(完整版)初中三角函数专项练习题(可编辑修改word版)
初中三角函数练习试题和答案解析
初中三角函数练习题及答案一精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都 A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点-sin60°,cos60°关于y 轴对称的点的坐标是A .32,12B .-32,12C .-32,-12D .-12,-329.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地A 350m B100 m C150m D 3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,图145︒30︒BAD C向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距 .A30海里 B40海里 C50海里 D60海里 二细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B,且BP=2,那么PP '的长为____________. 不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个4错误!单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号.7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m 结果精确的到0.01m .可用计算器求,也可用下列参考数据求:sin43°≈,sin40°≈,cos43°≈,cos40°≈,tan43°≈,tan40°≈10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米结果用含α的三角比表示. 第6题图 xO A y B北甲北 乙第5题图αBCD第4题图1 211.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.•保留两个有效数字,2≈,3≈三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解;注意分母有理化,3 如图1,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠; 1求证:AC =BD2若sinC BC ==121312,,求AD 的长;图1分析:由于AD 是BC 边上的高,则有Rt ADB ∆和Rt ADC ∆,这样可以充分利用锐角三角函数的概念使问题求解;4如图2,已知∆ABC 中∠=∠C Rt ,AC m BAC =∠=,α,求∆ABC 的面积用α的三角函数及m 表示图2分析:要求∆ABC 的面积,由图只需求出BC;解应用题,要先看条件,将图形抽象出直角三角形来解.5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.分析:求CD,可解Rt ΔBCD 或Rt ΔACD.但由条件Rt ΔBCD 和Rt ΔACD 不可解,但AB=100若设CD 为x,我们将AC 和BC 都用含x 的代数式表示再解方程即可.7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m,底CD 宽12m,求路基顶AB 的宽B ADCE300 450ArE D BCAH8.九年级1班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.9.如图3,沿AC 方向开山修路,为了加快施工速度,要在小山的另一边同时施工;从AC 上的一点B,取∠=︒=ABD BD 145500,米,∠=︒D 55;要使A 、C 、E 成一直S 线,那么开挖点E 离点D 的距离是多少图3分析:在Rt BED ∆中可用三角函数求得DE 长;10 如图8-5,一条渔船某时刻在位置A 观测灯塔B 、C 灯塔B 距离A 处较近,两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险分析:本题考查解直角三角形在航海问题中的运用,解决这类问题的关键在于构造相关的直角三角形帮助解题.11、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域;问A 城是否会受到这次台风的影响为什么若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长图8-4EA C BD北东12. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD 和高度DC 都可直接测得,从A 、D 、C 三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器;1请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案;具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上如果测A 、D 间距离,用m 表示;如果测D 、C 间距离,用n 表示;如果测角,用α、β、γ表示;2根据你测量的数据,计算塔顶端到地面的高度HG 用字母表示,测倾器高度忽略不计;13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行;为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问1需要几小时才能追上点B 为追上时的位置2确定巡逻艇的追赶方向精确到01.︒如图 4图4参考数据:sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,分析:1由图可知∆ABO 是直角三角形,于是由勾股定理可求;2利用三角函数的概念即求;14. 公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响如果不受影响,请说明理由;如果受影响,会受影响几分钟NP A Q M.15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC,小明站在点F 处,看条幅顶端B,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B,测的仰角为︒60,求宣传条幅BC 的长,小明的身高不计,结果精确到0.1米16、一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈217、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里结果精确到1海里 友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,3 1.732≈.A BC北东P 北403018、如图10,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题:1火箭到达B 点时距离发射点有多远精确到0.01km2火箭从A 点到B 点的平均速度是多少精确到0.1km/s19、经过江汉平原的沪蓉上海—成都高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .1求所测之处江的宽度.48.268tan ,37.068cos ,93.068sin ≈≈≈; 2除1的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC 杆子的底端分别为D,C,且∠DAB=66. 5°.1求点D 与点C 的高度差DH ;2求所用不锈钢材料的总长度l 即AD+AB+BC,结果精确到0.1米.参考数据:°≈,°≈,°≈答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题图10ABOCCB图①图②1,352, 3,30°点拨:过点C 作AB 的垂线CE,构造直角三角形,利用勾股定理CE4连结PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD=15°,利用sin15°=,先求出PD,乘以2即得PP '5.48点拨:根据两直线平行,内错角相等判断6.0,4+B 作BC ⊥AO,利用勾股定理或三角函数可分别求得AC 与OC的长7.1点拨:根据公式sin 2α+cos 2α=18.125点拨:先根据勾股定理求得AC=5,再根据tan ACB AB =求出结果 9.点拨:利用正切函数分别求了BD,BC 的长 10.20sin α点拨:根据sin BCAB α=,求得sin BC AB =•α11.35三,解答题可求得 1. -1; 2. 43.解:1在Rt ABD ∆中,有tan B AD BD=, Rt ADC ∆中,有cos ∠=DAC ADACtan cos B DACAD BD ADACAC BD =∠∴==,故 2由sinC AD AC ==1213;可设AD x AC BD x ===1213, 由勾股定理求得DC x =5, BC BD DC x =∴+==121812即x =23 ∴=⨯=AD 122384.解:由tan ∠=BAC BCAC∴=∠=∠=∴=∴=⋅=⋅=BC AC BAC AC m BAC BC m S AC BC m m m ABC tan tan tan tan ,αααα∆12121225解过D 做DE ⊥AB 于E∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BCAB tgACB =)(4545米=⋅=∴ tg BC AB在Rt ΔADE 中,∠ADE=30°DEAE tgADE =315334530=⋅=⋅=∴tg DE AE )(31545米-=-=∴AE AB CD答:甲楼高45米,乙楼高31545-米. 6 解:设CD=x在Rt ΔBCD 中,CD BCctgDBC =∴BC=x 用x 表示BC 在Rt ΔACD 中,CDACctgDAC = x ctgDAC CD AC 3=⋅=∴∵AC-BC=100 1003=-x x 100)13(=-x ∴)13(50+=x 答:铁塔高)13(50+米. 7、解:过B 作BF ⊥CD,垂足为FBF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠ 3:2=iBC AE=3m ∴DE=4.5mAD=BC,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m ∴EF=3m300450Ar E D BC︒=∠=∠90AEF BFE∴BF ∴∴3m CD FB ⊥AB FB ⊥CD AB∴∥CGE AHE∴△∽△CG EG AH EH∴=CD EF FD AH FD BD -=+3 1.62215AH -∴=+11.9AH ∴=11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=∠=︒∠=︒∴∠=︒ABD D BED 1455590,,Rt BED ∆ cos cos D DEBDDE BD D =∴=⋅, BD =500∠=︒D 55︒=∴55cos 500DE 716284AD =⨯=∵cos24°15′=ADAB, ∴2830.71cos 24150.9118AD AB ==≈'︒海里.AC=AB+BC=+12=海里. 在Rt△ACE 中,sin24°15′=CEAC, ∴CE=AC·sin24°15′=×=海里. ∵<,∴有触礁危险;答案有触礁危险,不能继续航行; 11、1过A 作AC ⊥BF,垂足为C︒=∠∴︒=∠30601ABC在RT ∆ABC 中 AB=300km响城会受到这次台风的影A kmAC ABC ∴=∴︒=∠150302AHh hkm kmt h km v km DE kmCD kmad km AC AD AE E ,BF km AD D ,BF 1071071007107100750200,150200==∴==∴=∴==== 使上取在使上取在答:A 城遭遇这次台风影响10个小时;12 解:1在A 处放置测倾器,测得点H 的仰角为α 在B 处放置测倾器,测得点H 的仰角为β()在中,2Rt HAI AI HI DI HI AI DI m ∆==-=tan tan αβHI m=-tan tan tan tan αββαHG HI IG mn =+=-+tan tan tan tan αββα13解:设需要t 小时才能追上; 则AB t OB t ==2426,1在Rt AOB ∆中, OB OA AB 222=+,∴=+()()261024222t t则t =1负值舍去故需要1小时才能追上; 2在Rt AOB ∆中sin .∠==≈AOB AB OB tt242609231 ∴∠=︒AOB 674. 即巡逻艇沿北偏东674.︒方向追赶; 14 解:1008030sin 1<=︒=∆AP AP APB Rt 中,)在( ∴会影响N()在中(米)2100806022Rt ABD BD ∆=-=6023610006022⨯⨯=∴.(分钟)分钟15 解: ∵∠BFC =︒30,∠BEC =︒60,∠BCF =︒90 ∴∠EBF =∠EBC =︒30 ∴BE = EF = 20 在Rt⊿BCE 中, )(3.17232060sin m BE BC ≈⨯=︒⋅= 答:宣传条幅BC 的长是17.3米;16 解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD. 设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°. 在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°.∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近17 解:过B 点作BE AP ⊥,垂足为点E ;过C 点分别作CD AP ⊥, CF BE ⊥,垂足分别为点D F ,,则四边形CDEF 为矩形. CD EF DE CF ∴==,,…………………………3分30QBC ∠=,60CBF ∴∠=.2040AB BAD =∠=,,B CDAFP 北4030cos 40200.766015.3AE AB ∴=⨯≈≈; sin 40200.642812.85612.9BE AB =⨯=≈≈. 1060BC CBF =∠=,,sin 60100.8668.668.7CF BC ∴=⨯=≈≈; cos60100.55BF BC ==⨯=.12.957.9CD EF BE BF ∴==-=-=. 8.7DE CF =≈,15.38.724.0AD DE AE ∴=++=≈.∴由勾股定理,得222224.07.9638.4125AC AD CD =++=≈≈.即此时小船距港口A 约25海里 18 解1在Rt OCB △中,sin 45.54OBCB=1分 6.13sin 45.54 4.375OB =⨯≈km 3分火箭到达B 点时距发射点约4.38km 4分 2在Rt OCA △中,sin 43OACA=1分 6sin 43 4.09(km)OA =⨯= 3分()(4.38 4.09)10.3(km /s)v OB OA t =-÷=-÷≈ 5分答:火箭从A 点到B 点的平均速度约为0.3km/s 19解:1在BAC Rt ∆中,68=∠ACB , ∴24848.210068tan =⨯≈⋅=AC AB 米答:所测之处江的宽度约为248米……………………………………………………3分 2从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识 来解决问题的,只要正确即可得分 20 解:1DH=×34=米.2过B 作BM ⊥AH 于M,则四边形BCHM 是矩形. MH=BC=1 ∴AM=AH -MH=1+一l=. 在RtAMB 中,∵∠A=° ∴AB=1.23.0cos66.50.40AM ≈=︒米.∴S=AD+AB+BC ≈1++1=米.答:点D 与点C 的高度差DH 为l.2米;所用不锈钢材料的总长度约为5.0米。
