高中物理常见的“临界条件”(参考)
高中物理必修一 第四章 专题强化 动力学临界问题
当汽车向右匀减速行驶时,设小球所受车后壁弹力为0时(临界状态) 的加速度为a0,受力分析如图甲所示. 由牛顿第二定律和平衡条件得: Tsin 37°=ma0, Tcos 37°=mg, 联立并代入数据得: a0=7.5 m/s2.
12345678
当汽车以加速度a1=2 m/s2<a0向右匀减速行驶时,小球受力分析如图 乙所示. 由牛顿第二定律和平衡条件得: T1sin 37°-FN1=ma1, T1cos 37°=mg, 联立并代入数据得: T1=50 N,FN1=22 N, 由牛顿第三定律知,小球对车后壁的压力大小为22 N.
4.解答临界问题的三种方法 (1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而 找出临界条件. (2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即 假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再 根据实际情况处理. (3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角 函数等,然后根据数学中求极值的方法,求出临界条件.
A.g2
m k
C.g
2m k
√B.g
m 2k
D.2g
m k
12345678
静止时弹簧压缩量 x1=2mk g,分离时 A、B 之间的压 力恰好为零,设此时弹簧的压缩量为 x2,对 B:kx2- mg=ma,得 x2=32mkg,物块 B 的位移 x=x1-x2=m2kg, 由 v2=2ax 得:v=g 2mk,B 正确.
第四章
专题强化
探究重点 提升素养 / 专题强化练
动力学临界问题
学习目标
1.掌握动力学临界问题的分析方法. 2.会分析几种典型临界问题的临界条件.
高中物理常见临界条件归纳
临界情况
临界条件
速度达到最大值
物体所受合力为零,加速度等于零
刚好不相撞
两物体最终速度相同或接触时速度相同
(接触式)刚好不分离
速度相同,加速度相同,相互作用力等于零
物体到达极限位置
粒子刚好不飞出电场
轨迹与极板相切或擦边
粒子刚好不飞出电磁场
轨迹与极板磁场边界相切或擦边
物块刚好滑出(滑不出)小车
物块到达小车边沿恰好速度相同
物块恰好能到达某点(等效最高点)
到达该点时物块速度为零
绳约束物体恰好通过最高点
最高点重力提供向心力,
杆约束物体恰好通过最高点
最高点处物体速度为零
(最短),两物体速度相同,不一定等于零
圆形磁场区域半径最小
磁场区域是以公共弦长为直径的圆
绳约束物体摆动遇到(离开)钉子
圆周运动半径变化,拉力发生突变
绳约束临界点
绳子刚好伸直/松弛
绳上拉力为零
绳子刚好被拉断
绳上拉力等于绳子能够承受的最大拉力
使通电导线静止在斜面的最小磁感应强度
安培力平行于斜面,磁感应强度垂直于墙面
两物体距离最近(远)
速度相同
动静分界点
转盘上物体刚好发生滑动
向心力为最大静摩擦力
斜面上物体恰好不滑动时外力取值范围
摩擦力达到最大静摩擦,方向向上/下,物体平衡
运动状态的突变
天车悬挂重物水平运动,天车突然停止
重物由直线运动转为圆周运动,绳子拉力突然增加
物理临界问题总结
物理临界问题总结
物理临界问题是指在某些物理现象或过程中,某些因素在达到一定条件时发生突变,导致物理状态发生质的变化。
解决临界问题需要找到临界状态,即物理现象或过程发生质变的转折点。
以下是一些常见的物理临界问题:
1. 速度最大或最小问题:在运动学中,物体在某些力的作用下做变速运动,当速度达到最大或最小值时,物体的加速度为零,此时是临界状态。
2. 角度问题:在分析力的合成与分解时,当两个力的夹角为90度时,合力的大小达到最大值或最小值,这是临界状态。
3. 追及问题:在运动学中,当两物体速度相等时,距离最小或最大,这是追及问题的临界状态。
4. 平衡问题:在分析受力平衡时,当某个力为零时,物体处于平衡状态,这是临界状态。
5. 折射和反射问题:在光学中,当光线经过介质交界处时,会发生折射和反射现象。
当光线垂直入射或反射角等于入射角时,折射和反射达到最大或最小值,这是临界状态。
6. 弹簧问题:在分析弹簧的弹力时,当弹簧处于原长或处于最大限度压缩或拉伸时,弹力为零或达到最大值,这是临界状态。
7. 电场和磁场问题:在电场和磁场中,当电荷或电流垂直进入电场或磁场时,电场力或洛伦兹力达到最大值或最小值,这是临界状态。
解决临界问题的关键是找到临界状态,通过分析物理现象或过程的转折点来解决问题。
在解题过程中,需要注意物理量的变化趋势和转折点,以及如何利用这些信息来解决问题。
高中物理常见的重要临界状态及极值条件
1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角为45°。
