地埋管换热器

合集下载

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准
地源热泵系统地埋管换热器设计需要遵循以下标准:
1. 地埋管长度:地埋管的长度应该根据项目的热负荷来确定。

通常来说,每平方米的供热面积需要1.5到2米的地埋管长度。

2. 地下管道材料:地下管道材料应该是防腐蚀、耐压、耐高温的材料。

常见的材料有PE管、PVC管、玻璃钢管等。

3. 地下管道布局:地下管道应该布置在深度大于1米的土层中,管道间距应该不小于1米。

4. 地下管道安装:地下管道的安装应该避免出现弯曲、压扁等情况,管道与管道之间应该加装防水胶带以避免漏水。

5. 管道维护:地下管道应该有定期的维护和检测。

通常来说,每一年至少要进行一次管道的清洗和排气。

6. 管道的导热性能:地下管道应该具有较好的导热性能以保证换热效果。

7. 管道的热损失:地下管道的热损失应该较小,通常应控制在3%以内。

以上是地源热泵系统地埋管换热器设计时需要遵循的标准。

土壤源热泵地埋管换热器计算模型研究

土壤源热泵地埋管换热器计算模型研究

土壤源热泵地埋管换热器计算模型研究土壤源热泵是一种利用地下土壤的稳定温度来实现空调、供暖及制冷的能源系统。

土壤源热泵的核心设备是地源热泵机组,其集热、转化、传递和利用地热能的功能于一体,并可采用地埋管的形式将换热器安置于地下,从而实现长期稳定的供能。

其中,地埋管换热器是土壤源热泵的关键部件之一,其热传导性能的优劣会直接影响热泵系统的高效运行。

为了研究土壤源热泵地埋管换热器的热计算模型,我们首先需要了解地埋管独特的换热原理以及影响其换热性能的因素。

地埋管由一系列直径一般为32-50mm的U形塑料管组成,通过地下埋设实现长期稳定的热传递。

地下的土壤中含水量和温度的变化会直接影响地埋管换热器的热传导性能。

具体来讲,地埋管的热传导模型是以换热器的吸热面积和热传导系数为基础的。

地埋管的吸热面积通过设计决定,而热传导系数影响地埋管的热响应时间和制热回路温度抬升等综合性能参数。

针对地埋管换热器的特点和影响性能的因素,科学的模型设计是非常必要的。

目前,近几年来在土壤源热泵系统领域中,研究地埋管换热器性能的计算模型主要有以下三类:一、简单层次分析法这种方法是通过统计经验数据和分析土壤和水分的变化,从而估算地埋管的热传导系数。

在实际应用中,通常通过测量地埋管的温度变化特性,来验证模型是否准确。

这种方法的优点是简单易行,但是其准确度较低,仅适用于具有相似环境条件下的场地。

二、数值仿真模拟法这种方法利用计算机软件建立地埋管的物理模型,通过对模型进行数值计算模拟,来预测地埋管的热传导性能。

该方法需要多方面的物理参数输入,如土壤的导热系数、导热容量等,且需要大量计算,其计算结果依赖于输入参数的精确程度和模型的准确度。

三、热电偶法这种方法依靠实验数据来确定地埋管的热传导系数。

在实验中,首先将热电偶逐渐地放入地下,同时测定温度和时间的变化,最终求出地埋管的热传导参数。

该方法具有高可信度和准确度,但是实验时间和成本较高,且实验结果对环境变化敏感。

地源热泵地埋管换热器形式与布置方法

地源热泵地埋管换热器形式与布置方法

地源热泵地埋管换热器形式与布置方法摘要:地热源热泵空调供热系统的能效比可达3-5,是效益最显著的节能技术之一,地源热泵空调供热技术早在上一世纪50年代开始再欧美得到应用,在上一世纪90年代开始在中国应用。

地埋管地源热泵系统是引用最广泛的地源热泵系统形式。

但是一般建筑占地面积有限,建筑用地红线范围以内,建筑地下室之外的地埋管换热井布置面积相当有限。

要充分挖掘建筑可再生能源利用资源,必须利用建筑物下空间。

文章介绍地源热泵系统地埋管换热器形式,安全设计要点,应用案例。

指出正确的地埋管换热系统设计与施工方法,与建筑结构专业的协调配合,可以在充分利用建筑地热资源同时,不影响结构与建筑物防水安全。

一、地源热泵系统地埋管管换热器地源热泵系统是指以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。

根据热源体的性质,地源热泵系统可以分为地埋管地源热泵系统、地下水地源热泵系统与地表水地源热泵系统。

地埋管地源热泵系统是使用性最广泛的地源热泵系统形式。

地埋管地源热泵系统根据地埋管换热器布置方式不同分为水平埋管式与垂直埋管式,当可利用地表面积较大,浅层岩土体的温度及热物性受气候、雨水、埋设深度影响较小时,宜采用水平地埋管换热器。