(完整word版)三角函数的定义、诱导公式、同角三角函数的关系练习题-
三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边经过点P(4,—3),则的值为( )A. B. C. D.2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( ) A. B.C. D.3.已知角α的终边与单位圆的交点P,则sinα·tanα=( )A.- B.± C.- D.±4.若tanα〈0,且sinα〉cosα,则α在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.若,且,则角是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.若,且为第二象限角,()A. B. C. D.7.已知,则等于A .B .C .D .8.若,且为第二象限角,则( )A .B .C .D .二、填空题9.已知 ,则___________三、解答题10.已知,且是第四象限的角。
(1)求; (2). 11.(1)已知,求的值;(2)已知, ,求的值.12.已知tan α2,= (1)求值: sin cos sin cos αααα+- (2)求值: ()()()()π5πsin cos cos π22cos 7πsin 2πsin παααααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭+-+ 13.已知角α终边上的一点()7,3P m m - ()0m ≠。
(1)求()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值; (2)求22sin cos cos ααα+-的值。
14.已知0θπ<<,且1sin cos 5θθ+=,求 (1)sin cos θθ-的值;(2)tan θ的值.15.已知tan 2α=.(1)求3sin 2cos sin cos αααα+-的值; (2)求()()()()3cos cos sin 22sin 3sin cos πππαααπααππα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+-+的值; 16.已知,计算:(1); (2)。
初中三角函数计算题100道
初中三角函数计算题100道1. 计算 sin30°2. 计算 cos45°3. 计算 tan60°4. 计算 sec30°5. 计算 csc45°6. 计算 cot60°7. 计算 sin90°8. 计算 cos180°9. 计算 tan270°10. 计算 sec360°11. 计算 csc30°12. 计算 cot45°13. 计算 sin60°14. 计算 cos90°15. 计算 tan180°16. 计算 sec270°18. 计算 cot30°19. 计算 sin45°20. 计算 cos60°21. 计算 tan90°22. 计算 sec180°23. 计算 csc270°24. 计算 cot360°25. 计算 sin180°26. 计算 cos270°27. 计算 tan360°28. 计算 sec45°29. 计算 csc60°30. 计算 cot90°31. 计算 sin270°32. 计算 cos360°33. 计算 tan45°35. 计算 csc90°36. 计算 cot180°37. 计算 sin360°38. 计算 cos45°39. 计算 tan30°40. 计算 sec90°41. 计算 csc180°42. 计算 cot270°43. 计算 sin45° + cos45°44. 计算 tan30° - sin60°45. 计算 cos90° * sec30°46. 计算 tan45° / csc45°47. 计算 sin60° + csc30°48. 计算 sec45° - cos45°49. 计算 csc45° * cot45°50. 计算 cos60° / tan60°51. 计算 sec30° + csc60°52. 计算 tan45° - sin45°53. 计算 cos90° * cot30°54. 计算 sin60° / sec45°55. 计算 csc30° + cos60°56. 计算 tan45° - sec30°57. 计算 sin45° * cot60°58. 计算 cos60° / csc45°59. 计算 tan30° + sin60°60. 计算 sec45° - cos90°61. 计算 csc45° * cot30° + sin45°62. 计算 cos60° / tan45° - csc60°63. 计算 sin60° + csc30° * cos60°64. 计算 sec45° - cos45° / cot45°65. 计算 cos60° * sec30° - csc30°66. 计算 tan45° - sec30° + cot60°67. 计算 sin45° * cot60° - csc45°68. 计算 cos60° / csc45° + tan60°69. 计算 tan30° + sin60° * sec45°70. 计算 sec45° - cos90° / cot45°71. 计算 csc45° * cot30° + sin45° * cos45°72. 计算 cos60° / tan45° - csc60° * sec30°73. 计算 sin60° + csc30° * cos60° / tan45°74. 计算 sec45° - cos45° / cot45° + csc45°75. 计算 cos60° * sec30° - csc30° + tan45°76. 计算 tan45° - sec30° + cot60° / csc45°77. 计算 sin45° * cot60° - csc45° + cos45°78. 计算 cos60° / csc45° + tan60° - sec45°79. 计算 tan30° + sin60° * sec45° + cot30°80. 计算 sec45° - cos90° / cot45° - csc60°81. 计算 csc45° * cot30° + sin45° * cos45° - sec30°82. 计算 cos60° / tan45° - csc60° * sec30° + sin60°83. 计算 sin60° + csc30° * cos60° / tan45° - sec45°84. 计算 sec45° - cos45° / cot45° + csc45° * cos60°85. 计算 cos60° * sec30° - csc30° + tan45° / sin60°86. 计算 tan45° - sec30° + cot60° / csc45° + cos90°87. 计算 sin45° * cot60° - csc45° + cos45° * tan45°88. 计算 cos60° / csc45° + tan60° - sec45° * sin45°89. 计算 tan30° + sin60° * sec45° + cot30° * csc60°90. 计算 sec45° - cos90° / cot45° - csc60° / cos60°91. 计算 csc45° * cot30° + sin45° * cos45° - sec30° + tan45°92. 计算 cos60° / tan45° - csc60° * sec30° + sin60° * csc30°93. 计算 sin60° + csc30° * cos60° / tan45° - sec45° * csc45°94. 计算 sec45° - cos45° / cot45° + csc45° * cos60° - tan60°95. 计算 cos60° * sec30° - csc30° + tan45° / sin60° + cot45°96. 计算 tan45° - sec30° + cot60° / csc45° + cos90° * sec60°97. 计算 sin45° * cot60° - csc45° + cos45° * tan45° * csc60°98. 计算 cos60° / csc45° + tan60° - sec45° * sin45° / cos45°99. 计算 tan30° + sin60° * sec45° + cot30° * csc60° + cos60°100. 计算 sec45° - cos90° / cot45° - csc60° / cos60° + tan60°这是一百道关于初中三角函数的计算题。
(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)
锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。
(完整word)1.4三角函数的图像与性质(真题)
1.4三角函数的图像与性质(真题)一、选择题(本大题共29小题,共145。
0分)1.已知sin(75°+α)=,则cos(15°—α)的值为()A. -B.C. —D。
2.若α是第三象限角,则y=+的值为()A. 0B. 2 C。
-2 D。
2或-23.角α是第一象限角,且sinα=,那么cosα()A。
B. —C。
D. -4.已知角α的终边经过点P(0,3),则α是()A。
第一象限角B。
终边在x轴的非负半轴上的角C。
第四象限角 D. 终边在y轴的非负半轴上的角5.已知,且,则tanφ=()A. B. C。
D。
6.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( )A。
y=2sin(2x+) B。
y=2sin(2x+)C。
y=2sin(2x—)D。
y=2sin(2x-)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A. 11B. 9C. 7 D。
58.函数y=A sin(ωx+φ)的部分图象如图所示,则()A。
y=2sin(2x-)B。
y=2sin(2x—)C。
y=2sin(x+)D。
y=2sin(x+)9.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A。
x=—(k∈Z) B。
x=+(k∈Z)C. x=-(k∈Z)D。
x=+(k∈Z)10.函数f(x)=cos2x+6cos(—x)的最大值为( )A。
4 B. 5 C. 6 D. 711.已知曲线C1:y=cos x,C2:y=sin(2x+),则下面结论正确的是( )A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C212.设函数f(x)=cos(x+),则下列结论错误的是()A。
三角函数练习题100题(Word版,含解析)
三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。
其中1-55为选择题,56-70为填空题,71-100为解答题。
)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。
初三数学三角函数专题训练
初三数学三角函数专题训练三1.〔2014•〕如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,如此tan∠CFB的值等于〔〕A. B. C. D.2.〔2015•模拟〕如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,假如tan∠BCD=,如此tanA=〔〕A. B.1 C. D.3.〔2011•〕如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,如下结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是〔〕A.1个B.2个C.3个D.4个4.〔2011•〕如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,如此sin∠CAD=〔〕A. B. C. D.5.将一副直角三角板中的两块按如图摆放,连AC,如此tan∠DAC的值为〔〕A. B. C. D.6.〔1998•〕如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,假如cot∠BCD=3,如此tanA=〔〕A. B.1 C. D.7.〔2011•黔东南州〕如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,假如BC=6,AC=8,如此tan∠ACD的值为〔〕A. B. C. D.8.〔2006秋•微山县期末〕α,β是△ABC的两个角,且sinα,tanβ是方程2x2﹣3x+1=0的两根,如此△ABC是〔〕A.锐角三角形B.直角三角形或钝角三角形C.钝角三角形D.等边三角形9.〔2011•〕如图,在△ABC中,∠ACB=90°,∠A=15°,AB=8,如此AC•BC的值为〔〕A.14 B.16 C.4 D.1610.〔2008•〕α为锐角,如此m=sinα+cosα的值〔〕A.m>1 B.m=1 C.m<1 D.m≥111.〔2007•昌平区二模〕如图,四边形ABCD,A1B1BA,…,A5B5B4A4都是边长为1的小正方形.∠ACB=a,∠A1CB1=a1,…,∠A5CB5=a5.如此tana•tana1+tana1•tana2+…+tana4•tana5的值为〔〕A. B. C.1 D.12.一个直角三角形有两条边长为3和4,如此较小锐角的正切值是〔〕A. B. C. D.或13.〔2005•〕直角三角形纸片的两直角边AC与BC之比为3:4.