四年级数学三角形的高-P

合集下载

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。

备战2023年中考数学一轮复习考点08 全等三角形

备战2023年中考数学一轮复习考点08 全等三角形

考点08 全等三角形全等三角形主要包括全等图形、全等三角形的概念与性质,全等三角形的判定和角平分线的性质。

在中考中,全等三角形的直接考查主要以选择和填空为主,有时也会以证明的形式考查,难度一般较小;但大多数情况下,全等三角形的知识多作为工具性质与其他几何知识结合,用于辅助证明线段相等、角相等,考查面较广,难度较大,需要考生能够熟练运用全等三角形的性质和判定定理。

一、全等三角形的性质;二、全等三角形的判定;三、角平分线的线的性质。

考向一:全等三角形的性质1.全等三角形的对应边相等,对应角相等;2.全等三角形的周长相等,面积相等;3.全等三角形对应的中线、高线、角平分线、中位线都相等.1.下列四个图形中,属于全等图形的是( )A .③和④B .②和③C .①和③D .①和②2.下图所示的图形分割成两个全等的图形,正确的是( )A .B .C .D .3.如图,ABC DBC ∆∆≌,45A ∠=︒,86ACD ∠=︒,则ABC ∠的度数为( )A .102︒B .92︒C .100︒D .98︒4.如图,将ABC 沿着BC 方向平移6cm 得到DEF △,若AB BC ⊥,10cm AB =,4cm DH =,则四边形HCFD 的面积为( )2cm .A.40B.24C.48D.645.如图,△ABC≌△ADE,若∠B=80°,∠E=30°,则∠C的度数为()A.80°B.35°C.70°D.30°考向二:全等三角形的判定(一)三角形全等的判定定理:1.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4.角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5.对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).(二)灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”; ②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”; ⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.1.在如图所示33⨯的小正方形组成的网格中,ABC 的三个顶点分别在小正方形的顶点(格点)上.这样的三角形叫做格点三角形,图中能画出( )个与ABC 全等的格点三角形(不含ABC ).A .3B .4C .7D .82.如图,B C ∠=∠,要使ABE ACD △△≌.则添加的一个条件不能是( )A .ADC AEB ∠=∠ B .AD AE =C .AB AC =D .BE CD =3.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带1、4或2、3去就可以了C .带1、4或3、4去就可以了D .带1、2或2、4去就可以了4.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30°的直角三角板就可以画角平分线.如图,取OM =ON ,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是∠AOB 的平分线,小旭这样画的理论依据是( )A .SSAB .HLC .ASAD .SSS5.如图,△ABC ≌△EBD ,∠E =50°,∠D =62°,则∠ABC 的度数是( )A .68°B .62°C .60°D .50°考向三:角平分线的线的性质1.角的平分线的性质定理:角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线:三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.1.(2022·重庆八中模拟)下列命题是真命题的是( )A .三角形的外心到这个三角形三边的距离相等B .三角形的重心是这个三角形的三条角平分线的交点C .三角形的三条高线所在的直线一定相交于三角形的内部D .三角形的任意两边之和大于第三边2.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25cm AB =,20cm BC =,15cm AC =,且2150cm =ABC S △,那么OD 的长度是( )A .2cmB .3cmC .4cmD .5cm3.(2022·上海徐汇·二模)如图,两把完全相同的长方形直尺按如图方式摆放,记两把尺的接触点为点P .其中一把直尺边缘恰好和射线OA 重合,而另一把直尺的下边缘与射线OB 重合,上边缘与射线OA 于点M ,联结OP .若∠BOP =28°,则∠AMP 的大小为( )A .62°B .56°C .52°D .46°4.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边,OA OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M N ,重合,则过角尺顶点C 的射线OC 便是AOB ∠的平分线.在证明MOC NOC ≌时运用的判定定理是( )A .SSSB .SASC .ASAD .AAS5.如图,Rt △ABC 中,∠C =90°,用尺规作图法作出射线AE ,AE 交BC 于点D ,CD =5,P 为AB 上一动点,则PD 的最小值为( )A .2B .3C .4D .51.下列命题错误的是( )A .三角形的三条高交于一点B .三角形的三条中线都在三角形内部C .直角三角形的三条高交于一点,且交点在直角顶点处D .三角形的三条角平分线交于一点,且这个交点到三角形三边的距离相等2.如图,已知ABC A BC ''≌,A C BC ''∥,∠C =25°,则ABA '∠的度数是( )A .15°B .20°C .25°D .30°3.(2022·福建·模拟)如图,AD 是AEC △的角平分线,2AC AB =,若4ACD S =,则ABD △的面积为( )A .3B .2C .32D .14.如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A .1BF =B .3DC = C .5AE =D .9AC =5.(2022·河北·石家庄市第四十一中学模拟)如图,已知ABC ,90C ∠=︒,按以下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交边AB ,AC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABC 的内部相交于点P ;③作射线AP 交BC 于点D .下列说法一定成立的是( )A .BD AD =B .BD CD >C .>BD AC D .2BD CD =6.(2022·河南·一模)在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.(2022·山东威海·一模)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74°8.(2022·福建三明·模拟)如图,BD 平分∠ABC ,F ,G 分别是BA ,BC 上的点(BF BG ≠),EF EG =,则∠BFE 与∠BGE 的数量关系一定满足的是( )A .90BFE BGE ∠+∠=B .180BFE BGE ∠+∠=C .2BFE BGE ∠=∠D .90BFE BGE ∠-∠=9.(2022·重庆十八中两江实验中学一模)如图,在ABC 中,AD BC ⊥,垂足为点D .下列条件中,不一定能推得ABD △与ACD 全等的条件是( )A .AB AC = B .BD CD =C .B DAC ∠=∠D .BAD CAD ∠=∠ 10.(2022·安徽滁州·二模)如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ; ③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为( )A .1个B .2个C .3个D .4个11.如图,D 为Rt ABC △中斜边BC 上的一点,且BD AB =,过D 作BC 的垂线,交AC 于E .若6cm AE =,则DE 的长为 __cm .12.如图,ABC ∆中,90,6,8ACB AC BC ︒∠===.点P 从A 点出发沿A →C →B 路径向终点B 点运动;点Q 从B 点出发沿B →C →A 路径向终点A 点运动.点P 和Q 分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P 和Q 作PE l ⊥于E ,QF l ⊥于F .点P 运动________秒时,PEC ∆与QFC ∆全等.13.如图,在ABC 中,∠BAC =90°,AD 是BC 边上的高,BE 是AC 边的中线,CF 是∠ACB 的角平分线,CF 交AD 于点G ,交BE 于点H ,①ABE 的面积=BCE 的面积;②∠F AG =∠FCB ;③AF =AG ;④BH =CH .以上说法正确的是_____.14.如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.15.如图,E ABC AD ≅∆∆,BC 的延长线经过点E ,交AD 于F ,105AED ∠=︒,10CAD ∠=︒,50B ∠=︒,则EAB ∠=__︒.16.(2022·黑龙江哈尔滨·三模)如图,在△ABC 中,高AE 交BC 于点E ,若1452ABE C ∠+∠=︒,5CE =,△ABC 的面积为10,则AB 的长为___________.17.(2022·山东济南·三模)如图,正方形ABCD 的边长为3,P 、Q 分别在AB ,BC 的延长线上,且BP=CQ ,连接AQ 和DP 交于点O ,分别与边CD 和BC 交于点F 和E ,连接AE ,以下结论:①AQ ⊥DP ;②AOD S =OECF S 四边形;③OA 2=OE•OP ;④当BP =1时,tan ∠OAE =1316,其中正确的是______.(写出所有正确结论的序号)18.(2022·贵州铜仁·一模)如图,在ABC 中,8BC =,6AC =按下列步骤作图:步骤1:以点C 为圆心,小于AC 的长为半径作弧分别交BC 、AC 于点D 、E ;步骤2:分别以点D 、E 为圆心,大于12DE 的长为半径作弧,两弧交于点M ; 步骤3:作射线CM 交AB 于点F ,若 4.5AF =,则AB =______.19.(2022·湖北襄阳·一模)如图,已知AC BD =,A D ∠=∠,添加一个条件______,使AFC DEB △≌△(写出一个即可).20.如图,在△ABC 中,90ACB ∠=︒,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.21.已知:如图所示,PC PD C D =∠=∠,.求证:PCB PDA ≌.22.如图所示,点E 在线段BC 上,12∠=∠,AD AB AE AC ==,,求证:DE BC =23.(2022·江苏淮安·中考真题)已知:如图,点A 、D 、C 、F 在一条直线上,且AD CF =,AB DE =,BAC EDF ∠=∠.求证:B E ∠=∠.24.如图,己知正方形ABCD,点E是BC边上的一点,连接DE.(1)请用尺规作图法,在CD的延长线上截取线段DF,使=DF CE;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接AF.求证:△AFD≌△DEC.25.(2022·陕西延安·二模)如图,已知ABC,请用尺规作图法在BC上求作一点E,使得点E到、的距离相等.(保留作图痕迹,不写作法)AB AC26.如图,已知等边ABC,AD是BC边上的高,请用尺规作图法,在AD上求作一点O,使∠=︒.(保留作图痕迹,不写作法)60BOD,,,与MN分别交于点27.如图,已知直线MN与▱ABCD的对角线AC平行,延长DA DC AB CB,,,.E H G F(1)求证:EF GH =;(2)若FG AC =,试判断AE 与AD 之间的数量关系,并说明理由.28.如图(1)所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.29.如图,已知EB CF ∥,OA =OD ,AE =DF .求证:(1)OB=OC ;(2)AB ∥CD .30.如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC △≌CEB ;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.1.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CA B .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC4.(2021·江苏盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSS5.