否则,宜采用竖直地埋管换热器。

图1为常见的水平地埋管换热器形式,图2为新近开发的水平地埋管换热器形式,图3为竖直地埋管换热器形式。

a单或双环路 b 双或四环路 c三或六环路图1 几种常见的水平地埋管换热器形式A垂直排圈式 b水平排圈式 c水平螺旋式图2 几种水平地埋管换热器形式a单U形管b双U形管c小直径螺旋盘管d大直径螺旋盘管e立柱状 f蜘蛛状 g套管式图3 竖直地埋管换热器形式在没有合适的室外用地时,竖直地埋管换热器还可以利用建筑物的混凝土基桩埋设,即将U形管捆扎在基桩的钢筋网架上,然后浇灌混凝土,使U形管固定在基桩内,多称之为“能量桩”。

地埋管换热器根据换热单元不同又可分为单U型换热器、双U型换热器、W 型换热器等。

地埋管换热器的设计与施工

地埋管换热器的设计与施工
地埋管换热器的设计:主要包括地热换热器的选型 及地热换热器的设计。
其中,地热换热器的设计包括埋管的长度、埋管的 直径、管路连接方式等。地下埋管的长度与进入热 泵的流体入口温度有关。当地下岩土温度一定时, 在制热模式时要求热泵入口温度越高,或是在制冷 模式时要求热泵入口温度越低,地下换热器的长度 就会越长。由此导致热泵系统的初投资增加,但热 泵的效率却提高了。因此,地下换热器设计的关键 问题是在满足系统工作性能要求的前提下,选取合 理的埋管长度,提高热泵效率。
可整理ppt
9
地下埋管串联
地下埋管并联
垂直埋管方式
地下埋管串联
地下埋管并联
水平埋管方式
可整理ppt
10
串联系统优点: 1、具有单一流体通道和同一型号的管子。 2、由于采用管径比并联系统大,因此对单位长度 的管道来说,串联系统的传热性能比并联系统的稍 高。 3、由于管径大,管内流速大,系统内积存的空气容 易排出。
❖ 根据地热能交换系统的不同,地源热泵系 统分为地埋管地源热泵系统、地下水地源 热泵系统和地表水地源热泵系统。
❖ 目前地源热泵地下埋管换热器主要有两种 布置形式——即水平埋管和垂直埋管。
可整理ppt
3
(1.)水平式埋管
水平埋管主要有单沟单管、单沟双管、单沟 二层双管、单沟二层四管、单沟二层六管等形式, 由于多层埋管的下层管处于一个较稳定的温度场, 换热效率好于单层,而且占地面积较少,因此应 用多层管的较多。
❖ 选管时应以安装成本最低、运行能耗小、地热换热器中流 体流量最小且能保持紊流为原则。大直径管子较小直径管 子投资高,所需防冻液多,更难于处理和安装。二者兼顾考 虑,地热换热器所用管子的直径一般为20、25、32、40、 50 mm。并联布置的回路由小直径的管子制成,而进口集 箱与出口集箱由直径较大的管子制成。设计者在选用管子 时,地下回路尽量采用薄壁管子,集箱则尽量选用厚管以提 供足够的结构强度。