〔1〕将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;〔2〕将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.如此tan∠DEA的值为〔〕A. B. C. D.14.〔2012•德清县自主招生〕如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,如此tan∠AEB的值等于〔〕A.3 B.2 C. D.15.〔2012•桐城市校级二模〕如图,直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,如此sinα=〔〕A. B. C. D.16.〔2014秋•肥西县期末〕如图,△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC 于点D,那么=〔〕A.sin∠BAC B.cos∠BAC C.tan∠BAC D.cot∠BAC17.〔2003•海淀区模拟〕如图,△ABC中,CD⊥AB,BE⊥AC,=,如此sinA的值为〔〕A. B. C. D.18.〔2014•〕如图,在△ABC中,AB=AC=5,BC=8.假如∠BPC=∠BAC,如此tan∠BPC=.19.〔2009•〕如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线OC将△COA 折叠,使点A落在点D处,假如CD恰好与MB垂直,如此tanA的值为.20.〔2007•〕如图,正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.21.〔2009•遂昌县模拟〕如图,在△ABC中,∠C=90°,BD平分∠ABC,假如BD=6,CD=3,如此sin∠DBA=.22.〔1998•〕如图,△ABC中,D为AB的中点,DC⊥AC于C,DE∥AC交BC于E,假如DE=BD,如此cosA=.23.〔2011•新昌县模拟〕如图,直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离都相等,如果直角梯形ABCD的三个顶点在平行直线上,∠ABC=90°且AB=3AD,如此tanα=.24.〔2001•〕如图,矩形ABCD〔AD>AB〕中AB=a,∠BDA=θ,作AE交BD于E,且AE=AB,试用a与θ表示:AD=,BE=.25.〔2003•〕正方形ABCD的边长为1.如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D′处,那么tan∠BAD′=.26.〔2009•〕如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,如此tan∠A′BC′的值为.27.〔2012•南岗区校级模拟〕矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上,求tan∠AFE.28.〔2012•县校级自主招生〕学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对〔sad〕.如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解如下问题:〔1〕sad60°的值为〔〕A.B.1 C.D.2〔2〕对于0°<A<180°,∠A的正对值sadA的取值围是.〔3〕sinα=,其中α为锐角,试求sadα的值.29.〔2003•〕〔1〕如图,锐角的正弦和余弦都随着锐角确实定而确定,也随着其变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值的变化规律;〔2〕根据你探索到的规律,试比拟18°,34°,52°,65°,88°,这些角的正弦值的大小和余弦值的大小;〔3〕比拟大小:〔在空格处填写“<〞或“>〞或“=〞〕假如∠α=45°,如此sinαcosα;假如∠α<45°,如此sinαcosα;假如∠α>45°,如此sinαcosα;〔4〕利用互余的两个角的正弦和余弦的关系,比拟如下正弦值和余弦值的大小:sin10°,cos30°,sin50°,cos70°.30.〔2014•〕如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.〔1〕求sinB的值;〔2〕如果CD=,求BE的值.2016年05月16日的初中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2014•〕如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,如此tan∠CFB的值等于〔〕A. B. C. D.【分析】tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,如此BC与CF就可以用x表示出来.就可以求解.【解答】解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,如此BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.如此tan∠CFB==.应当选:C.2.〔2015•模拟〕如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,假如tan∠BCD=,如此tanA=〔〕A. B.1 C. D.【分析】假如想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD 的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,如此AC=2x,∴tanA===,应当选A.3.〔2011•〕如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,如下结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是〔〕A.1个B.2个C.3个D.4个【分析】①根据等腰直角三角形的性质与△ABC∽△CDE的对应边成比例知,==;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式与不等式的根本性质a2+b2≥2ab〔a=b时取等号〕解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理与等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴==①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=〔a+b〕2,∴S△ACE=S梯形ABDE﹣S△ABC﹣S△CDE=ab,S△ABC+S△CDE=〔a2+b2〕≥ab〔a=b时取等号〕,∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,如此MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=〔AB+ED〕=〔BC+CD〕,∴∠BMD=90°,即BM⊥DM;故本选项正确.应当选D.4.〔2011•〕如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,如此sin∠CAD=〔〕A. B. C. D.【分析】设AD=x,如此CD=x﹣3,在直角△ACD中,运用勾股定理可求出AD、CD的值,即可解答出;【解答】解:设AD=x,如此CD=x﹣3,在直角△ACD中,〔x﹣3〕2+=x2,解得,x=4,∴CD=4﹣3=1,∴sin∠CAD==;应当选A.5.将一副直角三角板中的两块按如图摆放,连AC,如此tan∠DAC的值为〔〕A. B. C. D.【分析】欲求∠DAC的正切值,需将此角构造到一个直角三角形中.过C作CE⊥AD于E,设CD=BD=1,然后分别表示出AD、CE、DE的值,进而可在Rt△ACE 中,求得∠DAC的正切值.【解答】解:如图,过C作CE⊥AD于E.∵∠BDC=90°,∠DBC=∠DCB=45°,∴BD=DC,设CD=BD=1,在Rt△ABD中,∠BAD=30°,如此AD=2.在Rt△EDC中,∠CDE=∠BAD=30°,CD=1,如此CE=,DE=.∴tan∠DAC===.应当选C.6.〔1998•〕如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,假如cot∠BCD=3,如此tanA=〔〕A. B.1 C. D.【分析】假如想利用cot∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ABC 的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AB=BD,∴E是CD中点,∴AC=2BE,∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵cot∠BCD=3,设BE=x,如此BC=3x,AC=2x,∴tanA===,应当选A.7.〔2011•黔东南州〕如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,假如BC=6,AC=8,如此tan∠ACD的值为〔〕A. B. C. D.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD 的值.【解答】解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A===,∴tan∠ACD的值.应当选D.8.〔2006秋•微山县期末〕α,β是△ABC的两个角,且sinα,tanβ是方程2x2﹣3x+1=0的两根,如此△ABC是〔〕A.锐角三角形B.直角三角形或钝角三角形C.钝角三角形D.等边三角形【分析】先解出方程的两根,讨论sinα,tanβ的值.∵在三角形中,角的围是〔0,180°〕,∴sinα必大于0,此时只要考虑tanβ的值即可,假如tanβ>0,如此β为锐角;tanβ小于0,如此β为钝角.再把x的两个值分别代入sinα,tanβ中,可求出α,β的值,从而判断△ABC 的形状.【解答】解:由2x2﹣3x+1=0得:〔2x﹣1〕〔x﹣1〕=0,∴x=或x=1.∴sinα>0,tanβ>0假如sinα=,tanβ=1,如此α=30°,β=45°,γ=180°﹣30°﹣45°=105°,∴△ABC为钝角三角形.假如sinα=1,tanβ=,如此α=90°,β<90°,△ABC为直角三角形.应当选B.9.〔2011•〕如图,在△ABC中,∠ACB=90°,∠A=15°,AB=8,如此AC•BC的值为〔〕A.14 B.16 C.4 D.16【分析】解法一:利用二倍角公式sin2α=2sinαcosα、锐角三角函数的定义解答.解法二:作△ABC的中线CD,过C作CE⊥AB于E,求出AD=CD=BD=2,求出CE、DE、BE,根据勾股定理求出BC、AC,代入求出即可.【解答】解:解法一:∵sin30°=2sin15°cos15°=,∠A=15°,∴2××=;又∵AB=8,∴AC•BC=16.解法二:作△ABC的中线CD,过C作CE⊥AB于E,∵∠ACB=90°,∴AD=DC=DB=AB=4,∴∠A=∠ACD=15°,∴∠CDB=∠A+∠ACD=30°,∴CE=CD=2,∴S△ABC=AC•BC=AB•CE,即AC•BC=×8×2,∴AC•BC=16应当选:D.10.〔2008•〕α为锐角,如此m=sinα+cosα的值〔〕A.m>1 B.m=1 C.m<1 D.m≥1【分析】根据锐角三角函数的概念,可以用直角三角形的边进展表示,再进一步根据三角形的三边关系进展分析.【解答】解:设在直角三角形ABC中,∠A=α,∠C=90°,故sinα=,cosα=;如此m=sinα+cosα=>1.应当选A.11.〔2007•昌平区二模〕如图,四边形ABCD,A1B1BA,…,A5B5B4A4都是边长为1的小正方形.∠ACB=a,∠A1CB1=a1,…,∠A5CB5=a5.如此tana•tana1+tana1•tana2+…+tana4•tana5的值为〔〕A. B. C.1 D.【分析】根据锐角三角函数的定义,分别在Rt△ACB,Rt△A1CB1,…,Rt△A5CB5中求tana,tana1,tana2,…,tana5的值,代值计算.【解答】解:根据锐角三角函数的定义,得tana==1,tana1==,tana2==…,tana5==,如此tana•tana1+tana1•tana2+…+tana4•tana5=1×+×+×+×+×=1﹣+﹣+﹣+﹣+﹣=1﹣=.应当选A.12.一个直角三角形有两条边长为3和4,如此较小锐角的正切值是〔〕A. B. C. D.或【分析】先根据勾股定理求出第三边,再根据正切函数的定义求出较小锐角的正切值.【解答】解:当两条边长为3和4是直角边时,如此较小锐角的正切值=;当3是直角边,4是斜边时,另一条边==,如此较小锐角的正切值=.应当选D.13.〔2005•〕直角三角形纸片的两直角边AC与BC之比为3:4.〔1〕将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;〔2〕将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.如此tan∠DEA的值为〔〕A. B. C. D.【分析】直角三角形纸片的两直角边AC与BC之比为3:4,就是tan∠ABC=,根据轴对称的性质,可得∠DEA=∠A,就可以求出tan∠DEA的值.【解答】解:根据题意:直角三角形纸片的两直角边AC与BC之比为3:4,即tan∠ABC==;根据轴对称的性质,∠CBD=a,如此由折叠可知∠CBD=∠EBD=∠EDB=a,∠ABC=2a,由外角定理可知∠AED=2a=∠ABC,∴tan∠DEA=tan∠ABC=.应当选A.14.〔2012•德清县自主招生〕如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,如此tan∠AEB的值等于〔〕A.3 B.2 C. D.【分析】过B作DC的平行线交DA的延长线于M,在DM的延长线上取MN=CE.根据全等三角形与直角三角形的性质求出∠BNM两直角边的比,即可解答.【解答】解:过B作DC的平行线交DA的延长线于M,在DM的延长线上取MN=CE.如此四边形MDCB为正方形,易得△MNB≌△CEB,∴BE=BN.∴∠NBE=90°.∵∠ABE=45°,∴∠ABE=∠ABN,∴△NAB≌△EAB.设EC=MN=x,AD=a,如此AM=a,DE=2a﹣x,AE=AN=a+x,∵AD2+DE2=AE2,∴a2+〔2a﹣x〕2=〔a+x〕2,∴x=a.∴tan∠AEB=tan∠BNM==3.应当选A.15.〔2012•桐城市校级二模〕如图,直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,如此sinα=〔〕A. B. C. D.