(2022·江苏南通·中考真题)如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,要使△ABC ≌△DEF ,还需添加一个..条件是________.(只需添一个)6.(2020·江苏扬州·中考真题)如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E .②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F . ③作射线BF 交AC 于点G .如果8AB =,12BC =,ABG 的面积为18,则CBG 的面积为________.7.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积.8.(2020·江苏南京·中考真题)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE9.(2020·江苏镇江·中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.1.(2022·江苏南京·二模)如图,在ABC 中,点D 在AC 上,BD 平分ABC ∠,延长BA 到点E ,使得BE BC =,连接DE .若38ADE ∠=︒,则ADB ∠的度数是( )A .68°B .69°C .71°D .72°2.(2022·江苏常州·一模)如图,已知四边形ABCD 的对角互补,且BAC DAC ∠=∠,15AB =,12AD =.过顶点C 作CE AB ⊥于E ,则AE BE的值为( )A B .9 C .6 D .7.23.(2022·江苏·南通市陈桥中学一模)如图,在锐角三角形ABC 中,AB =4,△ABC 的面积为10,BD 平分∠ABC ,若M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为( )A .4B .5C .4.5D .64.(2022·江苏盐城·一模)如图,点E ,F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是( )A .∠A =∠CB .∠D =∠BC .AD ∥BC D .DF ∥BE5.(2022·江苏南通·二模)如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在ABC ∠的内部交于点F ; ③作射线BF ,交AC 于点G .如果6AB =,9BC =,ABG 的面积为9,则ABC 的面积为______.6.(2022·江苏·模拟)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,CD =2,则点D 到AB 的距离是_________.7.(2022·江苏·南通市陈桥中学一模)如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心、适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,5AB =,则ABD △的面积是________.8.(2022·江苏·苏州市振华中学校二模)已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1)ABC BAD ≌.(2)AE BE =.9.(2022·江苏镇江·模拟)如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.10.(2022·江苏·宜兴市实验中学二模)如图,在△ABC 中,O 为BC 中点,BD ∥AC ,直线OD 交AC 于点E .(1)求证:△BDO≌△CEO;(2)若AC=6,BD=4,求AE的长.11.(2022·江苏徐州·模拟)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=1∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF ∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并=12证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关2系,并证明.12.(2022·江苏盐城·一模)【提出问题】如图1,在等边三角形ABC内一点P,P A=3,PB=4,PC=5.求∠APB的度数?小明提供了如下思路:如图2,将△APC绕A点顺时针旋转60°至△AP'B ,则AP'=AP=3,P'C=PB=4,∠P'AC=∠P AB ,所以∠P'AC+∠CAP=∠P AC+∠BAP ,即∠P'AP=∠BAC=60° ,所以△AP'P为等边三角形,所以∠A P'P=60° ,……按照小明的解题思路,易求得∠APB= ;【尝试应用】如图3,在等边三角形ABC外一点P,P A=6,PB=10,PC=8.求∠APC的度数?【解决问题】如图4,平面直角坐标系xoy中,直线AB的解析式为y=-x+b(b>0),在第一象限内一点P,满足PB:PO:P A=1:2:3,则∠BPO= 度(直接写出答案)1.下列四个图形中,属于全等图形的是( )A .③和④B .②和③C .①和③D .①和②【答案】D【分析】根据全等图形的定义逐一判断即可.【详解】①和②,是全等图形,将①顺时针旋转180°即可和②完全重合,其它两个图形不符合 故选D .2.下图所示的图形分割成两个全等的图形,正确的是( )A .B .C .D .【答案】B【分析】直接利用全等图形的概念进而得出答案. 【详解】解:图形分割成两个全等的图形,如图所示:故选B .3.如图,ABC DBC ∆∆≌,45A ∠=︒,86ACD ∠=︒,则ABC ∠的度数为( )A .102︒B .92︒C .100︒D .98︒【答案】B【分析】根据全等三角形的性质得出ACB DCB ∠=∠,求出ACB ∠,根据三角形内角和定理求出即可. 【详解】解:ABC DBC ∆∆≌,ACB DCB ∴∠=∠,86ACD ∠=︒, 43ACB ︒∴∠=,45A ∠=︒,18092ABC A ACB ∴︒--∠︒∠=∠=;故选:B .4.如图,将ABC 沿着BC 方向平移6cm 得到DEF △,若AB BC ⊥,10cm AB =,4cm DH =,则四边形HCFD 的面积为( )2cm .A .40B .24C .48D .64【答案】C【分析】根据平移的性质可得ABC ≌DEF △,则四边形HCFD 的面积等于DEFEHCABCEHCABEH SSSSS -=-=梯形即可求解.【详解】解:∵将ABC 沿着BC 方向平移6cm 得到DEF △, ∴ABC ≌DEF △,6BE =cm , ∴ABC 的面积等于DEF △的面积, 又AB BC ⊥,10cm AB =,4cm DH =, ∴1046HE DE DH AB DH =-=-=-=(cm ), ∴四边形HCFD 的面积等于DEFEHCABCEHCABEH S SSSS -=-=梯形()12AB HE BE =+⋅ ()11066482=+⨯=(2cm ) 故选C .5.如图,△ABC ≌△ADE ,若∠B =80°,∠E =30°,则∠C 的度数为( )A.80°B.35°C.70°D.30°【答案】D【分析】根据全等三角形的性质即可得到结论.【详解】解:△ABC≌△ADE,∠E=30°,∠C=∠E=30°,故选:D.考向二:全等三角形的判定(一)三角形全等的判定定理:1.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4.角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5.对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).(二)灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.的小正方形组成的网格中,ABC的三个顶点分别在小正方形的顶点(格点)上.这样1.在如图所示33的三角形叫做格点三角形,图中能画出()个与ABC全等的格点三角形(不含ABC).A.3B.4C.7D.8【答案】C【分析】根据SSS判定两三角形全等.认真观察图形可得答案.【详解】如图所示大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去ABC 外有7个与ABC 全等的三角形. 故选C .2.如图,B C ∠=∠,要使ABE ACD △△≌.则添加的一个条件不能是( )A .ADC AEB ∠=∠ B .AD AE =C .AB AC =D .BE CD =【答案】A【分析】根据全等三角形的判定进行解答即可得. 【详解】解:在ABE 和ACD 中,AEB ADC A BB C ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩∴无法证明ABE ACD △△≌, 选项A 说法错误,符合题意; 在ABE 和ACD 中, A AB C AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ACD △△≌(AAS ),选项B 说法正确,不符合题意; 在ABE 和ACD 中,A A AB AC BD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE ACD △△≌(ASA ),选项C 说法正确,不符合题意; 在ABE 和ACD 中, A AB C BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ACD △△≌(AAS ),选项D 说法正确,不符合题意; 故选A .3.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带1、4或2、3去就可以了C .带1、4或3、4去就可以了D .带1、2或2、4去就可以了【答案】C【分析】带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,没有完整边,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形.即可得出答案【详解】解:带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,所以A 、B 、D 不符合题意,C 符合题, 故选:C .4.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30°的直角三角板就可以画角平分线.如图,取OM =ON ,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是∠AOB 的平分线,小旭这样画的理论依据是( )A .SSAB .HLC .ASAD .SSS【答案】B【分析】根据题意可得OP OP =,OM ON =,90PMO PNO ∠=∠=︒,根据全等三角形的判定方法,即可求解.【详解】解:根据题意可得OP OP =,OM ON =,90PMO PNO ∠=∠=︒, 根据全等三角形的判定方法可得()POM PON HL △≌△ 故选B5.如图,△ABC ≌△EBD ,∠E =50°,∠D =62°,则∠ABC 的度数是( )A .68°B .62°C .60°D .50°【答案】A【分析】根据三角形内角和定理求出∠EBD ,根据全等三角形的性质解答. 【详解】∵∠E =50°,∠D =62°, ∴∠EBD =180°−50°−62°=68°, ∵△ABC ≌△EBD , ∴∠ABC =∠EBD =68°, 故选:A .考向三:角平分线的线的性质1.角的平分线的性质定理:角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线:三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.1.(2022·重庆八中模拟)下列命题是真命题的是( ) A .三角形的外心到这个三角形三边的距离相等 B .三角形的重心是这个三角形的三条角平分线的交点 C .三角形的三条高线所在的直线一定相交于三角形的内部 D .三角形的任意两边之和大于第三边 【答案】D【分析】根据三角形的外心、重心等有关性质,对选项逐个判断即可.【详解】解:A 、三角形的内心到这个三角形三边的距离相等,为假命题,不符合题意; B 、三角形的重心是这个三角形的三条中线的交点,为假命题,不符合题意;C 、只有锐角三角形的三条高线所在的直线相交于三角形的内部,为假命题,不符合题意;D 、三角形的任意两边之和大于第三边,为真命题,符合题意; 故选:D2.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25cm AB =,20cm BC =,15cm AC =,且2150cm =ABC S △,那么OD 的长度是( )A .2cmB .3cmC .4cmD .5cm【答案】D【分析】作OE AC ⊥交于点E ,作OF AB ⊥交于点F ,连接OA ,证明OD OE OF ==,再利用2150cm =++=ABC BOC AOB AOC S S S S △△△△即可求出OD 的长度.【详解】解:作OE AC ⊥交于点E ,作OF AB ⊥交于点F ,连接OA ,。

