qmdp算法
2020年九年级中考数学复习专题训练:《相似综合 》(含答案)

2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
qmdp算法

qmdp算法QMDP算法是一种基于马尔可夫决策过程的强化学习算法,它通过建立一个动态规划模型来解决决策问题。
QMDP算法的核心思想是通过对环境建模和价值估计,来选择最优的行动策略。
QMDP算法需要对环境进行建模。
环境可以用状态、行动和状态转移概率来描述。
状态是环境的某种状态或状态变量,行动是智能体可以采取的行动,状态转移概率是指在某个状态下采取某个行动后转移到下一个状态的概率。
通过对环境进行建模,可以清晰地描述智能体在不同状态下采取不同行动的结果。
QMDP算法通过对环境的模型进行价值估计,来选择最优的行动策略。
价值估计是指对不同状态下采取不同行动的价值进行评估。
智能体通过价值估计来选择在每个状态下采取的最优行动,以最大化长期回报。
QMDP算法通过动态规划的方式,逐步更新每个状态下不同行动的价值,直到收敛为止。
QMDP算法的优点是可以解决大规模的决策问题,并且能够在有限的计算资源下找到最优解。
它能够对不同状态下采取不同行动的结果进行全面评估,从而选择最优的行动策略。
另外,QMDP算法还可以处理环境中的不确定性,通过对状态转移概率进行建模,从而提高决策的鲁棒性。
然而,QMDP算法也存在一些限制。
首先,QMDP算法需要对环境进行准确的建模,包括状态、行动和状态转移概率的确定。
如果模型建立不准确,将会导致决策结果不准确。
其次,QMDP算法在处理大规模决策问题时可能会面临计算复杂性的挑战。
由于需要对每个状态下不同行动的价值进行评估,计算量可能会很大。
在实际应用中,QMDP算法可以用于各种决策问题,例如机器人导航、自动驾驶、资源分配等。
例如,在机器人导航中,QMDP算法可以帮助机器人选择最优的路径,以达到目标位置。
在自动驾驶中,QMDP算法可以帮助车辆选择最优的行驶策略,以确保安全和效率。
在资源分配中,QMDP算法可以帮助决策者选择最优的资源分配方案,以最大化利益。
QMDP算法是一种基于马尔可夫决策过程的强化学习算法,通过对环境建模和价值估计,来选择最优的行动策略。
单调队列优化dp原理

单调队列优化dp原理单调队列优化dp是一种常用的算法优化方法,它可以将时间复杂度从O(n^2)降至O(n),是在动态规划算法中应用广泛的一种优化方式。
其原理是利用队列保存列表中的元素,根据问题的特性,队列中的元素按照一定逻辑进行增加或删除。
在动态规划中,我们通常需要在一个长度为n的列表中查找一些特定性质的解,如果直接进行枚举或递归会导致时间复杂度太高,而单调队列优化dp则是将其优化为O(n)时间复杂度。
单调队列优化dp主要应用于以下两种类型的问题:1. 求一个列表中长度为k的滑动窗口中的最大/最小值对于这类问题,我们通常需要在列表中遍历每一个长度为k的滑动窗口,然后求其中的最大或最小值。
如果我们采用暴力枚举的方法,时间复杂度将达到O(nk),而使用单调队列优化dp,则可以将其优化至O(n)。
具体实现方法是维护一个单调队列,队列中的元素按照从大到小或从小到大的顺序排列。
每次向右移动滑动窗口时,我们将新的元素加入队列,并且从队列头部开始弹出那些满足一定条件的元素,确保队列中的元素具有单调性。
然后更新滑动窗口中的最大或最小值。
2. 求一个列表中的最长上升子序列长度对于这类问题,我们需要在一个列表中寻找不包含重复元素的最长上升子序列。
如果我们采用暴力枚举的方法,时间复杂度将达到O(2^n),而使用单调队列优化dp,则可以将其优化至O(nlogn)。
具体实现方法是维护一个单调队列,队列中的元素按照从小到大的顺序排列。
每次将一个新元素加入队列时,我们使用二分查找法找到第一个大于等于该元素的位置,并将其替换为该元素。
这样可以确保队列中的元素具有单调性,同时可以得到最长上升子序列长度。
总之,单调队列优化dp是一种实用的算法优化方法,特别适用于动态规划中需要查找滑动窗口最大最小值或最长上升子序列长度的问题。
掌握该方法有助于提高算法效率,减少时间复杂度。
dp算法思想和运用实践例题.doc