2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时刻。
3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰好不再滑下)—μ=tgθ。
4.物体刚好滑动——静摩擦力达到最大值。
5.两个物体同向运动其间距离最大(最小)——两物体速度相等。
6.两个物体同向运动相对速度最大(最小)——两物体加速度相等。
7.位移一定的先启动后制动分段运动,在初、末速及两段加速度一定时欲使全程历时最短——中间无匀速段(位移一定的先启动后制动分段匀变速运动,在初速及两段加速度一定时欲使动力作用时间最短——到终点时末速恰好为零)8.两车恰不相撞——后车追上前车时两车恰好等速。
9.加速运动的物体速度达到最大——恰好不再加速时的速度。
10.两接触的物体刚好分离——两物体接触但弹力恰好为零。
11.物体所能到达的最远点——直线运动的物体到达该点时速度减小为零(曲线运动的物体轨迹恰与某边界线相切)12.在排球场地3米线上方水平击球欲成功的最低位置——既触网又压界13.木板或传送带上物体恰不滑落——物体到达末端时二者等速。
14.线(杆)端物在竖直面内做圆周运动恰能到圆周最高点—最高点绳拉力为零(=0v杆端)15.竖直面上运动的非约束物体达最高点——竖直分速度为零。
16.细线恰好拉直——细线绷直且拉力为零。
17.已知一分力方向及另一分力大小的分解问题中若第二分力恰为极小——两分力垂直。
18.动态力分析的“两变一恒”三力模型中“双变力”极小——两个变力垂直。
19.欲使物体在1F2F两个力的作用下,沿与1F成锐角的直线运动,已知1F为定值,则2F最小时即恰好抵消1F在垂直速度方向的分力。
20.渡河中时间最短——船速垂直于河岸,即船速与河岸垂直(相当于静水中渡河)。
21.船速大于水速的渡河中航程最短——“斜逆航行”且船速逆向上行分速度与水速抵消。
高中物理-动力学中的临界问题
动力学中的临界问题1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件。
用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键。
2.临界或极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;(4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。
3.产生临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T=0。
(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。
当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值。
例1:如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F 向上拉B,运动距离h时,B与A分离,下列说法正确的是( )A.B和A刚分离时,弹簧长度等于原长B.B和A刚分离时,它们的加速度为gC.弹簧的劲度系数等于mg hD.在B和A分离前,它们做匀加速直线运动例2:如图所示,质量为m =1 kg 的物块放在倾角为θ=37°的斜面体上,斜面体质量为M=2 kg ,斜面体与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,试确定推力F 的取值范围。
好---高中物理力学中的临界问题分析
高中物理力学中的临界问题分析1、运动学中的临界问题例题一:一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车.试问:(1)汽车从路口开动后,在赶上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)当两车相距最远时汽车的速度多大?例题二、在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0应满足什么条件?针对练习:(07海南卷)两辆游戏赛车、在两条平行的直车道上行驶。
时两车都在同一计时线处,此时比赛开始。
它们在四次比赛中的图如图所示。
哪些图对应的比赛中,有一辆赛车追上了另一辆(AC)二、平衡现象中的临界问题例题:跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).针对练习1:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F针对练习2:(98)三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定。