地源热泵系统地埋管换热器施工工艺

地源热泵系统地埋管换热器施工工艺

地源热泵系统地埋管换热器施工工艺引言地源热泵系统是一种利用地下土壤或地下水作为热源或热汇的节能环保的供热供冷系统。

其中地埋管换热器是地源热泵系统的核心部件,承担着在地下环境中完成热传递的重要工作。

本文将介绍地源热泵系统地埋管换热器的施工工艺。

施工准备在开始地埋管换热器的施工前,需要进行一系列的准备工作。

1. 材料准备地埋管换热器的主要材料是PE-Xa管材,一般采用规格为32mm或25mm。

此外,还需要准备连接管件、夹具、固定件等辅助材料。

2. 设计图纸根据地源热泵系统设计要求,制定地埋管换热器的施工图纸,包括地埋管的布置方式、连接方式等。

3. 施工工具准备常用的施工工具,如切割工具、测量工具、焊接工具等。

4. 天气考虑地埋管的施工一般在春、秋季进行,需要考虑天气的影响,尽量避免恶劣天气条件下的施工。

施工步骤1. 土壤准备首先需要进行地埋管铺设的土壤准备工作。

施工前应清除地表杂物,并进行土壤的平整处理,确保地表平整。

2. 管道铺设根据设计图纸,开始进行地埋管的铺设工作。

首先确定好管道的布置方式,然后进行测量,在地表上划出管道的位置。

接下来,使用切割工具将PE-Xa管材按照设计尺寸进行切割。

然后,将切割好的管材按照设计布置方式进行铺设,注意保持管材的平整,并保持管材之间的间距一致。

3. 管道固定地埋管铺设完成后,需要进行管道的固定工作,以确保管道的稳固性和安全性。

使用固定件将管道固定在地下,固定件的位置应根据设计图纸确定,一般在管道的中间位置进行固定。

4. 保护层施工完成地埋管的固定后,需要进行保护层的施工,以保护地埋管不受外界环境的影响。

常用的保护层材料有砂浆、沙土等。

首先在管道的周围铺设一层砂浆或沙土,厚度一般为20-30cm,然后进行压实,使保护层紧密贴合地埋管。

5. 断热层施工在完成保护层施工后,需要进行断热层的施工,以减少地埋管与地下环境之间的热交换。

常用的断热层材料有聚氨酯泡沫、玻璃纤维棉等。

关于地埋管换热器传热特性的研究的开题报告

关于地埋管换热器传热特性的研究的开题报告

关于地埋管换热器传热特性的研究的开题报告题目:地埋管换热器传热特性的研究研究内容:随着人们节能意识的提高,地源热泵系统作为一种新型绿色环保的采暖方式日渐受到人们的关注。

其中,地埋管换热器作为地源热泵系统的核心部件,在实际应用中起着至关重要的作用。

因此,本文将通过实验方法和数值模拟的手段,对地埋管换热器的传热特性展开研究。

具体研究内容包括以下几个方面:1. 实验研究地埋管换热器的传热特性:通过搭建实验平台,采用温度测量、流量计等方法,探究不同流量、不同管径、不同埋深等因素对地埋管换热器传热性能的影响。

2. 数值模拟地埋管换热器的传热特性:借助ANSYS等软件,建立地埋管换热器的数值模型,并进行热传导、流动分析,探究热流密度、进出口温度等因素对地埋管换热器传热性能的影响。

3. 对比分析实验和数值模拟结果:结合实验和数值模拟结果进行对比分析,并进一步探究地埋管换热器传热性能的规律和优化措施。

研究目的:通过对地埋管换热器传热特性的深入研究,掌握其传热规律和优化措施,为地源热泵系统的设计和应用提供理论支持。

研究意义:地源热泵系统作为一种新型、绿色、环保的采暖方式,具有极大的应用潜力。

而地埋管换热器作为地源热泵系统的核心部件,其传热性能的好坏直接影响系统的效率和节能效果。

因此,研究地埋管换热器传热特性,对于提高地源热泵系统的效率和节能性,具有重要的理论和实践意义。

研究方法:本文将采用实验和数值模拟相结合的方法进行研究。

实验采用水循环系统,通过改变流量、管径、埋深等因素,测量温度、流量等参数,探究地埋管换热器的传热特性。

数值模拟则借助ANSYS等软件,建立地埋管换热器的数值模型,通过热传导、流动分析等方法,探究地埋管换热器传热特性的规律和优化措施。

预期结果:通过实验和数值模拟的研究,本文将得出地埋管换热器传热特性的规律和优化措施,为地源热泵系统的设计和应用提供理论支持。

同时,本研究也将为相关学科领域的深入发展提供有益的参考。

地埋管换热器的设计与施工

地埋管换热器的设计与施工
地埋管换热器的设计与施 工
• 引言 • 地埋管换热器的基本原理 • 地埋管换热器的设计 • 地埋管换热器的施工 • 地埋管换热器的应用案例 • 地埋管换热器的未来发展与挑战
01
引言
背景介绍
地埋管换热器是一种高效、环保 的地源热泵系统中的关键部件, 用于实现地下土壤中的热量与冷
量的提取和排放。
随着全球能源危机和环境问题的 日益严重,地源热泵系统作为一 种可再生能源利用方式,受到广
03
地埋管换热器的设计
设计原则
01
02
03
04
高效性
地埋管换热器应具有较高的传 热效率,确保热量能够快速、 有效地从地下提取或排放。
可靠性
设计时应考虑各种工况和环境 因素,确保换热器的长期稳定
运行。
经济性
在满足功能和安全性的前提下 ,应尽量降低换热器的成本, 包括材料、施工和运行费用。
环保性
设计时应考虑减少对周围环境 和地下水资源的负面影响,选
放线定位
根据设计图纸,确定地埋管换 热器的位置和走向,并进行放 线定位。
管材安装
将预制好的管材按照设计图纸 铺设在沟槽内,确保管材连接 牢固、密封良好。
质量检测
对安装好的地埋管换热器进行 压力测试、气密性检测等质量 检测,确保施工质量合格。
质量检测与验收
外观检测
对地埋管换热器的外观进行检查,确保无明 显损伤、锈蚀等现象。
择环保材料和施工方法。
设计流程
需求分析
明确地埋管换热器的 用途、规模和性能要 求,了解当地地质、 气候等条件。
方案设计
根据需求分析,制定 多个设计方案,进行 初步的技术和经济评 估。
详细设计
选定方案后,进行详 细的结构设计、热工 计算和材料选择。