第6章动态规划最优化原理1951年美国数学家R.Bellman等人,根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。
一些静态模型,只要人为地引进“时间”因素,分成时段,就可以转化成多阶段的动态模型,用动态规划方法去处理。
与此同时,他提出了解决这类问题的“最优化原理”(Principle of optimality):上述程序实现方法同样适合于背包问题,最优库存问题等,只是针对具体情况,最优决策表的表示和生成会有所不同。
“一个过程的最优决策具有这样的性质:即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略”。
简言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。
这个“最优化原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。
第6章动态规划最优化原理是动态规划的基础。
任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。
能采用动态规划求解的问题都需要满足一定的条件:(1)问题中的状态必须满足最优化原理;(2)问题中的状态必须满足无后效性。
所谓的无后效性是指:“下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结”。
问题求解模式动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。
这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。
如图所示。
动态规划的设计都有着一定的模式,一般要经历以下几个步骤:初始状态→│决策1│→│决策2│→…→│决策n│→结束状态(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。
动态规划1

背包问题
多重背包 也就是0-(00001 - 1)的数 我们求出x=20+......+2k使得x<=c的最大的k 然后定义y=c-x 我们可以得知,只有第一位是1,只有第二位是1.......只有第(k+1)位是1 的数能组成0-x的所有数,设他们能组成z,那么z+y<=x+y=c,不会越界
背包问题
动态规划
基础知识
dp算法即把原问题分解为多个子问题,每个子问题求解完才解决下一个子 问题的方法(个人理解)
基础知识
dp算法即把原问题分解为多个子问题,每个子问题求解完才解决下一个子 问题的方法(个人理解) dp的条件: (1)无后效性(a由b转移过来,b不需要从a转移)
基础知识
dp算法即把原问题分解为多个子问题,每个子问题求解完才解决下一个子 问题的方法(个人理解) dp的条件: (1)无后效性(a由b转移过来,b不需要从a转移) (2)最优子结构(局部最优解要求能组成总体最优解)
背包问题
多重背包 第三种是单调队列,明天讲
背包问题
分组背包 给定n组物品,每组物品有c个物品,然后依旧有价值和体积,然后问容积 位m的背包最多能获得多少价值
背包问题
分组背包 这个问题比较简单
背包问题
分组背包 这个问题比较简单 f[i,j]表示前i组物品组成体积为j时获得的最大价值 f[i,j]=f[i-1,j-v[k]]+w[k](枚举由这组里面扔哪个物品进去) f[i,j]=f[i-1,j] 取max即可
石子合并 设计方程f[i,j]表示把第i堆石子到第j堆石子合并需要最小代价 sum数组表示前缀和,用来计算某个区间重量和
区间dp
石子合并 设计方程f[i,j]表示把第i堆石子到第j堆石子合并需要最小代价 sum数组表示前缀和,用来计算某个区间重量和 f[i,j]=f[i,k]+f[k+1,j]+sum[j]-sum[i-1]
排队方式(交换)