【分析】过D作EF⊥l1,交l1于E,交l4于F,易证△ADE≌△DCF,可得∠α=∠CDF,DE=CF.在Rt△DCF中,利用勾股定理可求CD,从而得出sin∠CDF,即可求sinα.【解答】解:过D作EF⊥l1,交l1于E,交l4于F,∵EF⊥l1,l1∥l2∥l3∥l4,∴EF和l2,l3,l4的夹角都是90°,即EF与l2,l3,l4都垂直,∴DE=1,DF=2.∵四边形ABCD是正方形,∴∠ADC=90°,AD=CD,∴∠ADE+∠CDF=90°,又∵∠α+∠ADE=90°,∴∠α=∠CDF,∵AD=CD,∠AED=∠DFC=90°,∴△ADE≌△DCF,∴DE=CF=1,∴在Rt△CDF中,CD==,∴sinα=sin∠CDF===.应当选:B.16.〔2014秋•肥西县期末〕如图,△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC 于点D,那么=〔〕A.sin∠BAC B.cos∠BAC C.tan∠BAC D.cot∠BAC【分析】过点D作DE⊥AB于E,由角的平分线的性质得CD=DE,证明AB﹣AC=BE,如此=tan∠BDE,再证明∠BAC=∠BDE即可.【解答】解:过点D作DE⊥AB于E.∵AD是∠BAC的角平分线,DE⊥AB于E,DC⊥AC于C,∴CD=DE.∴Rt△ADE≌Rt△ADC〔HL〕∴AE=AC.∴==tan∠BDE.∵∠BAC=∠BDE,〔同角的余角相等〕∴=tan∠BDE=tan∠BAC,应当选C.17.〔2003•海淀区模拟〕如图,△ABC中,CD⊥AB,BE⊥AC,=,如此sinA的值为〔〕A. B. C. D.【分析】此题可以利用锐角三角函数的定义求解.【解答】解:∵CD⊥AB,BE⊥AC如此易证△ABE∽△ACD,∴=,又∵∠A=∠A,∴△AED∽△ABC,∴==,设AD=2a,如此AC=5a,根据勾股定理得到CD=a,因而sinA==.故此题选B.二.填空题〔共9小题〕18.〔2014•〕如图,在△ABC中,AB=AC=5,BC=8.假如∠BPC=∠BAC,如此tan∠BPC=.【分析】先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE 中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.【解答】解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.19.〔2009•〕如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线OC将△COA 折叠,使点A落在点D处,假如CD恰好与MB垂直,如此tanA的值为.【分析】根据题意有:沿△ABC的中线CM将△CMA折叠,使点A落在点D处,假如CD 恰好与MB垂直,可得:∠B=2∠A,且∠ACB=90°,故∠A=30°,如此tanA的值为.【解答】解:在直角△ABC中,∴∠ACM+∠MCB=90°,CM垂直于斜边AB,∴∠ABC+∠MCB=90°,∴∠B=∠ACM,OC=OA〔直角三角形的斜边中线等于斜边一半〕.∴∠A=∠1.又∵∠1=∠2,∴∠A=30°.∴tanA=tan30°=.20.〔2007•〕如图,正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.【分析】根据勾股定理求出BD的长,即BD′的长,根据三角函数的定义就可以求解.【解答】解:BD是边长为2的正方形的对角线,由勾股定理得,BD=BD′=2.∴tan∠BAD′===.故答案为:.21.〔2009•遂昌县模拟〕如图,在△ABC中,∠C=90°,BD平分∠ABC,假如BD=6,CD=3,如此sin∠DBA=.【分析】根据角平分线的性质与锐角三角函数的定义解答.【解答】解:∵BD平分∠ABC,∴∠DBA=∠DBC.在Rt△BDC中,BD=6,CD=3,如此sin∠DBA=sin∠DBC=.22.〔1998•〕如图,△ABC中,D为AB的中点,DC⊥AC于C,DE∥AC交BC于E,假如DE=BD,如此cosA=.【分析】根据相似比与直角三角形的性质求解.【解答】解:∵DE∥AC,∴∠EDC=90°,DE=AC,即AC=2DE.∵DE=BD,又∵D为AB的中点,即AD=BD,∴DE=AD,∴AD=AC,故cosA=.23.〔2011•新昌县模拟〕如图,直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离都相等,如果直角梯形ABCD的三个顶点在平行直线上,∠ABC=90°且AB=3AD,如此tanα=.【分析】利用三角形相似的判定求出假设AE=4y,DF=y,AF=y,即可得出∠α的值.【解答】解:做AE⊥l5,垂足为E,∵直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离都相等,直角梯形ABCD的三个顶点在平行直线上,∠ABC=90°,∴∠BAE+∠EAD=90°,∠α+∠DAF=90°,∴∠α=∠BAE,∠AEB=∠AFD,∴△ABE∽△DAF,∵且AB=3AD,AB÷AD=3,假设AE=4y,∴DF=y,AF=y,∴tanα==,故答案为:.24.〔2001•〕如图,矩形ABCD〔AD>AB〕中AB=a,∠BDA=θ,作AE交BD于E,且AE=AB,试用a与θ表示:AD=,BE=2a•sinθ.【分析】〔1〕根据直角三角形中锐角三角函数的定义解答.〔2〕过点A作AN⊥BD于N,根据等腰三角形的性质与锐角三角函数的定义解答.【解答】解:∵在直角△ABD中,tan=,∴AD==;过点A作AN⊥BD于N.∵AB=AE,∴BE=2BN.∵∠BAN+∠ABN=90°,∠ABN+∠θ=90°,∴∠BAN=∠θ,∴BE=2BN=2AB•sinθ=2a•sinθ.25.〔2003•〕正方形ABCD的边长为1.如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D′处,那么tan∠BAD′=.【分析】根据题意画出图形.根据勾股定理求出BD的长,由旋转的性质求出BD′的长,再运用三角函数的定义解答即可.【解答】解:正方形ABCD的边长为1,如此对角线BD=.∴BD′=BD=.∴tan∠BAD’==.26.〔2009•〕如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,如此tan∠A′BC′的值为.【分析】tan∠A'BC'的值,根据三角函数的定义可以转化为直角三角形的边长的比来求.因而过A′作出A′D⊥BC′,垂足为D.在直角△A′BD中,根据三角函数的定义就可以求解.【解答】解:过A′作出A′D⊥BC′,垂足为D.在等腰直角三角形A′B′C′中,如此A′D是底边上的中线,∴A′D=B′D=.∵BC=B′C′,∴tan∠A'BC'===.故答案为:.三.解答题〔共4小题〕27.〔2012•南岗区校级模拟〕矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上,求tan∠AFE.【分析】根据题意,结合折叠的性质,易得∠AFE=∠BCF,进而在Rt△BFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得tan∠BCF的值,借助∠AFE=∠BCF,可得tan∠AFE的值.【解答】解:根据图形有:∠AFE+∠EFC+∠BFC=180°,根据折叠的性质,∠EFC=∠EDC=90°,即∠AFE+∠BFC=90°,而Rt△BCF中,有∠BCF+∠BFC=90°,易得∠AFE=∠BCF,在Rt△BFC,根据折叠的性质,有CF=CD,在Rt△BFC中,BC=8,CF=CD=10,由勾股定理易得:BF=6,如此tan∠BCF=;故有tan∠AFE=tan∠BCF=;答:tan∠AFE=.28.〔2012•县校级自主招生〕学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对〔sad〕.如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解如下问题:〔1〕sad60°的值为〔〕A.B.1 C.D.2〔2〕对于0°<A<180°,∠A的正对值sadA的取值围是0<sadA<2.〔3〕sinα=,其中α为锐角,试求sadα的值.【分析】〔1〕根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答;〔2〕求出0度和180度时等腰三角形底和腰的比即可;〔3〕作出直角△ABC,构造等腰三角形ACD,根据正对的定义解答.【解答】解:〔1〕根据正对定义,当顶角为60°时,等腰三角形底角为60°,如此三角形为等边三角形,如此sad60°==1.应当选B.〔2〕当∠A接近0°时,sadα接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadα接近2.于是sadA的取值围是0<sadA<2.故答案为0<sadA<2.〔3〕如图,在△ABC中,∠ACB=90°,sin∠A=.在AB上取点D,使AD=AC,作DH⊥AC,H为垂足,令BC=3k,AB=5k,如此AD=AC==4k,又∵在△ADH中,∠AHD=90°,sin∠A=.∴DH=ADsin∠A=k,AH==k.如此在△CDH中,CH=AC﹣AH=k,CD==k.于是在△ACD中,AD=AC=4k,CD=k.由正对的定义可得:sadA==,即sadα=.29.〔2003•〕〔1〕如图,锐角的正弦和余弦都随着锐角确实定而确定,也随着其变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值的变化规律;〔2〕根据你探索到的规律,试比拟18°,34°,52°,65°,88°,这些角的正弦值的大小和余弦值的大小;〔3〕比拟大小:〔在空格处填写“<〞或“>〞或“=〞〕假如∠α=45°,如此sinα=cosα;假如∠α<45°,如此sinα<cosα;假如∠α>45°,如此sinα>cosα;〔4〕利用互余的两个角的正弦和余弦的关系,比拟如下正弦值和余弦值的大小:sin10°,cos30°,sin50°,cos70°.【分析】〔1〕根据锐角三角函数的概念,即可发现随着一个锐角的增大,它的对边在逐渐增大,它的邻边在逐渐减小,故正弦值随着角的增大而增大,余弦值随着角的增大而减小.〔2〕根据上述规律,要比拟锐角三角函数值的大小,只需比拟角的大小.〔3〕根据概念以与等腰三角形的性质,显然45°的正弦值和余弦值是相等的,再根据锐角三角函数值的变化规律,即可得到结论.〔4〕注意正余弦的转换方法,转换为同一种锐角三角函数后,再根据锐角三角函数值的变化规律进展比拟.【解答】解:〔1〕在图〔1〕中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>.∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图〔2〕中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴<<.即cos∠B3AC<cos∠B2AC<cos∠B1AC.〔2〕sin88°>sin65°>sin52°>sin34°>sin18°;cos88°<cos65°<cos52°<cos34°<cos18°.〔3〕假如∠α=45°,如此sinα=cosα;假如∠α<45°,如此sinα<cosα;假如∠α>45°,如此sinα>cosα.〔4〕cos30°>sin50°>cos70°>sin10°.30.〔2014•〕如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.〔1〕求sinB的值;〔2〕如果CD=,求BE的值.【分析】〔1〕根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,如此∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;〔2〕根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,如此CE=1,从而得出BE.【解答】解:〔1〕∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=;〔2〕∵sinB=,∴AC:AB=1:,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sinB==,设CE=x〔x>0〕,如此AE=x,如此x2+22=〔x〕2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∵AB=2CD=2,∴BC=4,∴BE=BC﹣CE=3.。
初中三角函数练习题及答案
初中三角函数练习题及答案初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=23 B.cosB=23 C.tanB=23D .tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m(C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米图145︒30︒BA D C12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题x O AyB 北甲北乙第5题第46.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•2≈1.413 1.73)三、认真答一答αA CB第10A4052CD第9B431,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中三角函数练习题及答案
图2
分析:要求 的面积,由图只需求出BC;
解应用题,要先看条件,将图形抽象出直角三角形来解.
5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.
6. 从A处观测铁塔顶部的仰角是30°,向前走100米到达B处,观测铁塔的顶部的仰角是 45°,求铁塔高.
A30海里 B40海里 C50海里 D60海里
二填空
1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.
2.在△ABC中,若BC= ,AB= ,AC=3,则cosA=________.
3.在△ABC中,AB=2,AC= ,∠B=30°,则∠BAC的度数是______.
4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.不取近似值. 以下数据供解题使用:sin15°= ,cos15°=
5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.
6.如图,机器人从A点,沿着西南方向,行了个4 单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号.