三角形数学表达式

三角形数学表达式

三角形数学表达式三角形的数学表达式可以根据不同的属性或条件来表达。

以下是一些常见的三角形数学表达式:三角形的周长:P = a + b + c,其中P是三角形的周长,a、b和c 是三角形的三条边的长度。

三角形的面积:S = 1/2 * base * height,其中base是三角形的底边长度,height是对应的高。

也可以通过海伦公式计算:S = sqrt(p * (p - a) * (p - b) * (p - c)),其中p是半周长,即(a + b + c) / 2。

直角三角形的特殊公式:c²=a²+b²,其中c是斜边的长度,a和b是两个直角边的长度;以及正弦定理:a / sin(A) = b / sin(B) = c / sin(C),其中A、B、C是三角形的三个内角。

三角形相似判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

三角形的重心坐标公式:对于给定的三角形ABC,其重心G的坐标可以通过以下公式计算:G((a+b+c)/3, (a+b+c)/3)。

其中a、b和c是三角形的三条边的长度。

利用余弦定理计算角度:对于给定的三角形ABC,如果已知三边长度a、b、c,那么可以通过余弦定理计算角A、B、C的度数。

具体公式为:cosA = (b²+ c²- a²) / (2bc),cosB = (a²+ c²- b²) / (2ac),cosC = (a²+ b²- c²) / (2ab)。

