二次函数总复习总结课件PPT

合集下载

第26章小结二次函数的复习课件

第26章小结二次函数的复习课件

2、抛物线 y = 3x 2 + 2 的开口向
坐标为
.
, 顶点
3、抛物线 y =2( x +1)2 - 4 的顶点坐标为
对称轴为
.
4、当a 为最高点.
时,抛物线 y =(a +2)x 2 的顶点
5、抛物线 y = ( x - 2) 2 + 3 的开口向 ,对称
轴为
,在对称轴左侧,y 随 x 的增大而
2
1
A
-8 -7 -6 -5 -4 -3 -2 -1
1
-1
D B
2 3 4 56 7
8x
1、本课主要复习了哪些内容? 2、通过复习,你有什么体会或收获呢?
二次函数 y x2 2x 3
1)用配方法求其顶点D的坐标; 2)求其与y轴的交点C的坐标、与x轴交点A、B (且点A在点B的左边)的坐标。
y x2 2x 1
y
9
8 y=x2-2x+3
7
6
y x2 4x 3
5
4
3
2
1
-8 -7 -6 -5 -4 -3 -2 -1
1 2 3 4 5 6 7 8x
-1
知识点回顾四:
二次函数一般式与顶点式的转化
一般式
y ax2 bx c
配方
顶点式
y ax m2 k
y ax2 bx c

大 a >0 致 图 象 a<0
函 数
a >0
变 化 a<0
在对称轴左侧,y 随 x 的增大而减小. 在对称轴右侧,y 随 x 的增大而增大. 在对称轴左侧,y 随 x 的增大而增大. 在对称轴右侧,y 随 x 的增大而减小.
由a、b、c

二次函数复习ppt课件

二次函数复习ppt课件
点坐标是(1/2,1) ; (2)若抛物线y = a (x+m) 2+n 开口向下,顶点在第四象限,则 a <刀
3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。

二十二-二次函数复习课PPT课件

二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的

x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

二次函数复习课件PPT

二次函数复习课件PPT

个单位,再向 平移
个单位可
得到抛物线 y=3(x+2)2 -3.
16、将函数y=-3(x-1)2-1的图象 (1) 沿y轴翻折后得到的函数解析式_____. (2) 沿X轴翻折后得到的函数解析式_____. (3) 沿原点旋转180°后得到的函数解析式
_____. (4) 沿顶点旋转180°后得到的函数解析式
解: y ax2 bx c
a x2 b x c 提取二次项系数
a x2
a a
b x b 2 b 2 a 2a 2a
c a
配方:加上再减去一 次项系数绝对值一 半的平方
a
x
b 2a
2
4ac b2 4a2
整理:前三项化为平方形 式,后两项合并同类项
a x
y的 最值
增减性
在对称 在对称 轴左侧 轴右侧
y=ax2
a>0 向上 y轴
(0,0)
最小值 是0
y随x的增 y随x的增 大而减小 大而增大
a<0 向下
y轴
(0,0)
最大值 y随x的增 是0 大而增大
y随x的增 大而减小
y=ax2+c
a>0 向上 a<0 向下
y轴 y轴
(0,c)
最小值 是C
y随x的增 y随x的增 大而减小 大而增大
4a
➢当a>0时,抛物线的开口向上,顶点 是抛物线上的最低点;
➢当a<0时,抛物线的开口向下,顶点 是抛物线上的最高点.
二次函数关系式的常见形式:
一般式:y=ax2+bx+c 顶点式:y=a(x+m)2+k
交点式:y=a(x-x1)(x-x2)
确定二次函数的解析式时,应该根据 条件的特点,恰当地选用一种函数表达式.

中考二次函数复习课件【优质PPT】

中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

二次函数复习-完整版PPT课件

二次函数复习-完整版PPT课件
学练优九年级数学上(RJ) 教学课件
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式