2根据你测量的数据,计算塔顶端到地面的高度HG用字母表示,测倾器高度忽略不计;
13.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行;为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问1需要几小时才能追上
(完整word版)精选三角函数解答题30道带答案
三角函数综合练习三学校:___________姓名:___________班级:___________考号:___________一、解答题1(0ω>) (1)求()f x 在区间 (2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得个单位,得到函数()g x 的图象,若关于x 的方程()0g x k +=在区上有且只有一个实数根,求实数k 的取值范围. 2.其中,m x R ∈.(1)求()f x 的最小正周期;(2)求实数m 的值,使函数()f x 的值域恰为并求此时()f x 在R 上的对称中心.3 (1)求)(x f 的最小正周期;(2. 4 (1)求()f x 的最小正周期;(2)求()f x 在区间 5.已知函数.(1)求最小正周期; (2)求在区间上的最大值和最小值.6 (1)求()f x 的最小正周期;(2)若将()f x 的图象向右平移个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最大值和最小值.7 (Ⅰ)(Ⅱ)8(1)求()f x 的定义域与最小正周期;(2求α的大小.9, x R ∈(1)求函数()f x 的最小正周期及在区间 (2,求0cos 2x 的值。
10.(本小题满分12 (1)求()f x 单调递增区间;(2)求()f x 在.11 (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 在.12 (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移个单位长度,得到函数()g x 的图象,求()g x 在的值域.13 (1)求()f x 的最小正周期;(2)求()f x 在区间 14(其中x ∈R ),求: (1)函数()f x 的最小正周期;(2)函数()f x 的单调区间;15 (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间16 (1及()f x 的单调递增区间; (2)求()f x 在闭区间17(1(2成立的x 的取值集合.18 (Ⅰ)求函数()f x 的单调递减区间;19 (Ⅰ)求函数)(x f 的最小正周期T 及在],[ππ-上的单调递减区间;(Ⅱ)若关于x 的方程0)(=+k x f ,在区间上且只有一个实数解,求实数k 的取值范围.20 (1)求函数)(x f 的最小正周期和单调递减区间;(2)若将函数)(x f 的图象向左平移)0(>m m 个单位后,得到的函数)(x g 的图象关于轴对称,求实数m 的最小值.21(x R ∈). (1)求函数()f x 的最小正周期和单调减区间;(2)将函数()f x 的图象向右平移个单位长度后得到函数()g x 的图象,求函数()g x22(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.23 (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在. 24.已知函数()22sin 2sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值. 25.已知函数()()cos sin cos f x x x x =-. (Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值.26(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在m 的取值范围.27(1)求函数()y f x =的最大、最小值以及相应的x 的值;(2)若y >2,求x 的取值范围.28 (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.29.函数()2cos (sin cos )f x x x x =+.(1 (2)求函数()f x 的最小正周期及单调递增区间.30 (1)求()f x 的最小正周期和最大值;(2)讨论()f x 在参考答案1.(1(2或1k =-. 【解析】试题分析:(1时,()f x 为减函数⇒所以()f x 的减区间为(2()y g x =的图象与直线y k =-在区间上只有一个交点⇒或1k =-.试题解析:(1因为()f x 的最小正周期为时,()f x 为减函数, 所以()f x 的减区间为 (2)将函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将的图象向右平移个单位,得到若关于x 的方程()0g x k +=在区间 即函数()y g x =的图象与直线y k =-在区间上只有一个交点, 或1k -=,即或1k =-. 考点:三角函数的图象与性质.2.(1)T π=;(2,Z k ∈∈. 【解析】试题分析:(1)则最小正周期T π=;(2)时,)(x f 值域为]3,[m m +解得函数)(x f 对称中心为,Z k ∈∈. 试题解析:(1)最小正周期T π=;(2考点:三角函数图象的性质.3.(1)π=T ;(2)()f x 在【解析】试题分析:(1)根据正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式可将)(x f 化可得)(x f 的最小正周期为π;(2)进而得)(x f . 试题解析:(1所以f(x)f(x)考点:1、正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式;2、三角函数的周期性及单调性.4.(1)函数的最小正周期为π(2时,)(x f 取最大值2时,)(x f 取得最小值1-【解析】试题分析:(1最小正周期及其图象的对称中心的坐标;(2从而可求求f (x试题解析::(Ⅰ)因为f (x )=4cosxsin (-1=4cosx )-12x-1=2sin (, 所以f (x )的最小正周期为π,由于是,当2;当f (x )取得最小值-1 考点:三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法【答案】(1)π=T ;(2【解析】试题分析:(1)借助题设条件和两角和的正弦公式化简求解;(2)借助题设条件及正弦函数的有界性求解.试题解析:(1)因()()2sin cos cos 2f x x x x =++考点:三角变换的有关知识及综合运用.6.(1)π;(2)2,1.【解析】试题分析:(1)利用二倍角公式、诱导公式、两角和的正弦函数化为一个角旳一个三角函数的形式,即可求()f x 的最小正周期;(2)将()f x 的图象向右平移求出函数()g x 的解析式, 然后根据三角函数有界性结合三角函数图象求()g x 在区间[]0,π上的最大值和最小值.考点:1、三角函数的周期性;2、三角函数的图象变换及最值.【方法点晴】本题主要考查三角函数的周期性、三角函数的图象变换及最值,属于难题.三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过和、差、倍角公式的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.7.(Ⅰ)2π(Ⅱ【解析】试题分析:(Ⅰ)先利用二倍角公式、配角公式将函数化为基本三角函数:()fx ,再根据正弦函数性质求周期(Ⅱ))的基础上,利用正弦函数性质求试题解析:(Ⅰ)(1)()f x 的最小正周期为(()f x 取得最小值为:考点:二倍角公式、配角公式8.(1(2 【解析】试题分析:(1)利用正切函数的性质,可求得()f x 的定义域,由其周期公式可求最小正周期;(2)利用同三角函数间的关系式及正弦、余弦的二倍角公式,,从而可求得α的大小. 试题解析:解:(1所以()f x 的定义域为.()f x 的最小正周期为考点:1、两角和与差的正切函数;2、二倍角的正切.9.(1)π=T,()[]2,1-∈xf;(2【解析】试题分析:(1)再利用周,,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系.试题解析:(1所以π=T由函数图像知()[]2,1-∈xf.(2考点:三角函数性质;同角间基本关系式;两角和的余弦公式10.(1(2【解析】试题分析:(1)利用两角和的正弦公式、二倍角公式和辅助角公式,化简(2)试题解析:(1(2)由得f x在,因此,()考点:三角恒等变换,三角函数图象与性质. 11.(I )T π=;(II【解析】试题分析:(I )利用两角和的正弦公式,降次公式,辅助角公式,将函数化简为,由此可知函数最小周期T π=;(II)试题解析:∴()fx 的最小正周期考点:三角恒等变换.12.(I )π=T ,(II【解析】试题分析:(I )利用和差角公式对()x f 可化为:,解出x 可得对称轴方程;(II )由x 的范围可得x 2范围,从而得x 2cos 的范围,进而得()x g 的值域. 试题解析:(1)即函数()x g 在区间考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.13.(1)π=T ;(2) -2.【解析】 试题分析:(1)首先将函数进行化简,包括两角和的正弦公式展开,以及二倍角公式以及x x 2cos 1cos 22=-,然后合并同类项,最后利用辅助角公式(2. 试题解析:(1)由题意可得∴()f x 的最小正周期为T π=;(2∴()f x 在区间-2. 考点:1.三角函数的恒等变形;2.三角函数的性质.14.(1)π(2【解析】试题分析:f (x )的最小正周期.x 的范围,即可得到f (x )的单调增区间,同理可得减区间试题解析:(1所以()f x 的单调减区间为考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性15.(1)π,(2 【解析】试题分析:(1)先根据两角和与差的正弦和余弦公式将函数()f x 展开再整理, 可将函数化简为()sin y A x ωρ=+的形式, 根据可求出最小正周期, 令求出x 的值即可得到对称轴方程;(2)先根据x 的范围求出, 进而得到函数()f x 在区试题解析:(1(2时,()f x 取最大值1,时,()f x 取最小值所以函数()f x 在区间 考点:1、三角函数的周期性及两角和与差的正弦和余弦公式;2、正弦函数的值域、正弦函数的对称性.16.(1(2)最大值为1,最小值为 【解析】试题分析:(1)将原函数()f x 由倍角公式和辅助角公式,,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值. 试题解析:(1),则,(2)所以最大值为1,考点:1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数()()sin 0,0y A x A ωϕω=+>>的单调区间的确定,基本思路是把x ωϕ+视做一个整体,解出x 的范围所得区间即为增区间,由x 的范围,所得区间即为减区间.若函数中()0,0A ω><,可用诱导公式先将函数变为()()sin 0,0y A x A ωϕω=--->>,则()()sin 0,0y A x A ωϕω=-->>的增区间为原函数的减区间,减区间为原函数的增区间.17.(1)(2)【解析】试题分析:(1)直接代入解析式即可;(2)由两角差的余弦公式,及正余弦二倍角公式和辅,k Z ∈,从而求解.试题解析:(1(2)f (x )=cos xcos x因f (x )于是2k2x2kk ∈Z. 解得kx <kk ∈Z.故使f (xx 的取考点:1、二倍角公式;2、辅助角公式;3、余弦函数图象与性质. 18.,k Z ∈;(Ⅱ)()f x 取得最大值1,()f x 取得最小值 【解析】试题分析:,k Z ∈,可解得单调减区间;(Ⅱ)最小值.试题解析:,k Z ∈.,k Z ∈.时,()f x 取得最小值时,()f x 取得最大值1. 考点:(1)降幂公式;(2)辅助角公式;(3)函数()ϕω+=x A y sin 的性质.【方法点晴】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦函数的图象和性质求解;(Ⅱ)借助题设条件运用正弦函数的图象建立不等式求解. 试题解析:(Ⅰ)由已知又因为.当0=k 时 当1-=k 时∴函数)(x f 在[]ππ,-的单调递减区间为(Ⅱ) ,0)(=+k x f 在区与2--=∴k y 在区间考点:正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.用问题为背景,要求运用三角变换的公式将其化为k x A y ++=)sin(ϕω的形式,再借助正弦函数的图象和性质求解.解答本题时,首先要用二倍角公式将其化简为再运用正弦函数的图象即可获得答案.这里运用二倍角公式进行变换是解答本题的关键.20.(1)π,(2【解析】试题分析:(1)将展开后再次合并,化简得(2)先按题意平移,得到试题解析:∴函数)(x f 的最小正周期函数)(x f 单调递减.考点:三角函数图象与性质.21.(1)T π=,单调减区间(k Z ∈);(2【解析】试题分析:(1)利用降次公式和两角和的余弦公式,先展开后合并,化简函数,故周期T π=,代入余弦函数单调减区间[]2,2k k πππ-,可求(2)函数()f x 的图象向右平移试题解析:(1(k Z ∈).(2,()g x 在 考点:三角恒等变换、三角函数图象与性质.22.(1)π;(2【解析】试题分析:(1)利用降次公式,和辅助角公式,故周期等于π;(23.试题解析:(1)∴函数()f x 的最小正周期为(2)当()f x 取最大值时,考点:三角恒等变换.23.(I )π;(II )函数()f x 的单调递增区间是 【解析】试题分析:(I数的最小正周期;(II )函数2sin y z =的单调递增区间,即可求解函数的单调递增区间.试题解析:函数2sin y z =的单调递增区间是所以,,()f x . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数的恒等变换、三角函数的图象与性质及三角函数的单调区间的求解,本题的解答中利用三角恒等变换的公式求解函数的解析式查了学生分析问题和解答问题的能力,以及学生的化简与运算能力. 24.(Ⅰ)π;,最小值1- 【解析】试题分析:(Ⅰ)化简函数解析式,可得最小正周期为π;(Ⅱ)可得()f x 在和1-试题解析:(Ⅰ)()22sin 2sin cos cos f x x x x x =+-sin 2cos2x x =-所以()f x 的最小正周期时,()f x 取得最大值,即0x =时,()f x 取得最小值1-所以()f x 在和1- 考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,辅助角公式,由x 的范围求得相位. 25.(Ⅰ)π;(Ⅱ)最大值0,最小值 【解析】试题分析:,可得最小正周期为π;,可得()f x 在最小值分别为0和 试题解析:(Ⅰ)因为()()cos sin cos f x x x x =-所以函数()f x 的最小正周期时,函数()f x 取得最大值0,时,函数()f x 取得最小值所以()f x 在0考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,将函数解析式化为y ,再用辅助角公式将函数化简为y ,由x 的范围求得相位的范围,进一.26.(1)周期为π,(2)[]0,1m ∈ 【解析】试题分析:(1)利用倍角公式,两角和的正余弦公式将函数转化为()sin()f x A x bωϕ=++的形式,进一步求函数的周期和单调性;(2得()f x 的取值范围,进一步得2m +的取值范围,可解得实数m 的取值范围.试题解析:(k ∈Z ). (2,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈.考点:1.倍角公式;2.辅助角公式;3.函数()sin()f x A x b ωϕ=++的性质. 27.(1时有最大值3;时,取最小值1-;(2【解析】试题分析:(1)由函数()sin()f x A x k ωϕ=++的最值取值情况求所给函数的最值;(2)对于2y >,利用特殊角的三角函数值与正弦函数的单调性,可将不等式转化为关于x 的不等式,解不等式可得x 的取值范围. 试题解析:(1)设sin (1,此时函数f (x )=2sin (+1取最大值3.当u=2kπx=kπsin (-1,此时函数f (x )=2sin (+1取最小值-1.(2)∵y=2sin((k∈Z)(k∈Z)∴x (k∈Z) 考点:1.()sin()f x A x k ωϕ=++的性质;2.特殊角的三角函数性质.28.(1)最大值是2;(2 【解析】试题分析:(1)从而化简函数解析式,然后利用正弦函数的性质求出函数的最大值;(2)利用sin y x =的对称轴,列出关系式,解出x ,即可求得m 的值.试题解析:(1)所以()f x 的最大值是2.(2而直线x m =是函()y f x =的对称轴,所以 考点:1、诱导公式;2、正弦函数的图象与性质. 【方法点睛】三角函数的性质由函数的解析式确定,在解答三角形函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.29.(1)2;(2)π, 【解析】试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和二倍角公式求解. 试题解析:(1(2所以()f x 的单调递增区间为 考点:三角函数的图象及诱导公式二倍角公式的运用.30.(1)π,1;(2)()f x 在 【解析】试题分析:(1)()f x 整理得由公式可求得()f x 的周期和最大值;(2)求函数()f x 在R 上的单调区间,分别与.(1)()f x 的最小正周期为π,最大值为1;(2)当()f x 递增时,()k Z ∈,当()f x ()k Z ∈所以,()f x 在 考点:两角的正弦公式;函数sin()y A x ωϕ=+的性质.。
初中数学三角函数计算题
初中数学三角函数计算题
一、在直角三角形中,如果一个锐角为30度,那么它所对的直角边与斜边的比值是多少?