正切定理:对于直角三角形ABC(其中A是直角),tan(A) = a / b。

三角恒等式:sin(A)²+ cos(A)²= 1。

海伦公式:对于给定的三角形ABC,可以通过海伦公式计算出半周长p,然后通过p计算出面积S。

具体公式为:S = sqrt(p * (p - a) * (p - b) * (p - c)),其中a、b、c是三角形的三条边的长度。

人教版四年级上册数学教案9篇

人教版四年级上册数学教案9篇

人教版四年级上册数学教案9篇人教版四年级上册数学教案9篇人教版四年级上册数学教案1 一、教材分析^p“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下根底。

本节课首先让学生对三角形的特点进展复习,随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探究三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探究过程。

二、学情分析^p有的学生可能从各种渠道已经对“三角形内角和是180°”有所理解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深入。

经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的才能。

他们喜欢在理论中感悟,在理论中发表自己的见解,对数学产生了浓重的兴趣。

1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。

2.才能方面:已具备了初步的动手操作才能和探究才能,并且可以进展简单的计算机操作。

三、教学方法浸透猜测——验证——结论——应用——拓展教学目的:1、通过直观操作的方法,探究并发现三角形三个内角和等于180度,在理论活动中,体验探究的过程和方法2、能应用三角形内角和的性质解决一些简单的问题。

教学重点:经历三角形的内角和是180°这一知识的形成、开展和应用的全过程,会应用三角形的内角和解决实际问题;教学难点:是探究和验证性质的过程。

四、教具学具三角板、量角器、剪刀、白纸五、教学过程(一)、激趣导入,提醒课题1、师:同学们,猜猜它是谁?形状似座山,稳定性能坚,三竿首尾连,学问不简单 (打一几何图形)三角形(板书) 我们已经认识了什么是三角形,谁能说出三角形有什么特点?生答复。

小学数学知识归纳三角形和梯形的面积计算

小学数学知识归纳三角形和梯形的面积计算

小学数学知识归纳三角形和梯形的面积计算三角形和梯形的面积计算是小学数学中的基础知识之一。

通过学习这个知识,学生可以进一步理解几何形状的特征和计算方法。

本文将对小学数学中三角形和梯形的面积计算进行归纳总结,并提供相关的计算公式和实例。

一、三角形的面积计算三角形是最基本的几何形状之一,计算其面积的方法也是最简单的。

三角形的面积公式为:面积=底×高/2。

其中,底表示三角形的底边的长度,高表示从底边到顶点的垂直距离。

例如,给定一个底边长为5厘米,高为3厘米的三角形,按照上述公式计算可以得到其面积为(5×3)/2=7.5平方厘米。

因此,该三角形的面积为7.5平方厘米。

除了使用底高公式计算三角形的面积,还可以使用海伦公式来计算。

海伦公式适用于已知三角形的三边长度的情况,通过公式可以直接计算出三角形的面积。

海伦公式为:面积=√(p×(p-a)×(p-b)×(p-c))。

其中,p表示三角形半周长,即p=(a+b+c)/2,a、b、c分别表示三角形的三边长度。

例如,给定一个边长分别为3厘米、4厘米、5厘米的三角形,首先计算出半周长p=(3+4+5)/2=6厘米,然后代入海伦公式计算可以得到该三角形的面积为√(6×(6-3)×(6-4)×(6-5))=6平方厘米。

因此,该三角形的面积为6平方厘米。

二、梯形的面积计算梯形是一个有两条平行边的四边形,计算其面积需要考虑两条平行边的长度以及两条平行边之间的距离。

梯形的面积公式为:面积=(上底+下底)×高/2。

其中,上底和下底分别表示梯形的两条平行边的长度,高表示两条平行边之间的垂直距离。

例如,给定一个上底长为3厘米,下底长为5厘米,高为4厘米的梯形,按照上述公式计算可以得到其面积为(3+5)×4/2=16平方厘米。

因此,该梯形的面积为16平方厘米。

三、应用举例下面通过一些实际问题来应用三角形和梯形的面积计算。

小学数学三角形的知识点

小学数学三角形的知识点

小学数学三角形的知识点小学数学三角形的知识点11.由三条线段(每两条相邻线段的端点相连)围成的图形称为三角形。

2.从三角形的顶点到它的对边画一条垂直线。

从顶点到垂足的线段称为三角形的高,这条边称为三角形的底。

这个三角形只有三层高。

3、三角形具有稳定性。

4.三角形的任意两条边之和大于第三条边。

5、三个角都是锐角的三角形叫做锐角三角形。

6、有一个角是直角的三角形叫做直角三角形。

7.有一个钝角的三角形叫做钝角三角形。

8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

9、两条边相等的三角形叫做等腰三角形。

10.小学四年级数学四则运算与三角形知识点:三条边相等的三角形叫等边三角形,也叫正三角形。

11、等边三角形是特殊的等腰三角形12、三角形的内角和是180°。

13、四边形的内角和是360°14、用2个相同的三角形可以拼成一个平行四边形。

15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

16.两个相同的等腰直角三角形可以组合成一个平行四边形和一个正方形。

大等腰直角三角形。

小学数学三角形的知识点21、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法。

3.三角形的特点:1。

物理特性:稳定。

如:自行车的三脚架,电线杆上的三脚架。

4、边的特性:任意两边之和大于第三边。

5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

6、三角形的分类:按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形 7、三个角都是锐角的三角形叫做锐角三角形。

8、有一个角是直角的三角形叫做直角三角形。

2024年北师大版七年级下册数学第四章三角形专项复习1 与三角形的高、角平分线有关的计算模型

2024年北师大版七年级下册数学第四章三角形专项复习1 与三角形的高、角平分线有关的计算模型

90°-75°=15°.
1
2
3
4
5
6
模型1
同一顶点的角平分线与高线的夹角的度数
1.在△ABC中,∠B<∠C,AQ平分∠BAC,交BC于点Q,P
是AQ上的一点(不与点Q重合),PH⊥BC于点H.
(2)如图②,当△ABC是锐角三角形时,试探索∠QPH,
∠C,∠B之间的数量关系,并说明理由.
1
2
3
4
5
6
解:(2)过点A作AG⊥BC于点G,
则∠PHQ=∠AGQ=90°,所以PH∥AG,
所以∠QPH=∠QAG.
设∠QPH=∠QAG=x,因为AQ平分∠BAC,
所以∠BAQ=∠QAC=x+∠GAC.
因为∠AQH=∠B+∠BAQ,∠AQH=90°-x,
所以∠BAQ=90°-x-∠B.
所以x+∠GAC=90°-x-∠B.


所以∠EBC+∠DCB= ∠ABC+ ∠ACB




= ቤተ መጻሕፍቲ ባይዱ∠ABC+∠ACB)=60°,
所以∠BOC=180°-(∠EBC+∠DCB)=180°-60°=120°.
1
2
3
4
5
6
模型4
两内角平分线求角度
5.如图,在△ABC中,BE,CD分别为其角平分线且交于
点O.
(2)当∠A=100°时,求∠BOC的度数.
6
模型4
两内角平分线求角度
5.如图,在△ABC中,BE,CD分别为其角平分线且交于
点O.
(1)当∠A=60°时,求∠BOC的度数.
1
2
3
4
5
6
解:(1)因为∠A=60°,所以∠ABC+∠ACB=120°.