次 解析式形式 顶点式


交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15

0,1
4,1
1m

2.5m

1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米


二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

(4)当图像与x轴 有两个交点时, b2-4ac>0;当图像与x轴只有一个 交点时, b2-4ac=0; 当图像与x轴没有交点时, b2-4ac<0. (5)图像过点(1, a+b+c)和点(-1, a-b+c), 再根据图像上的点的位置可 确定式子a+b+c和a-b+c的符号.
例1 已知二次函数y=ax2+bx+c的图像如图22-Z-1所示, 那么下
二次函数 的图像和
性质
开口方向
a>0, 图像开口向上 a<0, 图像开口向下
对称轴
a, b同号, 对称轴在y轴左侧 a, b异号, 对称轴在y轴右侧
烦烦烦鬼鬼鬼鬼 鬼鬼鬼鬼跟鬼鬼 鬼鬼鬼g鬼鬼
二次函数 的图像和
性质
a>0 增减性
a<0
最值
二次函数 的解析式
y=ax²+bx+c(a≠0)(一般式) y=a(x-h)²&#(a≠0)(交点式)
【要点指导】研究二次函数的图像的平移、轴对称变换过程, 实 际 就是确定变换后所得图像的二次函数解析式, 研究变换后的图 像和性质 的过程, 关键是找到变换后图像上的特殊点(如抛物线的 顶点), 从而得出 函数解析式, 最后利用二次函数的性质解答.
例4 如图22-Z-3, 在平面直角坐标系 xOy中, 将抛物线y=2x2沿y轴 向上平移1个单 位长度, 再沿x轴向右平移2个单位长度, 平移 后所 得抛物线的顶点记作A, 直线x=3与平移 后的抛物线相交于点B, 与 直线OA相交于点C. (1)求平移后的抛物线的函数解析式; (2)求点C的坐标及△ABC的面积.
例2 已知二次函数的图像以A(-1, 4)为顶点, 且过点B(2, -5). (1)求该函数的解析式; (2)求该函数图像与坐标轴的交点坐标.

二次函数复习(共36张PPT)

二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)

初中数学《二次函数》复习课名师教学PPT课件

初中数学《二次函数》复习课名师教学PPT课件

3.某商场试销一种成本为每件60元的服装,规定试销期 间销售单价不低于成本单价,且获利不得高于45%,经 试销发现,销售量y(件)与销售单价x(元)符合一次 函数y=kx+b,且x=65时,y=55;x=75时,y=45;
(1)求一次函数的解析式;
(2)若该商场获得利润为W元,试写出利润W与销售单 价x之间的关系;销售单价定为多少时,商场可获得最 大利润,最大利润是多少元?
(3)若该商场所获得利润不低于500元,试确定销售单 价x的范围.
二次函数在几何问题中的应用
1.为了节省材料,某水产养殖户利用水库的岸堤(岸堤 足够长)为一边,用总长为80m的围网在水库中围成了 如图所示的①②③三块矩形区域,而且这三块矩形区 域的面积相等.设BC的长度为xm,矩形区域ABCD的 面积为ym2.
A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的 最小值是-4 C.抛物线y=ax2+bx+c(a≠0)与x轴 的两个交点的横坐标分别是-1,3 D.当x<1时,y随x的增大而增大
2.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的 取值范围是(B)
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
1 x
2.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值
范围是( C)
A.m≠0 B.m≠-1 C.m≠0,且m≠-1 D.m=-1
3.矩形的周长为24cm,其中一边为xcm(其中x>0), 面积为ycm2,则这样的矩形中y与x的关系可以写成 ( B)
A.y=x2 C. y=12-x2
B.y=(12-x)x D.y=2(12-x)

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

第22章《二次函数》小结与复习课件

第22章《二次函数》小结与复习课件
形 DEBG 的面积为 S,求 S 与 x 的函数关系式; (3)当 x 为何值时,S 有最大值?并求出这个最大值.
(2)∵∠F =∠A = 45°,∠CBF =∠ABC = 90°,
∴∠BGF =∠F = 45°,1BG = BF1 = 2x -130. 1
所= 以 32Sx△2D+EF60-xS-△4G5BF0.= 2DE2 - 2BF2 = 2 x2 - 2 (2x - 30)2
若点 A(x1,y1),B(x2,y2)在此函数图象上,且
x1<x2<1,则 y1 与 y2 的大小关系是 ( B )
A.y1≤y2 B.y1<y2 C.y1≤y2 D.y1>y2
x
【解析】由图象看出,抛物线开口向下,对称轴是 x=1, 当 x<1时,y 随 x 的增大而增大.∵x1<x2<1,∴ y1<y2.
解:W = (x-60)•(-x+120) = -x2+180x-7200 = -(x-90)2 +900,
∵抛物线的开口向下, ∴当 x<90 时,W 随 x 的增大而增大. 而 60≤x≤60×(1 + 45%),即 60≤x≤87. ∴当 x = 87 时,W 有最大值,
此时 W = -(87- 90)2 + 900 = 891.
售量 y (件)与销售单价 x (元)符合一次函数 y=kx+b,且 x=65
时,y=55;x=75 时,y=45.
(1) 求一次函数的解析式;
解:根据题意,得
65k 75k
b b
55,解得
45.
k
=
-1,b
=
120.
故所求一次函数的解析式为 y = -x + 120.