A. 1/2
B. √2/2
C. √3/2
D. 2/√3(答案:A)
二、已知sinA = 1/2,且角A为锐角,则角A的度数为多少?
A. 15度
B. 30度
C. 45度
D. 60度(答案:B)
三、在直角三角形中,如果一个锐角为45度,那么它所对的直角边与另一条直角边的比值是多少?
A. 1
B. √2
C. √3
D. 2(答案:A)
四、已知cosB = √3/2,且角B为锐角,则角B的度数为多少?
A. 30度
B. 45度
C. 60度
D. 90度(答案:C)
五、若tanC = 1,且角C为锐角,则角C的度数为多少?
A. 15度
B. 30度
C. 45度
D. 60度(答案:C)
六、在直角三角形中,如果一个锐角为60度,那么它所对的直角边与斜边的比值是多少?
A. 1/2
B. √2/2
C. √3/2
D. √3(答案:C)
七、已知sinD = √2/2,且角D为锐角,则角D的度数为多少?
A. 15度
B. 30度
C. 45度
D. 75度(答案:C)
八、若cosE = 1/2,且角E为锐角,则tanE的值为多少?
A. √2
B. √3
C. √3/3
D. 2/√3(答案:B)。
(完整版)三角函数的图象与性质练习题及答案
三角函数的图象与性质练习题一、选择题1.函数f (x )=sin x cos x 的最小值是( ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .y=2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________. 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f (x )=sin x cos x 的最小值是( B ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( A ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( C ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( D ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( C )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( A )A .y =2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( A )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( D ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( D ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( A )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________.⎣⎡⎦⎤98π+3k π,21π8+3k π (k ∈Z ) 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 31415.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上) ②③16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 2 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1, 则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π, 可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合. 解 (1)f (x )=21+cos 2ωx2+sin 2ωx +1=sin 2ωx +cos 2ωx +2=2⎝⎛⎭⎫sin 2ωx cos π4+cos 2ωx sin π4+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由题设,函数f (x )的最小正周期是π2,可得2π2ω=π2, 所以ω=2.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫4x +π4+2. 当4x +π4=π2+2k π,即x =π16+k π2(k ∈Z )时,sin ⎝⎛⎭⎫4x +π4取得最大值1,所以函数f (x )的最大值是2+2, 此时x 的集合为⎩⎨⎧⎭⎬⎫x |x =π16+k π2,k ∈Z .19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.解 f (x )=32sin 2ωx +12cos 2ωx +12=sin ⎝⎛⎭⎫2ωx +π6+12. (1)因为T =π,所以ω=1. ∴f (x )=sin ⎝⎛⎭⎫2x +π6+12, 当-π6≤x ≤π3时,2x +π6∈⎣⎡⎦⎤-π6,5π6, 所以f (x )的值域为⎣⎡⎦⎤0,32. (2)因为f (x )的图象的一条对称轴为x =π3,所以2ω⎝⎛⎭⎫π3+π6=k π+π2(k ∈Z ), ω=32k +12 (k ∈Z ), 又0<ω<2,所以-13<k <1,又k ∈Z ,所以k =0,ω=12.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)由图象可知,函数的最大值M =3,最小值m =-1, 则A =,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f (x )=2sin(2x +φ)+1, 将x =6π,y =3代入上式,得1)3π(=+ϕ ∴π22π3πk +=+ϕ,k ∈Z , 即φ=6π+2k π,k ∈Z ,∴φ=6π, ∴f (x )=2sin )6π2(+x +1. (2)由2x +6π=2π+k π,得x =6π+21k π,k ∈Z , ∴f (x )=2sin )6π2(+x +1的对称轴方程为 216π+=x k π,k ∈Z. 21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos ⎝⎛⎭⎫2x +π6. 故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6 =22sin ⎝⎛⎭⎫2x -π12. 由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32. ∵0<x <π,∴-π12<2x -π12<2π-π12. ∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π, ∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6. 22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图象过点(-1,0),∴2sin ⎝⎛⎭⎫-π4+φ=0. ∵|φ|<π2,∴φ=π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.(2)y =f (x )+f (x +2)=2sin ⎝⎛⎭⎫π4x +π4+2sin ⎝⎛⎭⎫π4x +π2+π4=22sin ⎝⎛⎭⎫π4x +π2=22cos π4x . ∵x ∈⎣⎡⎦⎤-6,-23,∴-3π2≤π4x ≤-π6. ∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;π4x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2 2.当。
三角函数计算题初中
1. 在直角三角形中,已知一条直角边长为3,斜边长为5,则另一直角边的长为:A. 4B. 3C. 2D. 12. 已知角A的正弦值为0.6,则角A的余弦值为:A. 0.4B. 0.6C. 0.8D. 0.23. 若sinθ = 0.8,则θ的值约为:A. 53.13°B. 36.87°C. 48.59°D. 41.41°4. 在直角三角形中,已知一条直角边长为4,斜边长为5,则另一直角边的正弦值为:A. 0.8B. 0.6C. 0.4D. 0.755. 若tanθ = 1.5,则θ的值最接近:A. 56.31°B. 45°C. 63.43°D. 30°填空题:6. 若sin 30° = ____,则sin 60° = ____。
7. 若cos 45° = ____,则cos 60° = ____。
8. 若tan 45° = ____,则tan 30° = ____。
9. 若sin 45° = ____,则cos 45° = ____。
10. 若tan 60° = ____,则sin 30° = ____。
11. 在直角三角形中,已知一条直角边长为6 cm,另一条直角边长为8 cm。
求斜边的长。
12. 在一个角为30°的直角三角形中,求另一个锐角的余弦值。
13. 一边长为5 cm的正三角形中,每个角的正弦值是多少?14. 若一角的余弦值为0.8,则这个角的角度是多少?15. 在直角三角形中,已知一条直角边长为10 cm,斜边长为15 cm。
求另一直角边的正切值。
(完整)初中数学三角函数练习题
(完整)初中数学三角函数练习题初中数学三角函数练题1. 求下列三角函数的值:a) sin 30°b) cos 45°c) tan 60°2. 在直角三角形 ABC 中,∠ACB = 90°,AC = 5 cm,BC = 12 cm。
求 sin A、cos A 和 tan A 的值。
3. 如果 sin x = 0.6,求 x 的值(0° ≤ x ≤ 180°)。
4. 已知 sin y = 0.8,求 cos y 的值(0° ≤ y ≤ 180°)。
5. 在直角三角形 DEF 中,∠E = 30°,EF = 6 cm,DE = 8 cm。
求 sin F、cos F 和 tan F 的值。
6. 如果 cos z = 0.4,求 z 的值(0° ≤ z ≤ 180°)。
7. 已知 cos w = 0.7,求 sin w 的值(0° ≤ w ≤ 180°)。
8. 在直角三角形 GHI 中,∠H = 60°,GH = 9 cm,HI = 3 cm。
求 sin G、cos G 和 tan G 的值。
9. 如果 tan v = 1.5,求 v 的值(0° ≤ v ≤ 180°)。
10. 已知 tan u = 2,求 sin u 的值(0° ≤ u ≤ 180°)。
11. 在直角三角形 ___ 中,∠K = 45°,JK = 6 cm,KL = 6 cm。
求 sin L、cos L 和 tan L 的值。
12. 如果 cot t = 0.75,求 t 的值(0° ≤ t ≤ 180°)。
13. 已知 cot s = 4,求 sin s 的值(0° ≤ s ≤ 180°)。
14. 已知cos α = 0.6,求sin^2 α 和cos^2 α 的值。
(完整版)三角函数定义练习含答案
课时作业3 三角函数的定义时间:45分钟 满分:100分一、选择题(每小题6分,共计36分)1.下列命题中正确的是( )A .若cos θ<0,则θ是第二或第三象限角B .若α>β,则cos α<cos βC .若sin α=sin β,则α与β是终边相同的角D .若α是第三象限角,则sin αcos α>0且cos αtan α<0解析:α是第三象限角,sin α<0,cos α<0,tan α>0,则sin αcos α>0且cos αtan α<0.答案:D2.若sin θ·cos θ<0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限解析:因为sin θcos θ<0,所以sin θ,cos θ异号.当sin θ>0,cos θ<0时,θ在第二象限;当sin θ<0,cos θ>0时,θ在第四象限.答案:D3.若角α的终边经过点P (35,-45),则sin αtan α的值是( )A.1615 B .-1615C.1516 D .-1516解析:∵r =(35)2+(-45)2=1,∴点P 在单位圆上.∴sin α=-45,tan α=-4535=-43.∴sin αtan α=(-45)·(-43)=1615.答案:A4.若角α终边上一点的坐标为(1,-1),则角α为( )A .2k π+π4,k ∈Z B .2k π-π4,k ∈ZC .k π+π4,k ∈Z D .k π-π4,k ∈Z解析:∵角α过点(1,-1),∴α=2k π-π4,k ∈Z .故选B.答案:B5.已知角α的终边在射线y =-3x (x ≥0)上,则sin αcos α等于() A .-310 B .-1010 C.310 D.1010解析:在α终边上取一点P (1,-3),此时x =1,y =-3. ∴r =1+(-3)2=10. ∴sin α=y r =-310,cos α=x r =110 .∴sin αcos α=-310×110=-310.答案:A6.函数y =sin x +lgcos x tan x的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π≤x <2k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 2k π<x <2k π+π2,k ∈Z C.{}x | 2k π<x <2k π+π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π-π2<x <2k π+π2,k ∈Z 解析:要使函数有意义,则有⎩⎪⎨⎪⎧ sin x ≥0 ①cos x >0 ②tan x ≠0 ③由①知:x 的终边在x 轴上、y 轴非负半轴上或第一、二象限内.由②知:x 的终边在第一、四象限或x 轴的正半轴.由③知x 的终边不能在坐标轴上.综上所述,x 的终边在第一象限,即函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x <2k π+π2,k ∈Z . 