若逐渐增加C端所挂物体的质量,则最先断的绳A、必定是OAB、必定是OBC、必定是OCD、可能是OB,也可能是OC三、动力学中的临界问题例题一:如图所示,在光滑水平面上叠放着A、B两物体,已知m A=6 kg、m B=2 kg,A、B间动摩擦因数μ=0.2,在物体A上系一细线,细线所能承受的最大拉力是20N,现水平向右拉细线,g取10 m/s2,则 ( )A.当拉力F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受A的摩擦力等于4 ND.无论拉力F多大,A相对B始终静止针对练习:(2007)江苏卷如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg。
《高中物理---动力学中的临界极值问题和传送带问题》优秀文档
动力学中的临界极值问题动力学中极值问题的临界条件和处理方法1.“四种”典型临界条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.2.“四种”典型数学方法 (1)三角函数法; (2)根据临界条件列不等式法;(3)利用二次函数的判别式法;(4)极限法. 【练习】1.如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( )A .B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为gC .弹簧的劲度系数等于mg hD .在B 与A 分离之前,它们做匀加速直线运动2. (多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3.如图所示,物体A 放在物体B 上,物体B 放在光滑的水平面上,已知m A =6 kg ,m B =2 kg.A 、B 间动摩擦因数μ=0.2.A 物体上系一细线,细线能承受的最大拉力是20 N ,水平向右拉细线,下述中正确的是(g 取10 m/s 2)( )A .当拉力0<F <12 N 时,A 静止不动B .当拉力F >12 N 时,A 相对B 滑动C .当拉力F =16 N 时,B 受到A 的摩擦力等于4 ND .在细线可以承受的范围内,无论拉力F 多大,A 相对B 始终静止 4.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小. (2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?“传送带模型”问题分析传送带问题的三步走1.初始时刻,根据v物、v带的关系,确定物体的受力情况,进而确定物体的运动情况.2.根据临界条件v物=v带确定临界状态的情况,判断之后的运动形式.3.运用相应规律,进行相关计算.【练习】5.(多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.4,取重力加速度大小g=10 m/s2,则煤块从A运动到B的过程中()A.煤块到A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 sC.划痕长度是0.5 m D.划痕长度是2 m6.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a≥g sinθ7.(多选)如图所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是()A.若传送带不动,v B=3 m/sB.若传送带逆时针匀速转动,v B一定等于3 m/sC.若传送带顺时针匀速转动,v B一定等于3 m/sD.若传送带顺时针匀速转动,有可能等于3 m/s8.如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8.g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.9.如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距L=5.0 m,质量为M=10 kg的物体以v0=6.0 m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v=4.0 m/s,(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物体从A点到达B点所需的时间;(2)若传送带顺时针运转的速度可以调节,物体从A点到达B点的最短时间是多少?。
物理常见临界条件汇总
绳刚好被拉直
绳上拉力为零
绳刚好被拉断
绳上的张力等于绳能承受的最大拉力
运动的突变
天车下悬挂重物水平运动,天车突停
重物从直线运动转为圆周运动,绳拉力增加
绳系小球摆动,绳碰到(离开)钉子
圆周运动半径变化,拉力突变
粒子运动轨迹与磁场边界相切
物体刚好滑出(滑不出)小车
物体滑到小车一端点时速度为零