第1章 二次函数 浙教版九年级数学上册复习课件(共17张PPT)

第1章 二次函数 浙教版九年级数学上册复习课件(共17张PPT)

(1)已知二次函数y=ax2+bx+c的部分图象如图所示, 图象经过(1,0),从中你能得到哪些结论?
(2)m满足什么条件时方程ax2+bx+c=m,①有两个不 相等的实数根?②有两个相等的实数根?③没有实 数根?
y
4
-1
o
1
x
图1
• 若把图1的函数图象绕着顶点旋转180度,则能得
到函数的表达式是
4ac 4a
b2
直线x b 2a
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b 2a
向下
增减性
在对称轴的左侧,y随着x的 增大而减小 在对称轴的右侧, y随着x的 增大而增大.
在对称轴的左侧,y随着x的 增大而增大. 在对称轴的右侧, y随着x的 增大而减小.
最值
得到y=2 x2 -4x-1则a= ,b= ,c=
.
3与.如分图别,经两过条点抛(物-2线,0)y,1(2,012)x且2 平1行、于y2y轴的12两x 2条1
平行线围成的阴影部分的面积为( ) A.8 B.6 C.10 D.4
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方 程ax2+bx+c=0的根的情况说明:
1、二次函数的定义
如果函数 y k 1 xk2k2 kx 1 是关于x的二次函
数,则k=
?
一般地, 如果y=ax2+bx+c(a,b,c 是常数,a≠0), 那么,y叫做x的二次函数。
2、二次函数的图像和性质(画两幅图)
抛物线 顶点坐标 对称轴 开口方向

第1讲二次函数的图象和性质复习课件(共39张PPT)

第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.

中考数学专题《二次函数》复习课件(共54张PPT)

中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴

人教版九年级上册数学第22章二次函数复习课件(36张)

人教版九年级上册数学第22章二次函数复习课件(36张)
[注意] (1)等号右边必须是整式;(2)自变量的 最高次数是2;(3)当b=0,c=0时,y=ax2是特 殊的二次函数.
注意:
开口方向与 a 的关系; 抛物线与 y 轴的交点与 c 的关系;
对称轴与 a,b 的关系; 抛物线与 x 轴交点数目与 b2-4ac 的符号关系。
抛物线 y=ax2 的图象 :
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可 能( B ) A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
已知关于x的二次函数,当x=-1时,函数值为10,当x=1
∴当x=87时,W有最大值,此时W=-(87-
90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利 润情况如图所示,该图可以近似看作为抛物线的一部分,请结 合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
中考热点
1. 二次函数的定义、图象、图象的 平移、性质、图象与系数的关系。
2. 二次函数解析式求法。 3. 二次函数图象与一元二次方程的 根的关系。
本章易错点
1. 二次函数的情势及结构特点。 2. 忽略自变量的取值范围,误认为二次 函数的最值点就是顶点。 3. 二次函数与一元二次方程的关系。 4. 点的坐标与距离的区分和联系。
顶点式y=a(x-h)2+k的情势,得到: 对称轴是直线x=h,最值为y=k,顶 点坐标为(h,k);

二次函数 总复习 PPT

二次函数 总复习  PPT

练习:
15、抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0) 、抛物线 轴交于( ( ) 与 轴交于 ) 和(x2,0)两点,已知 1x2=x1+x2+49,要使抛物线 )两点,已知x , 经过原点, 个单位。 经过原点,应将它向右平移 个单位。 16、抛物线y=x2+x+c与x轴的两个交点坐标分别为 、抛物线 与 轴的两个交点坐标分别为 (x1,0),(x2,0),若x12+x22=3,那么 值为 ,抛物线 , , ,那么c值为 的对称轴为 .

抛物线上两点间的距离
0 0 y = ax 2 + bx + c与x轴两交点为 A(x1,),B(x 2,) 若抛物线 轴两交点为
则x1 、x2是方程ax2+bx+c=0的两个根 ; 是方程 的两个根
AB = x1 − x2 =
( x1 − x2 )
2
=
( x1 + x2 )
2