排队方式(交换)最新进展以Crossbar为中心的交换体系由于其结构简单且严格无阻塞的特性而广泛应用于目前的各种交换机和路由器中。
但Crossbar本身并不能解决交换结构的端口冲突问题。
众所周知,输出队列交换机能够很好地支持QoS,然而扩展性太差,不易实现高速交换。
输入队列(Input Queued,IQ)交换机解决了输出队列(Output Queued,OQ)交换机难以扩展的问题,但是很难支持QoS。
近年来,交叉点缓存交换机(Combined Input and Crosspoint Queued,CICQ)被认为是一种可以解决这两个问题的理想结构。
通过在交叉点加少量的缓存,各个输入端口和输出端口的调度器可以相互独立工作,简化了调度算法,这种分布式的调度机制有助于实现支持QoS的高速交换机,很多实用性架构已经被提出来。
CICQ是一种能够在Crossbar交叉点存储信元的交换结构,交叉点缓存的引入使得CICQ能够很好的解决端口冲突问题,并且能够在2倍加速比条件下模拟OQ交换结构的性能以及支持变长帧交换。
CICQ的调度算法属于分布式调度,即输入调度和输出调度相互独立。
目前的各种CICQ调度算法大部分是在IQ、OQ、CIOQ交换结构调度算法的基础上发展起来的,他们大体可以分为两类:(1)无队列状态信息的调度,如RR-RR,算法的优点是简单、硬件实现容易。
缺点是在均匀的业务流下性能良好,但在非均匀的业务流下性能无法令人满意。
(2)基于队列状态信息的调度,如LQF-RR、OCF-OCF,算法性能优于以上调度,但复杂度较高。
1.RR-RR算法CICQ采用该算法,即是在输入端和输出端都采用RR轮转的调度策略。
在RR-RR的仲裁器中,每个输入端口和输出端口都设有一个轮转仲裁器,设备启动时,轮转仲裁器的指针随意设置初始值,之后每一个时隙指针都前移,指针循环移动方向是固定的,它们的轮转周期与输入端口数或输出端口数相同。
DP算法(动态规划算法)

DP算法(动态规划算法)前⼏天做leetcode的算法题很多题都提到了动态规划算法,那么什么是动态规划算法,它是什么样的思想,适⽤于什么场景,就是我们今天的主题。
⾸先我们提出所有与动态规划有关的算法⽂章中都会提出的观点: 将⼀个问题拆成⼏个⼦问题,分别求解这些⼦问题,即可推断出⼤问题的解。
什么都不了解的话看到这句话是懵逼的,我们也先略过,等看完整篇⽂章再回过头来看⼀看这个观点。
下⾯正式开始。
⾸先我们来看这个译名,动态规划算法。
这⾥的动态指代的是递推的思想,算法在实现的过程中是动态延伸的,⽽不是提前控制的。
规划指的是需要我们给出动态延伸的⽅法和⽅向。
这两个就是算法的问题点。
假设您是个⼟豪,⾝上带了⾜够的1、5、10、20、50、100元⾯值的钞票。
现在您的⽬标是凑出某个⾦额w,需要⽤到尽量少的钞票。
依据⽣活经验,我们显然可以采取这样的策略:能⽤100的就尽量⽤100的,否则尽量⽤50的……依次类推。
在这种策略下,666=6×100+1×50+1×10+1×5+1×1,共使⽤了10张钞票。
这种策略称为“贪⼼”:假设我们⾯对的局⾯是“需要凑出w”,贪⼼策略会尽快让w变得更⼩。
能让w少100就尽量让它少100,这样我们接下来⾯对的局⾯就是凑出w-100。
长期的⽣活经验表明,贪⼼策略是正确的。
但是,如果我们换⼀组钞票的⾯值,贪⼼策略就也许不成⽴了。
如果⼀个奇葩国家的钞票⾯额分别是1、5、11,那么我们在凑出15的时候,贪⼼策略会出错: 15=1×11+4×1(贪⼼策略使⽤了5张钞票) 15=3×5(正确的策略,只⽤3张钞票) 为什么会这样呢?贪⼼策略错在了哪⾥? ⿏⽬⼨光。
刚刚已经说过,贪⼼策略的纲领是:“尽量使接下来⾯对的w更⼩”。
这样,贪⼼策略在w=15的局⾯时,会优先使⽤11来把w降到4;但是在这个问题中,凑出4的代价是很⾼的,必须使⽤4×1。
PID算法的通俗讲解及调节口诀