绳端物体刚好通过最高点
物体运动到最高点时重力(“等效重力”)等于向心力速度大小为
杆端物体刚好通过最高点
物体运动到最高点时速度为零
某一量达到极大(小)值
双弹簧振子弹簧的弹性势能最大
物理常见临界条件汇总
临界情况
临界条件
速度达到最大
物体所受合外力为零
刚好不相撞
两物体最终速度相等或者接触时速度相等
刚好不分离
两物体仍然接触、弹力为零
原来一起运动的两物体分离时不只弹力为零且速度和加速度相等
运动到某一极端位置
粒子刚好飞出(飞不出)两个极板间的匀强电场
粒子运动轨迹与极板相切
粒子刚好飞出(飞不出)磁场
弹簧最长(短),两端物体速度为零
圆形磁场区的半径最小
磁场区是以公共弦为直径的圆
使通电导线在倾斜导轨上静止的最小磁感应强度
安培力平行于斜面
两个物体距离最近(远)
速度相等
动与静的分界点
转盘上“物体刚好发生滑动”
向心力为最大静摩擦力
刚好不上(下)滑
保持物体静止在斜面上的最小水平推力
拉动物体的最小力
静摩擦力为最大静摩擦力,物体平衡
高中物理常见的临界问题
高中物理常见的临界问题作者:王玉力来源:《信息教研周刊》2011年第08期当物体由一种物理状态变为另一种物理状态时,或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态,或者说存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。
中学物理中的常见的临界问题和相应临界条件有:1.某一方向速度最大和最小的临界条件是该方向物体所受合力为零,即加速度为零。
2.刚好不相撞的临界条件是两物体最终速度相等或者接触时速度相等。
3.刚好不分离的临界条件是两物体仍接触,两物体的相互作用力为零(原来一起运动的两物体刚好不分离时速度和加速度均相等)。
4.一个物体在另一个物体表面能否滑落的临界条件是滑到端点时速度相同。
5.绳端物体刚好通过最高点的临界条件是物体运动到最高点(或等效最高点)时重力(或等效重力)等于向心力,速度大小为(或,g,为等效重力加速度)。
6.杆端物体刚好通过最高点的临界条件是物体运动到最高点速度为零。
7.两物体相距最近或最远的临界条件是两物体速度相等。
8.靠摩擦力连接的物体间发生相对滑动或相对静止的临界条件为摩擦力达到最大。
如:斜面上的物体刚好不下滑,保持物体在斜面上的最小水平推力,拉动物体的最小力,它们的临界条件是静摩擦力为最大静摩擦力,物体平衡。
水平转盘上“自由”物体刚好发生滑动的临界条件是向心力为最大摩擦力”。
9.绳子断与不断的临界条件为作用力达到绳能承受的最大拉力。
10.绳子由弯到直(或由直变弯)的临界条件为绳子的拉力等于零。
11.物体返回的临界条件是速度为零。
12.电路中最大电流的临界条件是各个用电器的实际电流均等于额定电流。
13.在有界磁场中做匀速圆周运动带电粒子能否射出磁场的临界条件是粒子运动到磁场边界时速度与磁场边界相切。
14.圆形磁场区域的半径最小的临界条件是以公共弦为直径的圆。
15.使通電导线在倾斜导轨上静止的最小磁感应强度的临界条件是安培力平行于斜面。
高中物理中的临界与极值问题
有关“物理”的临界与极值问题高中物理中的临界与极值问题涉及到多个知识点,包括牛顿第二定律、圆周运动、动量守恒等。
有关“物理”的临界与极值问题如下:1.牛顿第二定律与临界问题:●牛顿第二定律描述了物体的加速度与合外力之间的关系。
当物体受到的合外力为零时,物体处于平衡状态。
●在某些情况下,物体受到的合外力不为零,但物体仍然处于平衡状态,这是因为物体受到的合外力恰好等于某个临界值。
这种状态被称为“临界平衡”。
●在解决与临界平衡相关的问题时,通常需要考虑物体的平衡条件和牛顿第二定律。
通过分析物体的受力情况,可以确定物体是否处于临界平衡状态,以及需要施加多大的力才能使物体离开临界平衡状态。
2.圆周运动中的极值问题:●圆周运动中的极值问题通常涉及向心加速度和线速度的最大值和最小值。
●当物体在圆周运动中达到最大速度时,其向心加速度最小。
此时,物体的线速度最大,而向心加速度为零。
●当物体在圆周运动中达到最小速度时,其向心加速度最大。
此时,物体的线速度最小,而向心加速度为最大值。
●在解决与圆周运动中的极值问题相关的问题时,通常需要考虑向心加速度和线速度之间的关系,以及如何通过分析物体的受力情况来确定其最大速度和最小速度。
3.动量守恒与极值问题:●动量守恒定律描述了系统在不受外力作用的情况下,系统内各物体的动量之和保持不变。
●在某些情况下,系统受到的外力不为零,但系统仍然保持动量守恒。
这是因为系统受到的外力恰好等于某个临界值。
这种状态被称为“临界动量守恒”。
在解决与临界动量守恒相关的问题时,通常需要考虑系统的动量守恒条件和外力的作用。
通过分析系统的受力情况,可以确定系统是否处于临界动量守恒状态,以及需要施加多大的外力才能使系统离开临界动量守恒状态。
高中物理常见临界条件汇总,学霸都收藏的干货知识!
