二次函数总复习总结课件PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0
b2-4ac<0
题型分析:
(一)抛物线与x轴、y轴的交点所构成图 形的面积
例1:填空:
(1)抛物线y=x2-3x+2与y轴的交点坐 标是_____(0_,2_) _____,与x轴的交点
坐标是___(1,_0_)和_(2_,_0)____;
解:∵二次函数的最大值是2
∴抛物线的顶点纵坐标为2
又∵抛物线的顶点在直线y=x+1上
∴当y=2时,x=1 ∴顶点坐标为( 1 , 2)
∴设二次函数的解析式为y=a(x-1)2+2
又∵图象经过点(3,-6)
∴-6=a(3-1)2+2 ∴a=-2
前进
∴二次函数的解析式为y=-2(x-1)2+2
即: y=-2x2+4x
一、定义
二、图象特点 和性质
三、解析式的求法
2.一般二次函数
y=ax2+bx+c(a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 2 6 .2 .4
(一) 图象特点:
(1)是一条抛物线;
(2)对称轴是:x=- 2a
(3)顶点坐标是:(-2a ,
4ac-b2 4a
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。
A 如图所示,则a、b、c的符号为( )
A、a>0,b>0,c=0 B、a<0,b>0,c=0
y
ox
C、a<0,b<0,c<0 D、a>0,b<0,c=0
3、二次函数y=ax2+bx+c(a≠0)的图象如图
C 所示,则a、b、c 、 △的符号为( )
y
A、a>0,b=0,c>0,△>0 B、a<0,b>0,c<0,△=0
前进
图 2 6 .2 .1
(二) 函数性质:
(1) a>0时,y轴左侧,函
数值y随x的增大而减小 ; y 轴右侧,函数值y随x的增大而
增大 。a<0时, y轴左侧,函
数值y随x的增大而增大 ; y轴 右侧,函数值y随x的增大而减
小。
(2) a>0时, y有最小值。 当x =0时,ymin=0。
a<0时, y有最大值。 当x =0时, ymax=0。 前进
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
• • 0
(x1,0)
x
(x2,0)
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
b
x=- 2a
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
y
0•
返回 主页
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
a,b,c ,b2-4ac符号的确定
抛物线y=ax2+bx+c的符号问题:
云 影 飘 飘 漾漾 ,滑落 几瓣, 摇曳乞 巧坊。 绿 意 掩 映 的门, 玲珑雕 花的窗 , 朱 红 的 屏 风穿透 古筝悠 扬,高 山流水 韵,又 一曲, 渔舟晚 唱。 芊 芊 玉 指, 脂 粉 的 面 庞 ,颔首 凝神, 眉如黛 ,双眸 似水, 轻捻指 ,飞针 走线, 满目心 事,落 于 绸 缎 间 徜 徉。 十 指 春 风, 七彩的 丝线盘 绕出戏 水的鸳 鸯,牡 丹嫣红 次第开 放 , 红 梅 凌 雪,睡 莲静卧 ,兰花 一枝独 自芬芳 。 蜂 蝶 绕 , 燕呢 喃,凤 飞翱翔 , 四 海 求 凰 。 丽 华 秀 玉 色, 汉女娇 朱颜。 清歌遏 流云, 艳舞有 馀闲。 墨香点 点 , 熏 染 墙 面歌悠 扬,笔 意汩汩 ,飞舞 白宣诗 流淌。 荷 包 绣 不 尽,丝 丝缕缕 遥 远 的 牵 挂 ;锦囊 裹幽香 ,缠缠 绵绵前 世的爱 恋。红 丝带系 牢,思 念挂在 心间。 缀 满 心 事 的 流苏, 飞溅经 年的约 定,一 颗颗无 声的珠 玉滴落 ,都脆 响在七 月带露 的 心 上 。 垂 挂 在 空中 ,风干 的往事 ,独倚 雕栏, 寂静张 望。 蓝 花 布 包裹 的 花 枕 , 香 酥手将 美梦一 一盛放 ,蓝天 白云荞 麦香, 装着故 乡的模 样,花 枕圆、 花 枕 方 , 情 针意线 绣不尽 。鸳鸯 枕边, 绣花的 棱角稳 稳当当 ,层层 叠叠垒 ,砌成 安 静 的 墙 。 雨过后 ,天微 凉,送 你,去 远方, 心随你 走,他 乡是故 乡,牵 着故乡 月 , 让 心 去 流浪, 枕边耳 语在, 无论走 多远, 不被遗 忘。 古 色 古 香韵 悠长,
y
•0 (0,c)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
by x=- 2a
(1)a确定抛物线的开口方向:
a>0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
练习:根据下列条件,求二次函数的解析式。 (1)、图象经过(0,0), (1,-2) , (2,3) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
(四)二次函数综合应用
例(5:1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
x
(三) 求函数解析式
例4、已知二次函数y=ax2+bx+c的最 大值是2,图象顶点在直线y=x+1上,并 且图象经过点(3,-6)。求a、b、c。
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
b x=- 2a
y
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
•(x,0)
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a的符号: 由抛物线的开口方向确定
开口向上
a>0
开口向下
a<0
(2)C的符号: 由抛物线与y轴的交点位置确定.