b2 − 4ac ∆ − 4 x1 x2 = = a a
4、根据下列图象确定二次函数y=ax2+bx+c中 、根据下列图象确定二次函数 中 a,b,c的符号。 的符号。 的符号
y
(1)a>0; b>0 ; > > c<0 <
C x B
y
B C
o A
o
A
x
(2) a<0;b﹥0;c﹥0 < ﹥ ﹥
5 例 已 函 y = (m+ 2) x 知 数
m2 +5m+8
O C2
x
21、某工厂大门是一抛物线型水泥建筑物,如 、某工厂大门是一抛物线型水泥建筑物, 图所示,大门地面宽AB=4m,顶部 离地面高 图所示,大门地面宽 ,顶部C离地面高 度为4. . 度为 .4m.现有一辆满载货物的汽车欲通过 大门,货物顶部距地面2. , 大门,货物顶部距地面 .8m,装货宽度为 2.4m.请判断这辆汽车能否顺利通过大门. . .请判断这辆汽车能否顺利通过大门.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
x
(三) 求函数解析式
例4、已知二次函数y=ax2+bx+c的最 大值是2,图象顶点在直线y=x+1上,并 且图象经过点(3,-6)。求a、b、c。
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0
b2-4ac<0
题型分析:
(一)抛物线与x轴、y轴的交点所构成图 形的面积
例1:填空:
(1)抛物线y=x2-3x+2与y轴的交点坐 标是_____(0_,2_) _____,与x轴的交点
坐标是___(1,_0_)和_(2_,_0)____;
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
返回目录
一、定义
使用
二、图象特点 和性质
一般式
三、解析式的求法
解析式
范围
y=ax2+bx+c
已知任意 三个点
四、图象位置与 a、b、c、 的 正负关系
返回 主页
பைடு நூலகம்已知顶点
顶点式 y=a(x-h)2+k (h,k)及
另一点
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
b
x=- 2a
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
练习:根据下列条件,求二次函数的解析式。 (1)、图象经过(0,0), (1,-2) , (2,3) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
(四)二次函数综合应用
例(5:1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
• • 0
(x1,0)
x
(x2,0)
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
一、定义
二、图象特点 和性质
三、解析式的求法
2.一般二次函数
y=ax2+bx+c(a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 2 6 .2 .4
(一) 图象特点:
(1)是一条抛物线;
(2)对称轴是:x=- 2a
(3)顶点坐标是:(-2a ,
4ac-b2 4a
前进
图 2 6 .2 .1
(二) 函数性质:
(1) a>0时,y轴左侧,函
数值y随x的增大而减小 ; y 轴右侧,函数值y随x的增大而
增大 。a<0时, y轴左侧,函
数值y随x的增大而增大 ; y轴 右侧,函数值y随x的增大而减
小。
(2) a>0时, y有最小值。 当x =0时,ymin=0。
a<0时, y有最大值。 当x =0时, ymax=0。 前进
y
•0 (0,c)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
by x=- 2a
(1)a确定抛物线的开口方向:
a>0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
四、图象位置与 a、b、c、 的
②最高次数为2 ③左右两边都是整式
正负关系
返回目录
返回 主页
一、定义
二、图象特点 和性质
三、解析式的求法
1.特殊的二次函数
y=ax2 (a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 2 6 .2 .1
(一) 图象特点:
(1)是一条抛物线; (2)对称轴是y轴; (3)顶点在原点; (4)开口方向: a>0时,开口向上; a<0时,开口向下.
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
b x=- 2a
y
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
y
0•
返回 主页
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
a,b,c ,b2-4ac符号的确定
抛物线y=ax2+bx+c的符号问题:
云 影 飘 飘 漾漾 ,滑落 几瓣, 摇曳乞 巧坊。 绿 意 掩 映 的门, 玲珑雕 花的窗 , 朱 红 的 屏 风穿透 古筝悠 扬,高 山流水 韵,又 一曲, 渔舟晚 唱。 芊 芊 玉 指, 脂 粉 的 面 庞 ,颔首 凝神, 眉如黛 ,双眸 似水, 轻捻指 ,飞针 走线, 满目心 事,落 于 绸 缎 间 徜 徉。 十 指 春 风, 七彩的 丝线盘 绕出戏 水的鸳 鸯,牡 丹嫣红 次第开 放 , 红 梅 凌 雪,睡 莲静卧 ,兰花 一枝独 自芬芳 。 蜂 蝶 绕 , 燕呢 喃,凤 飞翱翔 , 四 海 求 凰 。 丽 华 秀 玉 色, 汉女娇 朱颜。 清歌遏 流云, 艳舞有 馀闲。 墨香点 点 , 熏 染 墙 面歌悠 扬,笔 意汩汩 ,飞舞 白宣诗 流淌。 荷 包 绣 不 尽,丝 丝缕缕 遥 远 的 牵 挂 ;锦囊 裹幽香 ,缠缠 绵绵前 世的爱 恋。红 丝带系 牢,思 念挂在 心间。 缀 满 心 事 的 流苏, 飞溅经 年的约 定,一 颗颗无 声的珠 玉滴落 ,都脆 响在七 月带露 的 心 上 。 垂 挂 在 空中 ,风干 的往事 ,独倚 雕栏, 寂静张 望。 蓝 花 布 包裹 的 花 枕 , 香 酥手将 美梦一 一盛放 ,蓝天 白云荞 麦香, 装着故 乡的模 样,花 枕圆、 花 枕 方 , 情 针意线 绣不尽 。鸳鸯 枕边, 绣花的 棱角稳 稳当当 ,层层 叠叠垒 ,砌成 安 静 的 墙 。 雨过后 ,天微 凉,送 你,去 远方, 心随你 走,他 乡是故 乡,牵 着故乡 月 , 让 心 去 流浪, 枕边耳 语在, 无论走 多远, 不被遗 忘。 古 色 古 香韵 悠长,
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
相关文档
最新文档