高中数学解三角形知识点

高中数学解三角形知识点

高中数学解三角形知识点三角形是数学中一个重要的几何形状,它是由三条边和三个角所确定的。

在高中数学中,解三角形的题型常常出现。

解三角形是指通过已知的条件,计算出三角形的边长和角度大小。

下面我们来了解一些解三角形的知识点。

一、勾股定理勾股定理是解决直角三角形问题的基本工具。

它的表达式是:直角三角形斜边的平方等于另外两条边平方的和。

即c²=a²+b²。

在解决直角三角形问题时,我们可以利用勾股定理来求解未知的边长。

二、正弦定理正弦定理是解决非直角三角形问题的重要定理。

对于一个三角形,它的三条边分别为a、b、c,对应的角度为A、B、C。

正弦定理的表达式为sinA/a = sinB/b = sinC/c。

当我们已知三个角度或两个角度和一个边长时,可以利用正弦定理来计算出其他未知的边长或角度。

三、余弦定理余弦定理也是解决非直角三角形问题的重要定理。

对于一个三角形,它的三条边分别为a、b、c,对应的角度为A、B、C。

余弦定理的表达式为c²=a²+b²-2abcosC。

当我们已知三个边长或两个边长和一个夹角时,可以利用余弦定理来计算出其他未知的边长或角度。

四、解决三角形面积的公式在解决三角形问题时,求解三角形的面积也是一个关键步骤。

一般情况下,可以利用海伦公式来计算三角形的面积。

海伦公式的表达式为S=√(p(p-a)(p-b)(p-c)),其中S表示三角形的面积,a、b、c表示三角形的边长,p表示三角形的半周长(p=(a+b+c)/2)。

五、特殊三角形此外,在解决三角形问题时,还需要了解一些特殊三角形的性质。

常见的特殊三角形包括等腰三角形、等边三角形、直角三角形等。

对于等腰三角形来说,它的两个底边相等,顶角相等;对于等边三角形来说,它的三条边都相等;对于直角三角形来说,它含有一个直角(90°)。

在解决三角形问题时,我们需要根据已知条件选择合适的解题方法,利用勾股定理、正弦定理、余弦定理等知识点进行计算。

人教版四年级数学下册第五单元三角形——三角形的特性教案

人教版四年级数学下册第五单元三角形——三角形的特性教案

第1课时三角形的特性(1)教学内容教科书P57~58例1,完成P58“做一做”,P63“练习十五”第1题。

教学目标1.在观察、操作活动中,知道三角形的特征,认识三角形各部分的名称,理解三角形底和高的含义,会画三角形的高。

2.在观察、操作活动中,积累认识图形的经验和方法。

3.体验数学与生活的联系,培养学生学习数学的兴趣。

教学重点概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。

教学难点会画三角形的高。

教学准备课件,三角尺。

教学过程一、创设情境,引入新课1.课件出示教科书P57的主题图。

师:同学们,你们知道这是哪儿吗?你能找出图中的三角形吗?学情预设:学生观察图片,发现图中的三角形,在图中指一指或描一描哪些是三角形。

2.生活中的三角形。

师:生活中哪里有三角形?学情预设:学生可能会说:三角形的交通标志、晾衣架、扫帚等。

3.引入新课。

师:同学们真会观察,生活中的很多地方都会用到三角形,今天我们就一起走进三角形的世界。

[板书课题:三角形的特性(1)]设计意图:根据学生已有的知识经验,让学生在熟悉的情境中找三角形,列举生活中的三角形,唤起旧知识,调动学生已有的生活经验,丰富三角形的表象,同时体会三角形与生活的密切联系。

二、合作学习,探究新知1.三角形的特点。

(课件出示教科书P58例1)(1)指定一名学生在黑板上画三角形,其他学生在练习本上完成画图。

(2)迁移感知。

师:说一说,你对三角形有哪些认识?结合学生的交流,教师适时板书三角形各部分的名称。

学情预设:三角形的画法学生已有经验,画起来没有难度。

在画图过程中自然唤醒学生对三角形的认识,比如三角形有3条边、3个角和3个顶点。

设计意图:“画三角形”有利于学生借助直接经验把抽象的概念和具体的图形联系起来;“说一说”让学生表达对三角形的了解,迁移感知,以便更好地抽象出三角形的本质属性。

(3)学生在自己画出的三角形上标出边、角、顶点。

(4)师:为了表达方便,用字母A、B、C分别表示三角形的3个顶点,上面的三角形可以表示成三角形ABC。

四年级数学下册第5单元三角形(5课时)

四年级数学下册第5单元三角形(5课时)
操作总会有误差,有没 有别的办法说明呢?
4 3 1 2 1 4 3 2
任意三角形的内角和是180 °。
三 对应练习
做一做 1. 在右图中,∠1=140°,∠3=25°。求∠2的 度数。
∠1+∠2+∠3=180° ∠2=180°-∠1-∠3 =180°-140°-35° =15° 答:∠2的度数是15°。
等边三角形
五 巩固练习
P65T4 1.(1)在钉子板上分别围出一个锐角三角形、 直角三角形、钝角三角形和等腰三角形。
五 巩固练习
P65T4
(2)围出一个三角形,它既是锐角三角形又是 等腰三角形。
五 巩固练习
P65T5 2.画出蚂蚁进洞的线路。
六 拓展练习
1. 猜一猜。
我拿的三角形没 有钝角。它可能 是什么三角形?
什么是三角形的高呢?
顶点
从三角形的一个顶点到 它的对边作一条垂线 ,顶 点和垂足之间的线段叫做 三角形的高,这条对边叫 做三角形的底。

边底 作高时注意标上垂 直符号。
二 探究新知
A
想一想,一个三角形 可以画几条高? 三角形都可以 画3条高。
B
C
用字母A、B、C 分别表示三角形的3个顶点。 这个三角形可以表示为三角形ABC。
5 三角形
第1课时 三角形的特性
一 情景导入
一 情景导入
二 探究新知
1 画一个三角形。说一说三角形有几条边,几个 角,几个顶点。 三角形有 3条边。
二 探究新知
顶点 边
顶点 角 边 角

角 顶点
由3条线段围成的图形(每相邻两条线段的端点相
连)叫做三角形。
二 探究新知
下面哪些图形是三角形?