地源热泵系统u型地埋管换热器的选型要点及施工技术

地源热泵系统u型地埋管换热器的选型要点及施工技术

地源热泵系统U型地埋管换热器的选型要点及施工技术一、选型要点1.确定热负荷和冷负荷:根据建筑物的使用功能和当地的室外气候条件,确定地源热泵系统的热负荷和冷负荷,从而选择合适型号的U型地埋管换热器。

2.确定换热器长度和直径:根据系统的热负荷和冷负荷,以及土壤的热性能参数,计算出所需的换热面积,进而确定换热器的长度和直径。

3.选择合适的管材:U型地埋管换热器的管材应具有良好的耐腐蚀性、热传导性和较高的机械强度,常用的管材有高密度聚乙烯(HDPE)等。

4.确定管间距:在土壤中,管间距的确定应考虑土壤的热传导性能、地下水位以及施工条件等因素,一般管间距在3-5米之间。

5.选择连接方式:U型地埋管换热器的连接方式分为单U型和双U 型两种,根据实际情况选择合适的连接方式,以确保系统的正常运行。

二、施工技术1.施工前准备:清理施工现场,确保施工现场干净整洁,并对管道、管件、阀门等材料进行检查,确保符合设计要求。

2.测量定位:根据设计图纸和现场实际情况,确定U型地埋管换热器的位置,并进行准确的测量定位。

3.钻孔:使用钻机在地下钻孔,孔径和深度应符合设计要求,并确保钻孔的位置、角度和深度准确无误。

4.下管:将U型管放入孔中,确保管道的连接牢固可靠,并按照设计要求进行固定。

5.回填:使用合适的回填材料将孔洞填满,并确保回填材料密实、均匀,以减小热阻。

6.管道连接与试压:按照设计要求将管道连接起来,并进行试压检验,确保管道无泄漏。

7.系统调试与运行:对整个地源热泵系统进行调试和运行,确保系统运行正常、稳定,达到设计效果。

需要注意的是,U型地埋管换热器的施工需要在专业技术人员指导下进行,严格遵守相关施工规范和技术要求,确保施工质量符合设计要求和使用安全。

同时,施工过程中应加强质量控制和安全管理,确保施工人员的安全和健康。

两种地埋管换热器热响应实验方法的比较

两种地埋管换热器热响应实验方法的比较

dsd atg fh ot t to s n ls e rbe o e ots me o s nte r etT e td o cu e a iite i v aeo e s me d a it o l fh t t d o c. h u yc n l s t ts a n t t e h a y s p w h m t t e h i h p j w s d t h h
2Lac egpann .ioh n l i n g& Arhtc r Dei stt, ioh n , 5 0 0) c i t e s nI tue La c eg 2 2 0 eu g ni [ b ta t A s c] r T ema rso s smeh d xsn o cret hn eecmmetd T ee w to s r r wot r l ep net t to sei igc nurnl i c iaw r o h e t yn ne . hs ome d emoe t h a
两种地埋 管换 热器热 响应 实验 方法 的 比较
张 磊 刘 玉旺 王 京
济南 2 0 0 ; 5 11 220 ) 5 0 0 (. 1 山东建筑大学热 能工程 学院
2 聊城 市规 划建筑设 计 院 聊城 .
【 摘
要 】 目前 国 内对于岩土热物性 热响应实验 的测试方 法主要有 “ 恒热 流法 ”和 叵温法 ”两种 ,这二种
[ y r s go dh ae c ag rtemars o s s; ema poe is f epgo dsi Kewod ] ru e h e;h r lep ne ett r l rpr e e ru l n t x n t h t od n o
0 引言

地埋管换热器施工方案

地埋管换热器施工方案

地源热泵施工方案一、工程概况 (2)二、地埋管钻露井及罐浆施工技术 (2)1、施工依据: (2)2、钻孔任务: (2)3、钻孔设备 (2)4、钻孔质量与验收 (2)5、质量保证的措施 (2)6、安全生产 (3)7、灌浆技术要求 (3)8、具体施工工艺 (3)8.1 U型管预制 (4)8.2 成井方法 (4)8.3 下管 (4)8.4试压 (5)8.5 回填 (5)三、水平管施工工艺 (5)1、放线 (6)2、沟槽开挖 (6)3、管路安装 (7)4、回填 (7)5、交叉处理 (8)四、地埋管系统试压 (8)地源热泵施工方案一、工程概况1、项目基本信息本工程为合肥铜冠花园广场内超高层总部地标大厦空调项目,总计打井474口,其中258口位于大厦西、北、东侧周边,216口位于地下一层停车场地坪以下。