绳上拉力为零
绳刚好被拉断
绳上的张力等于绳能承受的最大拉力
运动的突变
天车下悬挂重物水平运动,天车突停
重物从直线运动转为圆周运动,绳拉力增加
绳系小球摆动,绳碰到(离开)钉子
圆周运动半径变化,拉力突变
物体刚好滑出(滑不出)小车
物体滑到小车一端时与小车的速度刚好相等
刚好运动到某一点(“等效最高点”)
到达该点时速度为零
绳端物体刚好通过最高点
物体运动到最高点时重力(“等效重力”)等于向心力速度大小为
杆端物体刚好通过最高点
物体运动到最高点时速度为零
某一量达到极大(小)值
双弹簧振子弹簧的弹性势能最大
弹簧最长(短),两端物体速度为零
圆形磁场区的半径最小
磁场区是以公共弦为直径的圆
使通电导线在倾斜导轨上静止的最小磁感应强度
安培力平行于斜面
两个ห้องสมุดไป่ตู้体距离最近(远)
速度相等
动与静的分界点
转盘上“物体刚好发生滑动”
向心力为最大静摩擦力
刚好不上(下)滑
保持物体静止在斜面上的最小水平推力
拉动物体的最小力
静摩擦力为最大静摩擦力,物体平衡
关于绳的临界问题
临界情况
临界条件
速度达到最大
物体所受合外力为零
刚好不相撞
两物体最终速度相等或者接触时速度相等
刚好不分离
两物体仍然接触、弹力为零
原来一起运动的两物体分离时不只弹力为零且速度和加速度相等
运动到某一极端位置
粒子刚好飞出(飞不出)两个极板间的匀强电场
粒子运动轨迹与极板相切
粒子刚好飞出(飞不出)磁场
粒子运动轨迹与磁场边界相切
高中物理必修二第四章—4.13牛顿第二定律应用之八(临界与极值)
例题10:如图所示光滑水平面上放置质量分为m、 2m、3m、4m。其中质量为2m和3m的两个物体 用细线相连,两木块间的动摩擦系数均为μ。现用
水平拉力F拉质量为3m的木块,使四个木块一起 加速运动,下列说法正确的是C:( ) A、水平拉力的最大值为20μmg。 B、细线的最大拉力3μmg。 C、系统运动的最大加速度为0.75μg。 D、2m与m之间静摩擦力最大为2μmg。
(1)F1=(μ1+2 μ2)mg;
(2) F2=2 (μ1+μ2)mg;
(3)F3
(2
1 2 1 1
)mg
例题9: 如图所示,斜面的质量M=6kg,倾角 θ =370放在光滑的水平面上,物块的质量m=5kg, 与斜面间的动摩擦因数μ=0. 5。现对斜面施加一个 水平向右的推力F,要使斜面与物块相对静止,求 推力F的取值范围。(g=10m/s2)
绳子松弛的条件:绳子伸直,但没有拉力。 例题1:如图所示,细绳一端固定在倾角为θ 的光滑斜 面的顶端,细绳的另一端系一个质量为m的小球,斜 面的质量为M,静止在光滑水平面上。现对斜面施加 一水平向右的推力F,要使细绳不松弛。求推力F的取 值范围。
0<F<mgtanθ
例题2:一汽车在水平公路上行驶,在车厢的竖直的 前壁上用两根绳子系住一个质量为m的小球,当两 绳均伸直时,两绳与车壁的夹角分别为300和450, 求:汽车向右运动的加速度分别为0.5g、0.8g和 1.2g(g为重力加速度)时,AC、BC的绳拉力各 为多大?
