111()(1)2(21)(21)(21)22121n n a a n n n n n n =<=-++-+-+ 所以11221111111111111()()()(1)(1)(1)2323525722121n n a a a a a a n n +++<+-+-++-+++⨯-+ 1111111()623213423n n =+-=-<++ 20.解:(1)依题意得c =3c e a ==,所以3a =,2224b a c =-=,所以椭圆C 的标准方程为22194x y +=. (2)当过点P 的两条切线12,l l 的斜率均存在时,设12,l l 的斜率分别为12,k k ,设切线方程为00()y y k x x -=-,联立2200194()x y y y k x x ⎧+=⎪⎨⎪-=-⎩,得2220000(49)18()9()360k x k y kx x y kx ++-+--=, 所以22220000(18)()4(49)[9()36]0k y kx k y kx ∆=--+--=,整理得2200()49y kx k -=+,即2220000(9)240x k x y k y --+-=,因为12l l ⊥,所以201220419y k k x -==--,整理得220013x y +=; 当过点P 的两条切线12,l l 一条斜率不存在,一条斜率为0时,P 为(3,2)±或(3,2)-±,均满足220013x y +=. 综上所述,点P 的轨迹方程为2213x y +=.21.解:(1)2()2f x x x a '=++,x ∈R .令220x x a ++=,44a ∆=-. ① 当1a ≥时,0∆≤,()0f x '≥,所以()f x 在(,)-∞+∞上是增函数;② 当1a <时,0∆>,方程220x x a ++=的两个根为11x =-21x =-所以(),()f x f x '随x 的变化情况如下表:所以()f x 在1(),x -∞和2(,)x +∞上是增函数,在12(,)x x 上是减函数.综上所述,当1a ≥时,()f x 的单调递增区间为(,)-∞+∞,没有单调递减区间; 当1a <时,()f x 的单调递增区间为1(),x -∞和2(,)x +∞,单调递减区间为12(,)x x .令323211111117()()()1(1)2324423224g x f x f x x ax a x x ax a =-=+++-+++=++--, 原问题转化为方程()0g x =在11(0,)(,1)22上有解.因为1()()()()2g x f x f f x ''''=-=,所以函数()y g x =与()y f x =的单调性相同.由(1)得当0a <时,()g x 在1(),x -∞和2(,)x +∞上是增函数,在12(,)x x 上是减函数,其中112x =-<-,210x =->,17(0)224g a =--,1()02g =,125(1)224g a =+.① 当2102x <<时,即1012<-+<,解得504a -<<, ()g x 在2(0,)x 上是减函数,在21(,)2x 和1(,1)2上是增函数,且1()02g =,要使()0g x =在11(0,)(,1)22上有解,只需(0)0g >,解得712a <-,所以57412a -<<-;② 当212x =时,即54a =-,()g x 在(0,1)2上是减函数,在1(,1)2上是增函数,且1()02g =,所以()0g x =在11(0,)(,1)22上无解;③ 当2112x <<时,即1112<-+,解得534a -<<-,()g x 在(0,1)2和2(1,)2x 上是减函数,在2(,1)x 上是增函数,且1()02g =,要使()0g x =在11(0,)(,1)22上有解,只需(1)0g >,解得2512a >-,所以255124a -<<-;④ 当21x ≥时,即11-,解得3a -≤,()g x 在(0,1)2和(1,1)2上是减函数,且1()02g =,所以()0g x =在11(0,)(,1)22上无解.综上所述,当25557(,)(,)124412a ∈----时,存在011(0,)(,1)22x ∈,使得01()()2f x f =.。

广东2014年高考真题文科数学(文档版)

广东2014年高考真题文科数学(文档版)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2014-2015年广东卷高考数学试题数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式13V sh =,其中s 为锥体的底面积,h 为锥体的高. 一组数据12,,,n x x x L 的方差2222121[()()()],n s x x x x x x n=-+-++-L其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =I{}A.0,2 {}B.2,3 {}C.3,4 {}D.3,52. 已知复数z 满足(34)25i z -=,则z =A.34i --B.34i -+ .34C i - D.34i +3. 已知向量(1,2)a =r ,(3,1)b =r ,则b a -=r rA.(2,1)-B.(2,1)-C.(2,0)D.(4,3)4. 若变量x ,y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于A.7B.8C.10D.115. 下列函数为奇函数的是1A.22x x-2B.sin x x C.2cos 1x + 2D.2xx + 6. 为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为A.50B.40C.25D.207. 在ABC ∆中,角,,A B C 所对应的变分别为,,a b c ,则a b ≤“”是sin sin A B ≤“”的A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8. 若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x k y --=的 A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9. 若空间中四条两两不相同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.1l 与4l 既不平行也不垂直D.14l l 与位置关系不确定10. 对任意复数1w ,2w ,定义1212w w w w *=,其中2w 是2w 的共轭复数,对任意复数123,,z z z ,有如下四个命题:①()()()1231323z z z z z z z +*=*+*②()()()1231213z z z z z z z *+=*+* ③()()123123z z z z z z **=**④1221z z z z *=*则真命题的个数是A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11. 曲线53x y e =-+在点(0,2)-处的切线方程为 .12. 从字母,,,,a b c d e 中任取两个不同的字母,则取到字母a 的概率为 . 13. 等比数列{}n a 的各项均为正数且154a a =,则2122232425l o g l o g l o g lo g lo g a a a a a ++++= .(二)选做题(14~15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为 . 15. (几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12 分) 已知函数 532()sin(),,().3122f x A x x R f ππ=+∈= (1)求A 的值;(2)若()()3,(0,),2f f πθθθ--=∈,求()6f πθ-.17.(本小题满分13 分) 某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1合计 20(1)求这20名工人年龄的众数与极差;(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;EF D CBA(3)求这20名工人年龄的方差.18. (本小题满分13 分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1,2AB BC PC ===,作如图3折叠,折痕EF ∥DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.19. (本小题满分14分)设各项为正数的数列{}n a 的前n 和为n S ,且n S 满足.222*(3)3()0,n n S n n S n n n N -+--+=∈(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++20. (本小题满分14分)已知椭圆2222:1(0,0)x y C a b a b+=>>的一个焦点为()5,0,离心率为53(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆的两条切线相互垂直,求点P 的轨迹方程.21. (本小题满分14分)已知函数321()1()3f x x x ax a R =+++∈. (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭,使得01()()2f x f =.C EFPB A DPA DCBFEM2014年普通高等学校招生全国统一考试(广东卷)数学(文科)参考答案:一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. B2. D3. B4. C5. A6. C7. A8. D9. D 10. B二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. 11. 520x y ++= 12.2513. 5 14. (1,2) 15. 3 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos 33sin 33sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈∴解由得26cos 1sin 36()3sin()3sin()3cos 3666323f θθππππθθθθ=-=∴-=-+=-==⨯=17.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为 18.00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即19.1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-20.222220022002255:(1)5,,3,954,31.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±Q 依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为 21.'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,721484x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-<若存在使得必须在上有解方程的两根为只能是依题意即0000025711,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。

相关文档
最新文档