2、测试孔岩土层地质情况根据甲方提供信息,地表土层为普通沙土,土层以下为砂岩。

二、地埋管钻露井及罐浆施工技术1、施工依据:业主钻孔技术要求某公司新址中国江苏省《岩土热响应测试分析报告》《水利水电工程钻探规程》(SL291-2003)《建筑工程地质钻探技术标准》(JGJ87-92)《建筑地基处理规程》(JGJ79-2002)2、钻孔任务:地埋管工程:钻孔数量474个,钻孔深度105m,成孔直径450mm,垂直管深度100m。

3、钻孔设备地下换热器施工从制作、安装到调试采用机械化生产,根据工程需要配备足够的施工机械、工具、测量器具和通讯工具是提高施工效率,确保工程质量和安全生产。

拟投入设备表:4、钻孔质量与验收钻孔质量与验收依据设计要求和有关规程进行。

5、质量保证的措施5.1钻探设备安装之后必须进行安全等项目的检查,确认安装合格后,方可开钻。

5.2合理选用钻井方法、钻具、钻井技术参数及工艺。

5.3严格按钻探规程进行作业,合理掌握回次进尺长度。

5.4在施工过程中,按一定的钻孔深度,使用水平尺校正钻机。

5.6调平钻机,用垂直吊线法检验其主轴的垂直度,使其垂直度误差<0.5%L。

地源热泵系统之地埋管换热器设计与实施要点26

地源热泵系统之地埋管换热器设计与实施要点26
Q地—地源侧放热量;Q空—空调侧制冷量;
当Q空/N4.5时,说明热泵机组能效比还可以,地埋管换热器系统设计合格,否则需要检查系统,考虑增加地埋管管井及地埋管,以保证系统低耗运行。
5结束语
地源热泵系统设计与施工的优劣决定了系统运行的高效与否及后期维保费用的高低,优秀的系统设计及施工应完善好当中的每个环节,确保万无一失。
2工程设计
2.1影响换热器设计的因素及换热器的主要应用分类
地埋管换热器传热的过程是换热器中流动的工质与岩土体的换热,整个换热过程属于非稳态蓄热换热,换热器与岩土体的换热效率与岩土体的物性系数有关,换热器的传热系数和传热温差(循环工质的平均温度与岩土温度的差值)随时间和空间而变化;换热器的结构的结构布置与换热负荷对交换效果有较大影响;循环液进出口温度的设定、地热换热器面积、热泵机组的换热性能均有较大影响。
(3)应考虑冻土层及由于天气季节变化、交通运输等外界因素的影响确定水平层埋管深度,水平埋设时,水平主管顶部距防冻层高度不应小于0.6m,距地面不应小于1.5m。
(4)回填料的特性
回填料的特性包含:渗流特性、力学特性和传热特性。渗流特性包括渗透系数,随温度的升高而降低,一般取值1.58*cm/s;力学特性研究回填料与U形管之间的结合力、回填料的弹性模量、剪切模量、泊松比。但须考虑有利与泥浆泵的可泵性,当硅砂的含量达到70%时,膨润土基灌浆的导热系数可达2.08—2.42W/m·K。地下水位常年保持较高,地下水流较好的地区,易在灌浆材料中增加膨润土的比例,膨润土在饱水状态下吸水膨胀,可使灌浆材料与钻孔孔壁以及换热管道密切接触,有效降低接触热阻,提升换热效率。
地源热泵系统之地埋管换热器设计与实施要点
摘要:地源热泵系统利用利用热量相对稳定的大地(土壤、地层、地下水)介质作为热源,夏季将室内的热量通过空调系统工质转移到地下;冬季将土壤中的低品位热量通过系统工质转移到室内的一套稳态热泵空调系统。

地埋管换热器传热系数_概述说明以及概述

地埋管换热器传热系数_概述说明以及概述

地埋管换热器传热系数概述说明以及概述1. 引言1.1 概述地埋管换热器是一种广泛应用于能源节约和环境保护的技术设备,通过将导热性能良好的管材埋入地下,在地表循环流动介质实现换热以提供供暖或制冷效果。