0<t<t1,fAB=fBd=8N;aA=aB=0 t1<t<t2,fAB=13N;fBd=12N;aA=aB=0.5m/s2。 t>t2,fAB=16N;fBd=12N;aA=2.5m/s2;aB=2m/s2。
浅谈高中物理力学中几种常见的临界问题
浅谈高中物理力学中几种常见的临界问题【摘要】高中物理力学是学生学习物理学中的重要基础课程,其中有几种常见的临界问题需要深入研究。
静摩擦力和滑动摩擦力的临界问题涉及物体开始运动的临界情况;弹簧的临界弹性形变问题探讨弹簧达到最大形变时的状态;自由落体速度的临界问题涉及物体落地时的速度;动能和势能的临界转化问题探讨能量转化的临界点;动量守恒的临界问题考察碰撞系统中动量守恒的极限情况。
通过对这些临界问题的研究,有助于学生深入理解物理规律和原理。
未来,物理教育需重视培养学生解决问题的能力,提高实践操作的机会,为学生创造更加丰富的学习环境,进一步推动物理教育的发展。
物理临界问题的讨论将促进学生对物理学的理解和兴趣,培养学生分析问题、解决问题的能力。
【关键词】高中物理力学、临界问题、静摩擦力、滑动摩擦力、弹簧、弹性形变、自由落体、速度、动能、势能、转化、动量守恒、总结、展望、物理教育、发展。
1. 引言1.1 介绍高中物理力学的重要性高中物理力学作为物理学的基础课程,对于学生的科学素养和思维能力培养具有重要意义。
它不仅能帮助学生建立起深厚的物理学基础,还可以培养学生的观察力、实验能力和逻辑思维能力。
通过学习高中物理力学,学生可以深入了解物质的运动规律和相互作用规律,使他们更好地理解周围世界的运行规律。
物理学中的数学运用也可以提高学生的数学素养,使他们在未来的学习和工作中受益匪浅。
在现代科技的发展趋势下,物理学也在不断拓展和深化,高中物理力学作为物理学的起步阶段,为学生打下坚实基础。
通过学习高中物理力学,学生可以引起对物理学的兴趣,培养他们对科学的探索精神,为未来从事科技领域的工作奠定基础。
高中物理力学的重要性不仅在于帮助学生掌握物理学的基本理论知识,更在于培养学生的科学思维和创新能力,为他们未来的发展提供坚实支撑。
1.2 解释临界问题的概念临界问题是高中物理力学中一个非常重要的概念。
在这个概念中,我们关注的是一些特定参数或条件达到某个临界数值时,系统将发生显著的变化或转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理常见的“临界条件”
高中物理常见的“临界条件”
一、刚好别相撞
两物体最后速度相等或者接触时速度相等。
二、刚好别分离
两物体仍然接触、弹力为零,且速度和加速度相等。
三、刚好别滑动
1.转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。
2.歪面上物体刚好别上(下)滑:静摩擦力为最大静摩擦力,物体平衡。
3.保持物体静止在歪面上的最小水平推力: 静摩擦力为最大静摩擦力,物体平衡。
4.拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。
四、运动到某一极端位置
1.绳端物体刚好经过最高点(“等效最高点”):物体运动到最高点时重力(“等效重力”)等于向心力,速度大小为(gR)1/2[(gˊR)1/2]
2.杆端物体刚好经过最高点:物体运动到最高点时速度为零。
3.刚好运动到某一点:到达该点时速度为零。
4.物体刚好滑出(别滑出)小车:物体滑到小车一端时与小车速度刚好相等。
5.粒子刚好飞出(飞别出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。
6.粒子刚好飞出(飞别出)磁场:粒子运动轨迹与磁场边界相切。
五、速度达到最大或最小时:物体所受的合外力为零,即加速度为零
1.机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。
2.导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡
六、某一量达到极大(小)值
1.两个物体距离最近(远):速度相等。
2.圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。
3.使通电导线在倾歪导轨上静止的最小磁感应强度:安培力平行于歪面。
4.穿过圆形磁场区域时刻最长:入射点和出射点分不为圆形直径两端点。
七、绳的临界咨询题
1.绳刚好被拉直:绳上拉力为零。
2.绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。
3.绳子忽然绷紧:速度突变,沿绳子径向方向的速度减为零。
八、运动的突变
1.天车下悬挂重物水平运动,天车突停:重物从直线运动转为圆周运动,绳拉力增加。
2.绳系小球摆动,绳碰到(离开)钉子:圆周运动半径变化,拉力突变。
3.物体运动到曲面和水平面的交界处:对支持面的压力突变。
4.稳定轨道上运行的卫星忽然加速或减速:卫星变轨,做离心运动或近心运动。