PID算法的通俗讲解及调节口诀首先,让我们来了解PID算法的原理。
PID算法是通过不断地调整控制量,使得反馈量与设定值尽可能接近,从而实现控制系统的稳定。
PID算法的名称来自于三个基本控制参数,即比例(proportional)、积分(integral)和微分(derivative)。
比例项是根据反馈量与设定值的差异来调整控制量的大小。
如果两者之间的差异很大,控制量会相应地增大或减小。
该项主要用于快速响应系统的初始变化。
积分项通过计算反馈量与设定值的累计差异,以调整控制量。
如果累计差异较大,控制量会相应地增加或减小,以减小系统的误差。
该项主要用于长期的稳态控制。
微分项是根据反馈量变化的速度来调整控制量。
如果反馈量变化速度很快,控制量会相应地增加或减小,以避免系统过冲或振荡。
该项主要用于快速响应系统的变化。
接下来,让我们来看看如何调节PID参数。
PID算法的调节是一个经验性的过程,需要根据实际应用进行调试。
这里提供一个常用的调节口诀:平稳、灵敏、迅速。
首先是平稳。
在系统刚开始运行时,应该降低比例参数和积分参数的值,这样可以避免系统过冲和振荡。
通过逐步提高这两个参数的值,可以逐渐将系统稳定在设定值附近。
其次是灵敏。
在系统达到稳态后,应该逐步提高比例参数的值,以使系统对外部变化更加敏感。
这样系统就能更快地响应外部变化,并尽快调整到设定值。
最后是迅速。
一旦系统的响应速度满足要求,就可以逐步增加微分参数的值。
微分参数主要用于抑制系统的振荡和过冲,但过高的微分参数值可能会导致系统不稳定。
因此,需要谨慎调整微分参数的值。
总结一下,PID算法是通过比例、积分和微分三个控制参数的调整,使得系统稳定,并能够快速响应外部变化。
调节PID参数需要遵循平稳、灵敏、迅速的原则,根据实际应用进行调试。
希望这篇文章能够对你理解PID算法和调节参数有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qmdp算法
QMDP算法,全称为“确定性有限马尔可夫决策过程(QMDP)算法”,是一种在决策问题中常用的求解最优策略的方法。
本文将详细介绍QMDP算法的原理和应用。
一、QMDP算法的原理
QMDP算法是基于马尔可夫决策过程(MDP)的一种算法。
MDP 是一种动态规划的问题,包含了状态、动作、状态转移概率和奖励函数等要素。
在MDP中,我们希望找到一个最优策略,使得在每个状态下选择最优的动作,从而使得累计奖励最大化。
QMDP算法的核心思想是将MDP问题中的连续状态空间离散化,将连续动作空间离散化,从而将问题转化为有限状态和动作的问题。
通过将状态和动作进行离散化,可以大大简化问题的复杂度,提高计算效率。
QMDP算法的具体步骤如下:
1. 将连续状态空间和动作空间进行离散化,得到有限的状态和动作集合。
2. 根据状态转移概率和奖励函数,计算每个状态下每个动作的期望奖励值。
3. 根据期望奖励值,计算每个状态下选择每个动作的Q值。
4. 根据Q值,选择每个状态下最优的动作作为策略。
5. 根据策略,进行状态转移和奖励计算,更新Q值。
6. 重复步骤4和步骤5,直到收敛或达到最大迭代次数。
二、QMDP算法的应用
QMDP算法在机器人路径规划、自动驾驶、智能交通等领域有着广泛的应用。
以机器人路径规划为例,我们可以将环境中的障碍物、目标位置等信息进行离散化,将机器人的动作进行离散化,通过QMDP算法求解最优路径。
在机器人路径规划中,QMDP算法可以帮助机器人根据当前状态选择最优的动作,比如避开障碍物、尽快到达目标位置。
通过不断迭代更新Q值,机器人可以学习到在不同状态下选择不同动作的最优策略,从而实现路径规划的自动化。
QMDP算法还可以应用于自动驾驶领域。
在自动驾驶中,车辆需要根据当前道路、交通状况等信息选择最优的行驶策略,如何在复杂的交通环境中做出正确的决策是自动驾驶的关键问题。
QMDP算法可以帮助车辆根据当前状态选择最优的行驶策略,使得车辆能够安全、高效地行驶。
总结:
QMDP算法是一种基于MDP的求解最优策略的方法,通过将连续状态空间和动作空间离散化,将问题转化为有限状态和动作的问题。
QMDP算法在机器人路径规划、自动驾驶等领域有着广泛的应用。
通过不断迭代更新Q值,QMDP算法可以学习到在不同状态下选择不同动作的最优策略,从而实现智能决策和路径规划的自动化。