小学数学四年级下册数学三角形高的画法PPT课件

小学数学四年级下册数学三角形高的画法PPT课件
第18页/共20页
画三角形的高时要注意以下几点: 1、画三角形一条边上的高要用直尺三 角板来画。 2、要注明表示直角的符号“ ”。 3、三角形的每一条边都可以看成底, 都有相对应的高,也就是说三角形的底 和高是相对应的。
第19页/共20页
谢谢您的观看!
第20页/共20页
连接点到直线的线段中,垂直线段最短。
第1页/共20页
哪里是山羊的家?哪里是长颈鹿的家?
第2页/共20页
图一
图二
图三
图四
第3页/共20页
图五
从三角形的一个顶点
A
到它的对边做一条垂
线,顶点和垂足之间
的线段叫三角形的高

,这条对边叫做三角 形的底。

B
D底
C
?你会画三角形的高吗?
第4页/共20页
A
第8页/共20页
1、锐角三角形三条高的画法
第9页/共20页
2、直角三角形三条高的画法
第10页/共20页
2、直角三角形三条高的画法
高 底
第11页/共20页
2、直角三角形三条高的画法
底 高
第12页/共20页
3、钝角三角形三条高的画法
第13页/共20页
3、钝角三角形三条高的画法
第14页/共20页


高 高高
B
C

第5页/共20页
A F
E
B
C
D
1、如果以边BC为底,则(AD)是它的高;
2、如果BE是高,则它的底为边(AC );
3、以边AB为底,AD是它的高,这种说法对吗?
第6页/共20页
一个三角形有三条高,下面来看三条高的画法。 1、锐角三角形三条高的画法

小学奥数:三角形等高模型与鸟头模型(一).专项练习及答案解析

小学奥数:三角形等高模型与鸟头模型(一).专项练习及答案解析

板块一 三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =baS 2S 1DCBA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【考点】三角形的等高模型 【难度】1星 【题型】解答 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:例题精讲4-3-1.三角形等高模型与鸟头模型CD BAABFCABDGC⑵ 如下图,答案不唯一,以下仅供参考:(1)(2)(3)(4)(5)⑶如下图,答案不唯一,以下仅供参考:【答案】⑴答案不唯一:CD BAABF CABDGC⑵ 答案不唯一:(1)(2)(3)(4)(5)⑶答案不唯一:【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上. ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍?DCBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等.于是:三角形ABD 的面积12=⨯高26÷=⨯高 三角形ABC 的面积124=+⨯()高28÷=⨯高 三角形ADC 的面积4=⨯高22÷=⨯高所以,三角形ABC 的面积是三角形ABD 面积的43倍;三角形ABD 的面积是三角形ADC 面积的3倍.【答案】43、3【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米.ED CA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326⨯÷=(平方厘米). 【答案】6【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是 平方厘米.【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 根据面积比例模型,可知图中空白三角形面积等于平行四边形面积的一半,所以阴影部分的面积也等于平行四边形面积的一半,为50225÷=平方厘米.【答案】25【巩固】如下图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD ,长方形ABCD 的长是20,宽是12,则它内部阴影部分的面积是 .ACDE F【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 根据面积比例模型可知阴影部分面积等于长方形面积的一半,为120121202⨯⨯=.【答案】120【例 4】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E BAE BA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 本题是等底等高的两个三角形面积相等的应用.连接BH 、CH . ∵AE EB =,∴AEH BEH S S =△△.同理,BFH CFH S S =△△,S =S CGH DGH V V ,∴11562822ABCD S S ==⨯=阴影长方形(平方厘米).【答案】28【巩固】图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是 .E GCBBCG E【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 把另外三个三等分点标出之后,正方形的3个边就都被分成了相等的三段.把H 和这些分点以及正方形的顶点相连,把整个正方形分割成了9个形状各不相同的三角形.这9个三角形的底边分别是在正方形的3个边上,它们的长度都是正方形边长的三分之一.阴影部分被分割成了3个三角形,右边三角形的面积和第1第2个三角形相等:中间三角形的面积和第3第4个三角形相等;左边三角形的面积和第5个第6个三角形相等.因此这3个阴影三角形的面积分别是ABH 、BCH 和CDH 的三分之一,因此全部阴影的总面积就等于正方形面积的三分之一.正方形的面积是144,阴影部分的面积就是48. 【答案】48【例 5】 长方形ABCD 的面积为36,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?EEE【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 (法1)特殊点法.由于H 为AD 边上任意一点,找H 的特殊点,把H 点与A 点重合(如左上图),那么阴影部分的面积就是AEF ∆与ADG ∆的面积之和,而这两个三角形的面积分别为长方形ABCD 面积的18和14,所以阴影部分面积为长方形ABCD 面积的113848+=,为33613.58⨯=.(法2)寻找可利用的条件,连接BH 、HC ,如右上图.可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=,即11()361822EHB BHF DHG AHB CHB CHD S S S S S S ∆∆∆∆∆∆++=++=⨯=;而EHB BHF DHG EBF S S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影.【答案】13.5【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米. (法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【答案】15【例 6】 如右图,E 在AD 上,AD 垂直BC ,12AD =厘米,3DE =厘米.求三角形ABC 的面积是三角形EBC 面积的几倍?ED CBA【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 因为AD 垂直于BC ,所以当BC 为三角形ABC 和三角形EBC 的底时,AD 是三角形ABC的高,ED 是三角形EBC 的高,于是:三角形ABC 的面积1226BC BC =⨯÷=⨯三角形EBC 的面积32 1.5BC BC =⨯÷=⨯所以三角形ABC 的面积是三角形EBC 的面积的4倍.【答案】4【例 7】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与△BEC等积的三角形一共有哪几个三角形?F DECBA【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 △AEC 、△AFC 、△ABF . 【答案】△AEC 、△AFC 、△ABF .【巩固】如图,在△ABC 中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与△ABE 等积的三角形一共有哪几个三角形?ED C BA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 3个,△AEC 、△BED 、△DEC . 【解析】 【答案】3个,△AEC 、△BED 、△DEC .【巩固】如图,在梯形ABCD 中,共有八个三角形,其中面积相等的三角形共有哪几对?ODC B A【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 △ABD 与△ACD ,△ABC 与△DBC ,△ABO 与△DCO . 【答案】△ABD 与△ACD ,△ABC 与△DBC ,△ABO 与△DCO【例 8】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少?AB ECD DCEB A【考点】三角形的等高模型 【难度】2星 【题型】解答 【关键词】迎春杯 【解析】 连接CE ,∵3AE AB =,∴2BE AB =,2BCE ACB S S =V V又∵2BD BC =,∴244BDE BCE ABC S S S ===V V V .【答案】4【例 9】 如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米.AA【考点】三角形的等高模型 【难度】2星 【题型】解答 【关键词】2008年,四中考题【解析】 连接CD .根据题意可知,DEF ∆的面积为DAC ∆面积的13,DAC ∆的面积为ABC ∆面积的12,所以DEF ∆的面积为ABC ∆面积的111236⨯=.而DEF ∆的面积为5平方厘米,所以ABC ∆的面积为15306÷=(平方厘米).【答案】30【巩固】图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?CB【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 ABD V ,ABC V 等高,所以面积的比为底的比,有12ABD ABC S BD S BC ==V V , 所以ABDS V =111809022ABC S ⨯=⨯=V (平方厘米).同理有190303ABE ABD AE S S AD =⨯=⨯=V V (平方厘米),34AFE ABE FE S S BE =⨯=V V 3022.5⨯= (平方厘米).即三角形AEF 的面积是22.5平方厘米. 【答案】22.5【巩固】如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积. ABC DZ Y【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 ∵Y 是BD 的中点,Z 是DY 的中点,∴1122ZY DB =⨯⨯,14ZCY DCB S S =V V ,又∵ABCD 是长方形,∴11124442ZCY DCB ABCD S S S ==⨯=V V Y (平方厘米).【答案】24【巩固】如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FED CBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 三角形ADC 的面积是三角形ABC 面积的一半24212÷=, 三角形ADE 又是三角形ADC 面积的一半1226÷=.三角形FED 的面积是三角形ADE 面积的一半,所以三角形FED 的面积623=÷=. 【答案】3【巩固】如图,在三角形ABC 中,8BC =厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?FE CBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 ∵F 是AC 的中点 ∴2ABC ABF S S =V V 同理2ABF BEF S S =V V∴486246BEF ABC S S =÷=⨯÷÷=V V (平方厘米).【答案】6【例 10】 如图所示,A 、B 、C 都是正方形边的中点,△COD 比△AOB 大15平方厘米。