答案:B二、填空题(每小题8分,共计24分)7.用不等号(>,<)填空: (1)sin 4π5·cos 5π4·tan 5π3________0;(2)tan100°sin200°·cos300°________0.解析:(1)∵45π在第二象限,5π4在第三象限,5π3在第四象限,∴sin 4π5>0,cos 5π4<0,tan 5π3<0,∴sin 4π5·cos 5π4·tan 5π3>0.(2)∵100°在第二象限,200°在第三象限,300°在第四象限, ∴tan100°<0,sin200°<0,cos300°>0,∴tan100°sin200°·cos300°>0. 答案:(1)> (2)>8.函数f (x )=cos x 的定义域为__________________.解析:若使f (x )有意义,须满足cos x ≥0,即2k π-π2≤x ≤2k π+π2,k ∈Z ,∴f (x )的定义域为{x |2k π-π2≤x ≤2k π+π2,k ∈Z }.答案:{x |2k π-π2≤x ≤2k π+π2,k ∈Z }9.下列说法正确的有________.(1)正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零(2)若三角形的两内角α,β满足sin α·cos β<0,则此三角形必为钝角三角形(3)对任意的角α,都有|sin α+cos α|=|sin α|+|cos α|(4)若cos α与tan α同号,则α是第二象限的角解析:对于(1)正角和负角的正弦值都可正、可负,故(1)错.对于(2)∵sin α·cos β<0,又α,β∈(0,π),∴必有sin α>0,cos β<0,即β∈(π2,π),∴三角形必为钝角三角形,故(2)对.对于(3)当sin α,cos α异号时,等式不成立.故(3)错.对于(4)若cos α,tan α同号,α可以是第一象限角,故(4)错.因此填(2).答案:(2)三、解答题(共计40分,其中10题10分,11、12题各15分)10.已知角α的终边上一点P 与点A (-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,求sin α+sin β的值.解:由题意,P (3,2),Q (3,-2),从而sin α=232+22=21313, sin β=-232+(-2)2=-21313,所以sin α+sin β=0.11.求下列函数的定义域.(1)y =cos x +lg(2+x -x 2);(2)y =tan x +cot x .解:(1)依题意有⎩⎨⎧ cos x ≥0,2+x -x 2>0,所以⎩⎪⎨⎪⎧ -π2+2k π≤x ≤π2+2k π(k ∈Z ),-1<x <2.取k =0解不等式组得-1<x ≤π2,故原函数的定义域为⎝ ⎛⎦⎥⎤-1,π2. (2)因为tan x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z },cot x 的定义域为{x |x ∈R ,且x ≠k π,k ∈Z },所以函数y =tan x +cot x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z }∪{x |x ∈R ,且x ≠k π,k ∈Z }={x |x ∈R ,且x ≠k π2,k ∈Z }.12.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.解:当角α的终边在第一象限时,在角α的终边上取点P (1,2),设点P 到原点的距离为r .则r =|OP |=12+22=5,所以sin α=25=255,cos α=15=55, tan α=21=2;当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2).则r =|OQ |=(-1)2+(-2)2=5,所以sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 综上所得,当α是第一象限角时,sin α=255,cos α=55,tan α=2; 当α是第三象限角时,sin α=-255,cos α=-55,tan α=2.。
初中三角函数练习题及答案
三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)填空1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BAD C..6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73)第6题图xO AyB北甲北乙第5题图αA C B第10题图A 40°52mCD第9题图 B43第4题图三、认真答一答1,计算:s i n c o s c o t t a n t a n 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(c o s s i n )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
完整)初中三角函数专项练习题及答案
完整)初中三角函数专项练习题及答案初中三角函数基础检测题1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都()。
A、缩小2倍B、扩大2倍C、不变D、不能确定如果在直角三角形中,各边都扩大2倍,那么正弦值和余弦值都不变,答案为C。
2、在Rt△ABC中,∠C=90,AC=()。
A、3B、4C、5D、6由勾股定理可知,AB的平方等于AC的平方加上BC的平方,即AB²=AC²+BC²。
代入AC=4,BC=4,得AB²=32,即AB=√(3×2²)=2√3.因此AC=4,AB=2√3,BC=4,答案为A。
3、若∠A是锐角,且13sinA tanA,则∠A的范围是()。
A、<∠A<30B、30<∠A<45C、45<∠A<60D、60<∠A<90由于XXX3√3/3=√3.因为∠A是锐角,所以cosA>0,所以√3/2<cosA≤1,即30°<∠A≤45°,答案为B。
4、若cosA=3,则4sinA2tanA=()。
A、7B、3C、2D、411因为cosA=3>1,所以A没有实数解,答案为D。
5、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=()。
A、1:1:2B、1:1:3C、1:2:3D、1:3:2由正弦定理可知,a/XXX,因此a:b:c=6、在Rt△ABC中,∠C=90,则下列式子成立的是()。
A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=XXX由于∠C=90,因此sinC=1,cosC=0,XXX不存在。
因此A和B式不成立,C式中tanA=XXX,即∠A=∠B+k×180°,其中k为整数,因此C式成立,答案为C。
7、已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是()。
(完整word版)三角函数图像变换练习题(有答案)
三角函数图像变换练习题一、选择题(本大题共13小题,共65.0分)1. 为得到函数y =6sin (2x +π3)的图象,只需要将函数y =6cos2x 的图象( )A. 向右平行移动π6个单位 B. 向左平行移动π6个单位 C. 向右平行移动π12个单位D. 向左平行移动π12个单位2. 已知函数f(x)=sin(x +π3)sinx +cos 2x 的图象向右平移π6单位,再把横坐标缩小到原来的一半,得到函数g(x),则关于函数g(x)的结论正确的是 ( )A. 最小正周期为πB. 关于x =π6对称 C. 最大值为1D. 关于(π24,0)对称3. 函数的图象y =3cos2x 可以看作把函数y =3sin2x 的图象向( )而得到的A. 左平移π2个单位 B. 左平移π4个单位 C. 右平移π2个单位D. 右平移π4个单位4. 将函数y =sin(4x −π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移π6个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为( )A. f(x)=sin(2x +π6) B. f(x)=sin(2x −π3) C. f(x)=sin(8x +π6)D. f(x)=sin(8x −π3)5. 要得到函数f(x)=cos(2x −π6)的图象,只需将函数g(x)=sin2x 的图象A. 向左平移π6个单位 B. 向右平移π6个单位 C. 向左平移π3个单位D. 向右平移π3个单位6. 将函数f(x)=√3sin2x −cos2x 的图象向右平移π3个单位得到函数g(x)的图象,若有g(θ)=2cos π6,则θ的可能取值为A. 3π4B. 5π6C. π6D. π47. 将函数的图象上的所有点向右平移π12个单位得到函数g(x)的图象,则g(x)的函数解析式为( )A.B.C.D.8. 如果两个函数的图象经过平移后能够重合,那么这两个函数称为“和谐”函数.下列函数中与g(x)=√2sin(x +π4)能构成“和谐”函数的是( )A. f(x)=sin(x +π4) B. f(x)=2sin(x −π4) C. f(x)=√2sin(x2+π4)D. f(x)=√2sin(x +π4)+29. 若将函数f (x )=√2sin(2x +π4)的图像向右平移φ(φ>0)个单位,所得图像关于原点对称,则φ的最小值为( )A. π8B. π4C. 3π8D. 3π410. 函数y =sin (2x +π3)的图象可由函数y =cosx 的图象( )A. 先把各点的横坐标缩短到原来的12,再向左平移π6个单位 B. 先把各点的横坐标缩短到原来的12,再向右平移π12个单位 C. 先把各点的横坐标伸长到原来的2倍,再向左平移π6个单位 D. 先把各点的横坐标伸长到原来的2倍,再向右平移π12个单位11. 若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后的图象的对称轴为( )A. x =kπ2−π6(k ∈Z)B. x =kπ2+π6(k ∈Z)C. x =kπ2−π12(k ∈Z) D. x =kπ2+π12(k ∈Z)12. 将函数的图象向左平移π6个单位长度得到函数g(x)的图象,则下列说法正确的是( )A. 函数g(x)的周期是π2B. 函数g(x)的图象关于直线x =−π12对称C. 函数g(x)在(π6,π2)上单调递减D. 函数g(x)在(0,π6)上最大值是113.已知将函数的图象向左平移φ个单位长度后,得到函数g(x)的图象,若g(x)的图象关于原点对称,则f(π3)=()A. −√32B. √32C. −12D. 12二、填空题(本大题共1小题,共5.0分)14.将函数y=sin(−2x)的图象向左平移π4个单位,所得图象的解析式为_______________.三、解答题(本大题共4小题,共48.0分)15.若函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象经过点(0,√3),且相邻的两个零点差的绝对值为6.(1)求函数f(x)的解析式;(2)若将函数f(x)的图象向右平移3个单位后得到函数g(x)的图象,当x∈[−1,5]时,求g(x)的值域.16.设函数,其中0<ω<3.已知f(π6)=0.(1)求ω;(2)将函数f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数g(x)的图象,求g(x)在[−π4,3π4]上的最小值及相应x的值.17.已知函数f(x)=Asin(ωx+φ),其中A>0,ω>0,0<φ<π,函数f(x)图像上相邻的两个对称中心之间的距离为π4,且在x=π3处取到最小值−2.(1)求函数f(x)的解析式;(2)若将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移π6个单位,得到函数g(x)图象,求函数g(x)的单调递增区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 3初中三角函数基础检测题(一)精心选一选(共36分)1、在直角三角形中,各边都扩大 2 倍,则锐角 A 的正弦值与余弦值都 ()A 、缩小 2 倍B 、扩大 2 倍C 、不变D 、不能确定42、在 R t △A BC 中,∠C =900,BC =4,s i n A= 5 ,则 A C =()A 、3B 、4C 、5D 、613、若∠A 是锐角,且 s i n A= 3 ,则()A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<90013sin A - tan A4、若 cosA= 3 ,则 4 s in A + 2 t an A =()4 A 、 71 B 、 31 C 、 2D 、05、在△A BC 中,∠A :∠B :∠C =1:1:2,则 a :b :c =()2A 、1:1:2B 、1:1:C 、1:1:D 、1:1: 26、在 R t △A BC 中,∠C =900,则下列式子成立的是()A 、s i n A=s i n BB 、s i n A=c o s BC 、t a n A=t a n BD 、c o s A=t a n B7.已知 R t △A BC 中,∠C =90°,A C =2,BC =3,则下列各式中,正确的是( )2A. s i n B = 32B. cosB= 32C. tanB= 33D. tanB= 23 30︒45︒D CB8. 点(-s i n 60°,c o s 60°)关于 y 轴对称的点的坐标是( )3 1 3 13 11A .( 2 , 2 )B .(- 2 , 2 )C .(- 2 ,- 2 )D .(- 2 ,-3 2 )9. 每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣. 某同学站在离旗杆 12 米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为 30°, 若这位同学的目高 1.6 米,则旗杆的高度约为( )A .6.9 米B .8.5 米C .10.3 米D .12.0 米10. 