交点在 y轴正半轴
c>0
交点在y 轴负半轴
c<0
经过坐标原点
c=0
(3)b的符号: 由对称轴的位置确定
对称轴在y轴左侧
a、b同号
对称轴在y轴右侧 对称轴是y轴
a、b异号 b=0
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定
y
y
y
y
O
x
A
x
O
x
O
O
x
B
C
D
答案: B 前进
练习:
1、二次函数y=ax2+bx+c(a≠0)的图象如图y
B 所示,则a、b、c的符号为( )
· A、a<0,b>0,c>0 B、a<0,b>0,c<0 co
x
C、a<0,b<0,c>0 D、a<0,b<0,c<0
2、二次函数y=ax2+bx+c(a≠0)的图象
)
(4)开口方向:
a>0时,开口向上;
a<0时,开口向下.
前进
图 2 6 .2 .4
(二) 函数性质:
(函1数)值ay>随0时x的,增对大称而轴减左小侧;(x对<-称2a轴),
右侧(x>增大 。
2a
),函数值y随x的增大而
a<0时,对称轴左侧(x<-2a),
函数值y随x的增大而增大 ;对称轴 右减侧小(。x>-2a ),函数值y随x的增大而
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
返回目录
一、定义
使用
二、图象特点 和性质
一般式
三、解析式的求法
解析式
范围
y=ax2+bx+c
已知任意 三个点
四、图象位置与 a、b、c、 的 正负关系
返回 主页
已知顶点
顶点式 y=a(x-h)2+k (h,k)及
另一点
(1)证明:∵△=22-4x(-8)=36>0 ∴该抛物线与x轴一定有两个交点
y
(2)解:∵抛物线与x轴相交时
x2-2x-8=0
A
Bx
P
解方程得:x1=4, x2=-2
∴AB=4-(-2)=6 前进
而P点坐标是(1,-9)
∴S△ABC= 27
(二)根据函数性质判定函数图象 之间的位置关系
例3:在同一直角坐标系中,一次函数 y=ax+c和二次函数y=ax2+c的图象大致为
已知与x
交点式
y=a(x-x1)(x-x2)
轴的两个 交点及另
一个点
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
(2)抛物线y=-2x2+5x-3与y轴的交 点交坐 点标 坐是 标是______(0_(_1,-_,03__))_和__(2_3__,0__)____,_.与x轴的
前进
例2:已知抛物线y=x2-2x-8, (1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点分别为A、 B,且它的顶点为P,求△ABP的面积。
卷 卷 又 叠 叠 ,字字 透
一、定义
二、图象特点 和性质
三、解析式的求法
四、图象位置与 a、b、c、 的 正负关系
返回 主页
一、定义
二次函数的定义:
二、图象特点 和性质
一般地,如果y=ax2+bx+c(a, b,c 是常数,a≠0),那么,
三、解析式的求法 y叫做x的二次函数。
定义要点:①a ≠ 0
四、图象位置与 a、b、c、 的
②最高次数为2 ③左右两边都是整式
正负关系
返回目录
返回 主页
一、定义
二、图象特点 和性质
三、解析式的求法
1.特殊的二次函数
y=ax2 (a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 2 6 .2 .1
(一) 图象特点:
(1)是一条抛物线; (2)对称轴是y轴; (3)顶点在原点; (4)开口方向: a>0时,开口向上; a<0时,开口向下.
0来自百度文库
x
(3)a、b确定对称轴x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•(0,c)
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
C、a>0,b=0,c<0,△>0 D、a<0,b=0,c<0,△<0
o
x
熟练掌握a,b, c,△与抛物线图象的关系
(上正、下负) (左同、右异)
4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和 二、三、四象限,判断a、b、c的符号情况:
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,