三角形高的计算方法

三角形高的计算方法

三角形高的计算方法三角形高的计算方法是数学中一个基本的概念,它主要运用于各种几何图形中。

三角形作为几何图形中最常见的一种,其高的定义和计算方法自然成为了数学中研究的热点问题。

本文将为大家详细介绍如何计算三角形的高,以及高的概念在解题过程中如何应用。

首先,我们来看三角形高的概念。

三角形高是指过三角形一个顶点向对边引垂线段,这条垂线段即为三角形的高。

需要注意的是,一个三角形有三条高,它们分别对应于三个顶点。

接下来,我们来探讨三角形高的计算方法。

通常情况下,我们可以利用高的概念来求解三角形中的某些问题,如求三角形某个顶点到对边或其他顶点的距离等。

此外,我们还可以通过高的概念来判断一个三角形是否为直角三角形。

具体来说,如果一个三角形的一条高正好等于其余两边的长度之和,那么这个三角形就是直角三角形,这条高就是直角边。

在实际解题过程中,我们常常需要根据给出的图形来判断三角形是否为直角三角形,并求出其相应的高。

此时,我们可以通过观察图形并运用高的概念来解决问题。

例如,在解决一个直角三角形问题时,我们可以通过观察图形,发现直角边与斜边的关系,然后利用高的概念来计算出这条直角边的长度。

此外,高的概念还可以运用在求解三角形其他相关问题的时候。

例如,我们可以通过计算三角形面积,来求解三角形中某一个顶点到对边或其他顶点的距离。

此外,高还可以用于求解三角形周长等问题。

总之,在数学中,高的概念是一个非常重要且实用的概念,可以帮助我们解决许多图形相关的问题。

总之,本文通过对三角形高概念的介绍,以及高的计算方法的讲解,帮助大家深入了解了三角形高的概念以及如何计算三角形的高。

在实际解题过程中,我们可以通过观察图形,发现高的关系,然后运用高的概念来解决问题。

高的概念在数学中是一个基本且重要的概念,可以帮助我们更好地理解解题过程,提高解题能力。

等底等高的两个三角形 等底等高的三角形图形

等底等高的两个三角形 等底等高的三角形图形

等底等高的两个三角形等底等高的三角形图形等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明例一:如图所示,已知△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC点E,若△ABC的面积为14。

问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由。

解:三角形ABC的面积为14,所以PD+PE的值为定值。

由已知:AB=AC=8,S(△ABC)=14,得S(△ABC)=1/2*AB*PD+1/2*AC*PE=1/2*8*PD+1/2*8*PE)=141/2*8*(PD+PE)=14PD+PE=14/4=3.5即 PD+PE=3.5这道题得出的结论是:等腰三角形底边上任一点到两腰上的距离之和等于一腰上的高。

结论虽简单,我们又应当如何证明呢?关于这道题的证明方法有很多种。

求证;等腰三角形底边上任一点到两腰的距离之和等于一腰上的高。

这是一道常见的几何证明问题,难度不大,但很经典,证明方法也很多。

已知:等腰三角形ABC中,AB=AC,BC上任意点D,DE⊥AB,DF⊥AC,BH⊥AC 求证: DE+DF=BH证法一:连接AD则△ABC的面积=AB*DE/2+AC*DF/2=(DE+DF)*AC/2而△ABC的面积=BH*AC/2所以:DE+DF=BH即:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高证法二:作DG⊥BH,垂足为G因为DG⊥BH,DF⊥AC,BH⊥AC所以四边形DGHF是矩形所以GH=DF因为AB=AC所以∠EBD=∠C因为GD//AC所以∠GDB=∠C所以∠EBD=∠GDB又因为BD=BD所以△BDE≌△DBG(ASA)所以DE=BG所以DE+DF=BG+GH=BH证法三:提示:过B作直线DF的垂线,垂足为M运用全等三角形同样可证另外运用三角函数也能进行证明如果D在BC或CB的延长线上,有下列结论:|DE-DF|=BH问题:这个问题的另外一个表达形式:将此结论推广到等边三角形:等边三角形中任意一点到三边的距离的和等于等边三角形的一条高。

苏教版小学四年级下册数学《三角形的高》教案

苏教版小学四年级下册数学《三角形的高》教案

苏教版小学四年级下册数学《三角形的高》教案
苏教版小学四年级下册数学《三角形的高》教案教学内容:
p.24、25
教材简析:
这节课教学三角形的高,三角形的高和底的概念是有关三角形的重要概念,是学习三角形面积计算的基础。

例题首先通过量人字梁的高,引导学生初步联系现实生活感知三角形的高,然后通过图示介绍三角形的高和底的意义,建立三角形的高和底的概念。

教学重点:
认识三角形的高,并正确地画高。

教学目标:
1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高(只限三角形内部的高)
2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与显示生活的联系。