而地埋管换热器传热系数作为评价其传热效率的指标,对于设计和优化该设备具有重要意义。

本文旨在概述地埋管换热器传热系数的相关知识,介绍测量方法与影响因素分析,并提出改进措施建议和未来发展方向。

1.2 文章结构本文共分为五个部分进行阐述。

引言部分将对本文的主题及目标进行简要介绍。

第二部分将概述地埋管换热器的基础知识、工作原理,并强调传热系数在该设备中的重要性。

第三部分将详细介绍传热系数测量方法,并对影响因素进行深入分析。

第四部分将探讨地埋管换热器传热系数在实际应用中存在的问题和挑战,并提出相应的改进措施和未来发展方向。

最后,第五部分将总结本文的主要发现,并对地埋管换热器传热系数的工程应用价值和推广前景进行评估和展望。

1.3 目的本文旨在系统概述地埋管换热器传热系数的相关知识,包括传热基础知识、测量方法和影响因素分析。

通过深入探究现有问题和挑战,提出改进措施建议并展望未来发展方向,以帮助读者更好地理解和运用地埋管换热器传热系数,在能源节约和环境保护领域中取得更好的效果。

2. 地埋管换热器传热系数概述2.1 传热基础知识在讨论地埋管换热器的传热系数之前,首先需要了解一些传热的基础知识。

传热是指物质内部或不同物质之间由于温度差异而发生的能量传递现象。

常见的三种传热方式包括导热、对流和辐射。

- 导热:通过物质内部分子之间的碰撞而进行的能量传递。

导热是固体和液体中主要的传热方式。

- 对流:通过流体内部因密度差异所引起的对流运动进行能量传递。

对流可分为自然对流和强制对流两种形式。

- 辐射:由于温度差异而产生的电场或者电子波辐射,并通过空气或真空中的电介质实现能量传递。

在地埋管换热器中,主要依靠地面、土壤等媒介中的导热来进行能量传递。

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准
地源热泵系统是一种高效、环保的供暖方式,其核心设备是地源热泵。

地源热泵通过地下管道将地下的热能传递到室内,实现供暖和制冷。

而地埋管换热器则是地源热泵系统中的重要组成部分,其设计标准对于地源热泵系统的运行效率和使用寿命具有重要影响。

地埋管换热器的设计标准主要包括以下几个方面:
1. 管道材料的选择。

地埋管道需要具有良好的耐腐蚀性和耐压性能,一般采用聚乙烯管或聚丙烯管。

管道的直径和壁厚需要根据地下水温度、土壤类型和地下水流速等因素进行合理的选择。

2. 管道敷设深度。

地埋管道的敷设深度需要考虑到地下水位、土壤类型和地下管道的保护等因素。

一般来说,地埋管道的敷设深度应该在1.5米以上。

3. 管道敷设方式。

地埋管道的敷设方式有水平敷设和垂直敷设两种。

水平敷设适用于土地面积较大的场合,而垂直敷设适用于土地面积较小的场合。

4. 管道间距和管道长度。

地埋管道的间距和长度需要根据地下水温度、土壤类型和地下水流速等因素进行合理的选择。

一般来说,管道间距应该在1.5米以上,管道长度应该在100米以内。

5. 管道连接方式。

地埋管道的连接方式需要采用专业的连接器件,
确保连接牢固、密封性好。

地源热泵系统地埋管换热器的设计标准对于地源热泵系统的运行效率和使用寿命具有重要影响。

在设计和施工过程中,需要严格按照相关标准进行操作,确保地埋管道的质量和安全性。

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准地源热泵系统是一种利用地下热能进行空气调节和供暖的先进技术,地源热泵系统地埋管换热器作为其核心组成部分,在系统的性能和效率方面起着至关重要的作用。

地源热泵系统地埋管换热器的设计标准直接影响到系统的运行效果和能耗,因此对其设计标准进行深入研究和探讨具有重要意义。

的制定需要考虑多个方面的因素,包括地下水文地质条件、地表环境条件、地埋管布置方式、管道材料选用等。

在地下水文地质条件复杂的地区,地埋管换热器的设计需要更加谨慎和周密,以充分利用地下热能资源并确保系统的安全稳定运行。

地表环境条件也是影响地源热泵系统地埋管换热器设计的重要因素之一。

在环境恶劣的地区,地埋管换热器需要具有更好的耐腐蚀性能和抗侵蚀能力,以确保系统的长期稳定运行。

此外,地埋管布置方式也会直接影响到地埋管换热器的换热效率和能耗,合理布置地埋管对系统的运行效果有着至关重要的影响。

在地源热泵系统地埋管换热器设计标准方面,管道材料的选用也是一个至关重要的环节。

对于地下管道来说,耐高温、耐压、抗腐蚀是必须考虑的因素,选用合适的管道材料不仅可以提高系统的运行效率,还可以延长系统的使用寿命,降低系统的维护成本。

除了上述因素外,地源热泵系统地埋管换热器设计标准还需要考虑到系统的热载需求、运行模式、换热效率等多个方面的因素。

在设计地埋管换热器时,需要根据具体的项目要求和实际情况进行量身定制,以确保系统的运行效果最佳,能够充分利用地下热能资源,同时做到节能减排,保护环境。

梳理一下本文的重点,我们可以发现,地源热泵系统地埋管换热器设计标准的制定是一个复杂而又具有挑战性的工作。

只有综合考虑地下水文地质条件、地表环境条件、地埋管布置方式、管道材料选用等多个因素,才能设计出性能优良、效率高的地埋管换热器,为地源热泵系统的稳定运行提供有力保障。