王英同学从A 地沿北偏西60º 方向走100m 到B 地,再从B 地向正南方向走200m到 C 地,此时王英同学离 A 地 ( )A(A ) 50 m(B )100 m(C )150m(D )100 m11、如图 1,在高楼前 D 点测得楼顶的仰角为30︒,向高楼前进图 160 米到C 点,又测得仰角为45︒ ,则该高楼的高度大约为( ) A .82 米B .163 米C .52 米D .70 米12、一艘轮船由海平面上 A 地出发向南偏西 40º 的方向行驶 40 海里到达 B地,再由 B 地向北偏西 10º 的方向行驶 40 海里到达 C 地,则 A 、C 两地相距( ).(A )30 海里 (B )40 海里 (C )50 海里 (D )60 海里(二)细心填一填(共33分)1. 在 R t △A BC 中,∠C =90°,A B =5,A C =3,则 s i n B =.32 7 2 2. 在△A BC 中,若 BC = ,A B = ,A C =3,则 c o s A= .3. 在△A BC 中,A B =,A C = ,∠B =30°,则∠B A C 的度数是.4. 如图,如果△A P B 绕点 B 按逆时针方向旋转 30°后得到△A 'P 'B ,且 B P =2,那么 PP '的长为. (不取近似值. 以下数据供解题使用:s i n 15°= 6 - 24,c o s 15°= 6 + 2 4)5. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东 48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 度.北第 4 题图第 5 题图第 6 题图6. 如图,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为 结果保留根 号).7.求值:s i n 260°+c o s 260°=.8. 在直角三角形 A BC 中,∠A= 900,BC =13,A B =12,则tan B =.9. 根据图中所给的数据,求得避雷针 CD 的长约为 m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:s i n 43°≈0.6802,s i n 40 °≈0.6428,c o s 43°≈0.7341,c o s 40°≈0.7660,t a n 43°≈0.9325,t a n 40 °≈0.8391)D C43 40° A52mB第 9 题图A第 10 题图CyABO x乙北甲B2 310. 如图,自动扶梯 AB 段的长度为 20 米,倾斜角 A 为α,高度 BC为米(结果用含α的三角比表示).11. 如图,太阳光线与地面成 60°角,一棵倾斜的大树与地面成 30°角,这时测得大树在地面上的影子约为 10 米,则大树的高约为 米。
(保留两个有效数字, ≈1.41, ≈1.73)三、认真答一答(共51分)1 计算: sin 30︒+ cos60︒- cot 45︒- tan 60︒⋅tan 30︒2 计算: 2 (2 cos45︒- sin 90︒) + (4 - 4)︒+( - 1) -13 如图,在∆ABC 中,AD 是 BC 边上的高, tan B = cos ∠DAC 。
(1) 求证:AC =BD(2) 若 sin C = 12,BC = 12 13,求 AD 的长。
4 如图,已知∆ABC 中∠C = Rt ∠ , AC = m ,∠BAC = ,求∆ABC 的面积(用的三角函数及 m 表示)2D3045BCCEA30 45E r D 5. 甲、乙两楼相距 45 米,从甲楼顶部观测乙楼顶部的俯角为 30°,观测乙楼的底部的俯角为 45°,试求两楼的高.BC 6. 从A 处观测铁塔顶部的仰角是 30°,向前走 100 米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.A7、如图,一铁路路基横断面为等腰梯形 ABCD ,斜坡 BC 的坡度为= 2 : 3 ,路基高 AE 为3 m ,底CD 宽12 m ,求路基顶 AB 的宽。
BACDE8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度 CD = 3 m ,标杆与旗杆的水平距离 BD = 15 m ,人的眼睛与地面的高度 EF = 1.6 m ,人与标杆CD 的水平距离 DF = 2 m ,求旗杆 AB 的高度.AHFDB7CBA D E 东9如图,一条渔船某时刻在位置A 观测灯塔 B、C(灯塔 B 距离A 处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45 分钟之后到达D 点,观测到灯塔 B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?北10、如图,A 城气象台测得台风中心在 A 城的正西方 300 千米处,以每小时 10 千米的速度向北偏东60º的 BF 方向移动,距台风中心 200 千米的范围内是受这次台风影响的区域。
(1)问 A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长?11. 如图,山上有一座铁塔,山脚下有一矩形建筑物 ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度 AD 和高度 DC 都可直接测得,从 A、D、C 三点可看到塔顶端 H,可供使用的测量工具有皮尺、测倾器。
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案。
具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用 n 表示;如果测角,用α、β、γ表示)。
(2)根据你测量的数据,计算塔顶端到地面的高度 HG(用字母表示,测倾器高度忽略不计)。
13.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置 O 点的正北方向 10 海里处的 A 点有一涉嫌走私船只正以 24 海里/小时的速度向正东方向航行。
为迅速实验检查,巡逻艇调整好航向,以 26 海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B为追上时的位置)(2)确定巡逻艇的追赶方向(精确到0.1︒)参考数据:sin 66.8︒≈ 0.9191,cos66.8︒≈ 0.3939sin 67.4︒≈ 0.9231,cos67.4︒≈ 0.3846sin 68.4︒≈ 0.9298,cos68.4︒≈ 0.3681sin 70.6︒≈ 0.9432,cos70.6︒≈ 0.332214.公路MN 和公路 PQ 在点 P 处交汇,且∠QPN = 30︒,点 A 处有一所中学,A P=160m,一辆拖拉机以3.6k m/h的速度在公路M N上沿P N方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A QM.15、如图,在某建筑物 AC 上,挂着“多彩云南”的宣传条幅 BC,小明站在点 F处,看条幅顶端 B,测的仰角为30︒,再往条幅方向前行 20 米到达点 E 处,看到条幅顶端B,测的仰角为60︒,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)16、一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛 C 最近?9 2 9(参考数据:s i n21.3°≈25 ,t a n21.3°≈5, s i n63.5°≈10,t a n63.5°≈2)B A17、如图,一条小船从港口 A 出发,沿北偏东40方向航行20 海里后到达 B 处,然后又沿北偏西30方向航行10 海里后到达C 处.问此时小船距港口 A 多少海里?(结果精确到 1 海里)友情提示:以下数据可以选用: sin 40 ≈ 0.6428 , cos 40 ≈ 0.7660 , tan 40 ≈ 0.8391, ≈1.732 .北QPC30B40A18、如图 10,一枚运载火箭从地面O 处发射,当火箭到达 A 点时,从地面C 处的雷达站测得 AC 的距离是6km ,仰角是43.1s 后,火箭到达 B 点,此时测得 BC 的距离是6.13km ,仰角为45.54,解答下列问题:(1) 火箭到达 B 点时距离发射点有多远(精确到 0.01k m )?(2) 火箭从 A 点到 B 点的平均速度是多少(精确到 0.1k m /s )?OC图 10319、经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从 A 点开始沿岸边向正东方向前进 100 米到达点C 处,测得∠ACB = 68 .(1)求所测之处江的宽度(sin 68 ≈ 0.93, cos 68 ≈ 0.37, tan 68 ≈ 2.48. );(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.图①图②20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手A B及两根与F G垂直且长为l米的不锈钢架杆A D和BC(杆子的底端分别为D,C),且∠D A B=66.5°.(1)求点 D 与点 C 的高度差 DH;(2)求所用不锈钢材料的总长度l(即A D+A B+BC,结果精确到0.1米).(参考数据:s i n66.5°≈0.92,c o s66.5°≈0.40,t a n66.5°≈2.30)6 答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题3 1,572,33,30°(点拨:过点C作A B的垂线C E,构造直角三角形,利用勾股定理 CE)4.- (点拨:连结PP',过点B作B D⊥PP',因为∠P B P'=30°,所以∠P B D=15°,利用 s i n15°=6 - 24 ,先求出 PD,乘以 2 即得 PP')25.48(点拨:根据两直线平行,内错角相等判断)6.(0,4 +433)(点拨:过点 B 作BC⊥AO,利用勾股定理或三角函数可分别求得 AC 与 OC 的长)7.1(点拨:根据公式 s i n2α+c o s2α=1)5tan B =AC 8.12 (点拨:先根据勾股定理求得A C=5,再根据AB 求出结果)9.4.86(点拨:利用正切函数分别求了B D,BC的长)10.20 sin(点拨:根据sin α=BCAB ,求得BC =AB •sin α)11.35三,解答题可求得1.-1;2.43.解:(1)在Rt∆ABD 中,有tan B =AD ,BDRt∆ADC 中,有cos∠DAC =ADACtan B = cos∠DAC∴AD=AD ,故AC = BD BD AC(2)由sin C =AD =12 ;可设AD = 12x,AC = BD = 13xAC 13由勾股定理求得DC = 5x , BC =12 ∴ BD + DC = 18x = 12即x =23 ∴AD = 12 ⨯2= 833 4.解:由tan ∠BAC =BCAC∴ BC = AC tan ∠BAC AC = m ,∠BAC =∴ BC = m tan∴S = 1 AC ⋅ BC = 1m ⋅ m tan= 1m 2 tan∆ABC2 225 解过 D 做 DE⊥AB 于 E ∵∠M A C =45° ∴∠A CB =45° BC=45在 RtΔACB 中, tgACB =AB BC∴ AB = BC ⋅ tg 45 = 45(米) BC在 R t ΔA D E 中,∠A D E =30°tgADE = AEDE∴ AE = DE ⋅ tg 30 = 45 ⋅3 = 15 3∴ CD = AB - AE = 45 - 15 3(米)答:甲楼高 45 米,乙楼高45 - 15 米.6 解:设 CD=x在 R t ΔBC D 中, ctgDBC = BCCD∴BC =x (用 x 表示 BC )在 R t ΔA C D 中, ctgDAC = ACCD∴ AC = CD ⋅ c tgDAC = 3x∵A C -BC =1003x - x = 100( - 1)x = 10033 A30 45E r D3 CE∴ x = 50( + 1)答:铁塔高50( + 1) 米.7、解:过 B 作 BF ⊥ CD ,垂足为 F∴ AE = BF在等腰梯形 ABCD 中AD=BC ∠C = ∠DiBC = 2 : 3 AE=3m ∴D E =4.5mAD=BC , ∠C = ∠D , ∠CFB = ∠DEA = 90︒ ∴ ∆ BCF ≅ ∆ ADE∴C F =D E =4.5m∴EF=3m∠BFE = ∠AEF = 90︒ ∴BF//CD∴四边形 ABFE 为平行四边形∴AB=EF=3m8 解: CD ⊥ FB , AB ⊥ FB ,∴CD ∥ AB ∴△CGE ∽△AHEA∴ CG = EG ,即: CD - EF = FD AH EH AH FD + BDHFDB3∴3 -1.6 = AH 22 +15,∴ AH = 11.9∴ AB = AH + HB = AH + EF = 11.9 +1.6 = 13.5(m)9 解: A 、C 、E 成一直线∠ABD = 145︒ ,∠D = 55︒ , ∴ ∠BED = 90︒在Rt ∆BED 中, cos D =DE, ∴ DE = BD ⋅cos DBDBD = 500 米, ∠D = 55︒ ∴ DE = 500 cos 55︒ 米,所以 E 离点 D 的距离是 500cos55 o10 解:在 R t △A B D 中, AD = 16 ⨯ 7= 28 (海里),4∠B A D =90°-65°45′=24°15′.∵c o s 24°15′= AD, ∴ AB = AD=28≈ 30.71(海里). AB cos 24︒15' 0.9118A C =AB +BC =30.71+12=42.71(海里).在 R t △A C E 中,s i n 24°15′= CE,AC∴C E =A C ·s i n 24°15′=42.71×0.4107=17.54(海里). ∵17.54<18.6,∴有触礁危险。