希望通过本文的介绍和探讨,能够为地源热泵系统地埋管换热器的设计标准制定提供一定的参考和借鉴,推动这一领域的研究和发展。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地源热泵地埋管计算方法更新:2011-10-13 来源:作者:阅读:894 评论:[0]条摘要:一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。

地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。

1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。

2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。

3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。

4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。

5、地埋管壁厚宜按外径与壁厚之比为11倍选择。

6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。

二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。

(①盐类溶液--氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。

埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。

地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。

2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。

地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。

当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。

但这样会提高工程造价、增加对设备的腐蚀。

在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。

地温是恒定值,可通过测井实测。

有关资料介绍某地地下约100米的地温是当地年平均气温加4℃左右。

天津市年平均气温是12.2℃,实测天津市地下约100米的地温约为16℃,基本符合以上规律。

回填材料可以选用浇铸混凝土、回填沙石散料或回填土壤等。

材料选择要兼顾工程造价、传热性能、施工方便等因素。

从实际测试比较浇铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑物桩基一起施工。

回填沙石或碎石换热效果比较好,而且施工容易、造价低,可广泛采用。

(二)埋管系统环路一、埋管方式1、水平埋管水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。

(单层管最佳深度1.2~2.0m,双层管1.6~2.4m)近年来国外又新开发了两种水平埋管形式,一种是扁平曲线状管,另一种是螺旋状管。

它们的优点是使地沟长度缩短,而可埋设的管子长度增加。

2 、垂直埋管根据埋管形式的不同,一般有单U 形管,双U 形管,套管式管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。

1)U 形管型:是在钻孔的管井内安装U 形管,一般管井直径为100~150mm,井深10~200m,U 形管径一般在φ50mm 以下。

2)套管式换热器:的外管直径一般为100~200mm,内管为φ15~φ25mm。

其换热效率较U 形管提高16.7%。

缺点:⑴下管比较困难,初投资比U 形管高。

⑵在套管端部与内管进、出水连接处不好处理,易泄漏,因此适用于深度≤30m 的竖埋直管,对中埋采用此种形式宜慎重。

二、地下埋管系统环路方式1、串联方式优点:①一个回路具有单一流通通路,管内积存的空气容易排出;②串联方式一般需采用较大直径的管子,因此对于单位长度埋管换热量来讲,串联方式换热性能略高缺点:①串联方式需采用较大管径的管子,因而成本较高;②由于系统管径大,在冬季气温低地区,系统内需充注的防冻液(如乙醇水溶液)多;③安装劳动成本增大;④管路系统不能太长,否则系统阻力损失太大。

2、并联方式优点:①由于可用较小管径的管子,因此成本较串联方式低;②所需防冻液少;③安装劳动成本低。

缺点:①设计安装中必须特别注意确保管内流体流速较高,以充分排出空气;②各并联管道的长度尽量一致(偏差应≤10%),以保证每个并联回路有相同的流量;③确保每个并联回路的进口与出口有相同的压力,使用较大管径的管子做集箱,可达到此目的。

从国内外工程实践来看,中、深埋管采用并联方式者居多;浅埋管采用串联方式的多三、地埋管打孔孔径孔径:根据地质结构不同,钻孔孔径可以是Ф100、Ф150、Ф200或Ф300,天津地区地表土壤层很厚,为了钻孔、下管方便多采用Ф300孔径。

(三)地下埋管系统设计一.地下换热量计算地下换热量可以由下述公式计算:Q1'= Q1*(1+1/COP1) kW (1)Q2'= Q2*(1-1/COP2) kW (2)其中Q1'--夏季向土壤排放的热量,kWQ1--夏季设计总冷负荷,kWQ2'--冬季从土壤吸收的热量,kWQ2--冬季设计总热负荷,kWCOP1--设计工况下水源热泵机组的制冷系数COP2--设计工况下水源热泵机组的供热系数一般地,水源热泵机组的产品样本中都给出不同进出水温度下的制冷量、制热量以及制冷系数、供热系数,计算时应从样本中选用设计工况下的、。

若样本中无所需的设计工况,可以采用插值法计算。

二、地下热交换设计1.水平埋管:确定管沟数目:埋管管长的估算:利用管材“换热能力”,即单位埋管管长的换热量。

水平埋管单位管材“换热能力”在20~40W/m(管长)左右,;设计时可取换热能力的下限值,即20 W/m。

单沟单管埋管总长具体计算公式如下:L=Q/20其中L --埋管总长,mQ --冬季从土壤取出的热量,w分母“20”是每m 管长冬季从土壤取出的热量,W/m单沟双管、单沟二层双管、单沟二层四管、单沟二层六管布置时分别乘上0.9、0.85、0.75、0.70 的热干扰系数(热协调系数)。

确定管沟间距:为了防止埋管间的热干扰,必须保证埋管之间有一定的间距。

该间距的大小与运行状况(如连续运行还是间歇运行;间歇运行的开、停机比等)、埋管的布置形式(如单行布置,只有两边有热干扰;多排布置,四面均有热干扰)等等有关。

建议串联每沟1 管,管径1/4"~2";串联每沟2 管,1 又1/4"~1 又1/2"。

并联每沟2 管,1"~1 又1/4";并联每沟4~6 管,管径13/4"~1"。

管沟间距:每沟1 管的间距1.2m,每沟2 管的间距1.8m,每沟4 管间距3.6m。

管沟内最上面管子的管顶到地面的的最小高度不小于1.2m。

2、竖直埋管确定竖井埋管管长一般垂直单U 形管埋管的换热能力为60~80 W/m(井深),垂直双U 形管为80~100W/m(井深)左右,设计时可取换热能力的下限值。

一般垂直埋管为70~110W/m(井深),或35~55W/m(管长),水平埋管为20~40W/m(管长)左右。

设计时可取换热能力的下限值,即35W/m(管长),双U管设计具体计算公式如下:L=Q1/25 (3)其中L--竖井埋管总长,mQ1--夏季向土壤排放的热量,W分母“35”是夏季每m管长散热量,W/m确定竖井数目及间距国外,竖井深度多数采用50~100m[2],设计者可以在此范围内选择一个竖井深度H,代入下式计算竖井数目:N=L/(4*H) (4)其中N--竖井总数,个L--竖井埋管总长,mH--竖井深度,m分母“2”是考虑到竖井内埋管管长约等于竖井深度的2倍。

然后对计算结果进行圆整,若计算结果偏大,可以增加竖井深度,但不能太深,否则钻孔和安装成本大大增加。

关于竖井间距有资料指出:U型管竖井的水平间距一般为4.5m[3],也有实例中提到DN25的U型管,其竖井水平间距为6m,而DN20的U型管,其竖井水平间距为3m[4]。

若采用串联连接方式,可采用三角形布置(详见[2])来节约占地面积。

工程较小,埋管单排布置,地源热泵间歇运行,埋管间距可取3.0m;工程较大,埋管多排布置,地源热泵间歇运行,建议取间距4.5m;若连续运行(或停机时间较少)建议取5~6m注意事项1、垂直地埋管换热器埋管深度应大于30m,宜为60m~150m;钻孔间距宜为3m~6m。

水平管埋深应不小于1.2m。

2、地埋管换热器水平干管坡度宜为0.3%,不应小于0.2%。

3、地埋管环路之间应并联且同程布置,两端应分别与供、回水管路集管相连接。

每个环路集管连接的环路数宜相同。

4、地埋管换热器宜靠近机房或以机房为中心设置。

铺设供、回水集管的管沟宜分开布置;供、回水集管的间距不应小于0.6m。

三、管径与流速设计1、确定管径在实际工程中确定管径必须满足两个要求:(1)管道要大到足够保持最小输送功率;(2)管道要小到足够使管道内保持紊流以保证流体与管道内壁之间的传热。

显然,上述两个要求相互矛盾,需要综合考虑。

一般并联环路用小管径,集管用大管径,地下热交换器埋管常用管径有20mm、25mm、32mm、40mm、50mm,管内流速控制在1.22m/s以下,对更大管径的管道,管内流速控制在2.44m/s以下或一般把各管段压力损失控制在4mH2O/100m当量长度以下。

备注:①地下埋管换热器环路压力损失限制在30~50kPa/100m 为好,最大不超过50kPa/100m。

同时应使管内流动处于紊流过渡区。

②地下埋管系统单位冷吨(1 冷吨=3024kcal/h=3.52kW)水流量控制在0.16~0.19L/s.t③最小管内流速(流量):在相同管径、相同流速下,水的雷诺数最大大。

所以采用CaCl2 和乙二醇水溶液时,为了保证管内的紊流流动,与水相比需采用大的流速和流量。

2、校核管材承压能力管路最大压力应小于管材的承压能力。

若不计竖井灌浆引起的静压抵消,管路所需承受的最大压力等于大气压力、重力作用静压和水泵扬程一半的总和[1],即:P=P0+ρgH+0.5Ph其中p--管路最大压力,PaP0--建筑物所在的当地大气压,Paρ--地下埋管中流体密度,kg/m3g--当地重力加速度,m/s2H--地下埋管最低点与闭式循环系统最高点的高度差,mPh--水泵扬程,Pa3其它3.1与常规空调系统类似,需在高于闭式循环系统最高点处(一般为1m)设计膨胀水箱或膨胀罐,放气阀等附件。

相关文档
最新文档