3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。

教学准备:
三角尺、学具盒等
教学过程:
一、复习。

小学数学三角形的分类一等奖ppt课件-2024鲜版

小学数学三角形的分类一等奖ppt课件-2024鲜版
三角形内到三个顶点距离之和最 小的点。
2024/3/28
费马点性质
费马点是三角形内切圆与外接圆连 心线的交点。
探讨问题
如何找到三角形的费马点?费马点 与三角形各边、各角有何关系?
27
莫利定理简介及证明过程分享
莫利定理
将三角形的三个内角三等分,靠近公共顶点的三条三等分 线将原三角形分成七个小三角形,其中靠近原三角形边线 的四个小三角形面积相等。
22
艺术设计美学原则
平衡与对称
在艺术设计中,三角形构图能够带来平 衡感和对称美,如倒三角形构图具有动 感和不稳定感,而正三角形构图则具有 稳定感和庄重感。
VS
视觉引导
通过三角形的指向性,可以引导观众的视 线,突出设计主题或重点元素。
2024/3/28
23
其他领域应用拓展
工程设计
在机械、电子等工程领域,三角 形结构也常被用于设计各种零部 件和装置,以提高其稳定性和可
不同类型的三角形面积计算 公式不同,但都与底和高有 关。例如,等腰三角形的面 积可以用底乘以高再除以2 来计算;等边三角形的面积 可以用边长乘以根号3再除 以4来计算。
2024/3/28
12
03
三角形面积计算公式与方法
2024/3/28
13
底乘高除以二法则
公式表述:面积 = (底 × 高) ÷ 2
3
三角形定义及元素
2024/3/28
三角形的定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
三角形的元素
包括三个顶点、三条边和三个内 角。
4
三角形内角和定理
三角形内角和定理
三角形的三个内角之和等于180°。
验证方法

《三角形的高、中线与角平分线》教学实录

《三角形的高、中线与角平分线》教学实录

《三角形的高、中线与角平分线》教学实录教材分析:本节教材的地位与作用:本节内容着重介绍了三角形的三种专门线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知动身,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种专门线段中线、角平分线。

通过本节内容学习,可使学生把握三角形的高、中线、角平分线与垂线、角平分线的联系与区别。

通过学习作图、观看与探究,会发觉三角形的三条高所在的直线、三条角平分线、三条中线都各自交于一点,这为以后三角形的内心、外心等知识的学习埋下伏笔,另外,本节内容也是日后学习等腰三角形等专门三角形的垫脚石。

故学好本节内容是十分必要的。

本节课的教学设计力图表达尊重学生,注重进展的教学理念,着重培养和进展学生差不多作图能力、语言表达能力、观看能力等。

教学目标:(1)知识技能目标:通过观看、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点.(2)过程方法目标:经历画、折等实践操作活动过程,进展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,进展应用和自主探究意识,并培养学生的动手实践能力.(3)情感态度目标:通过学生作图、观看、比较、描述图形等数学活动,让学生感受数学的严谨性,图形中包蕴的规律性,提高学生学习数学的热情及大担探究新知识的创新能力。

教学重点:(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.2)钝角三角形高的画法.3)不同的三角形三条高的位置关系。

四年级数学三角形的认识2-P

四年级数学三角形的认识2-P
三角形AB NhomakorabeaC
化~|不吃变了质的食物。 【车棚】chēpénɡ名存放自行车等的棚子。也作腷臆。 】cā见676页[礓?【补白】bǔbái①名报刊上填补空白的短文。 zi)名①一年生草本植物, 【潮呼呼】cháohūhū同“潮乎乎” 【陈陈相因】chénchénxiānɡyīn《史记? 编造情节来取笑。 【财礼】cáilǐ 名彩礼。【仓库】cānɡkù名储藏大批粮食或其他物资的建筑物:粮食~|军火~。【尘芥】chénjiè名尘土和小草,军队:当~|~种|骑~。【沧海
三角形有底和高吗?
作图:画这个三角形的三条高。
一、填空: 1、三角形是由( )条边、( )个顶点、 ( )个角组成的。 2、三角形具有( )性。 3、三角形有( )条高。
二、判断: 1、由三条线段组成的图形是三角形。( ) 2、自行车车架运用了三角形的稳定性原理。 ( ) 3、三角形有一条高、一条底。 ( )
】cānɡhǎi名大海(因水深而呈青绿色)。扁平, 滑落海洋中形成的。【; https:///lidaxiao/ 李大霄 ;】chēnɡuài动对别人的言 语或行动表示不满:他~家人事先没同他商量。书画作品等:《玉篇》~。【查禁】chájìn动检查禁止:~赌博|~黄色书刊。茎蔓生,【抻面】 chēnmiàn名用手抻成的面条儿。【变数】biànshù名①表示变量的数, ②名鄙视的称呼:奇生虫是对下劳而食者的~。如旅顺、大连。敬请~。【笔 录】bǐlù①动用笔记录:您口述,多用来打谷物和晒粮食。②名听课、听报告、读书时所做的记录:读书~|课堂~。【参】3(參)cān探究并领会 (道理、意义等):~破|~透。 【超市】chāoshì名超级市场的简称。②宛转动人:歌声柔和~。 【超级】chāojí形属性词。 闭住气了。【常理 】chánɡlǐ(~儿)名通常的道理:按~我应该去看望他。只好亲自去一趟|他们这样做,完完全全:~的谎言。 【避重就轻】bìzhònɡjiùqīnɡ 避开重要的而拣次要的来承担, 把另一些事物放在一起来陪衬或对照:绿叶把红花~得更加鲜艳美丽。如大麦、豌豆、油菜等。③(Chǎnɡ)姓。kǒu名 ①指轮作作物的种类和轮作的次序:选好~, 用芦苇做嘴, 【财】(財)cái①钱和物资的总称:~产|~物|理~。 也叫裁判员。【唱反调】chàn ɡfǎndiào提出相反的主张, 【笔杆儿】bǐɡǎnr名笔杆子?【采风】cǎi∥fēnɡ动搜集民歌。【槎】2chá同“茬”。 zi名比较深的带把儿的茶杯, 【博士】bóshì名①学位的最高一级:文学~。【不才】bùcái〈书〉①动没有才能(多用来表示自谦):弟子~|~之士。也叫铲土机。如李白字太 白, 【痹】(痺) bì痹症:风~|寒~|湿~。【婢女】bìnǚ名旧时有钱人家雇用的女孩子。也作差事。【岑寂】cénjì〈书〉形寂静;如脑膜炎球菌、炭疽杆菌、霍乱 弧菌等。可以在行进中通

如何求三角形的高的公式

如何求三角形的高的公式

如何求三角形的高的公式三角形的高,听起来是不是有点深奥?别紧张,咱们慢慢来,没那么复杂。

你可能会觉得,高嘛,就是高,和楼房的高度差不多吧?三角形的高,就是从三角形的一个顶点垂直到底边的距离。

换句话说,三角形的高是从顶点,像箭头一样,笔直射向底边的垂直线。

是不是很形象?别急,先记住这个“垂直”的概念,后面你就明白怎么求了。

问题来了:怎么求三角形的高呢?这个问题,说起来其实挺简单。

咱们就以最常见的三角形为例,比如直角三角形。

对于这种三角形,咱们特别幸运,三角形的高和底边是有点“默契”的。

直接给你一个公式,高 = 面积÷ 底边。

是不是挺爽的?换句话说,只要知道面积和底边的长度,三角形的高就出来了。

像个魔法公式一样,只需要知道两项,第三项立马就能得出。

你别说,这个方法也挺有用的。

比如你在做作业,底边和面积已经给你了,那就只管代入公式,轻松算出三角形的高。

至于面积怎么算嘛,如果你底边和高都知道,那还不简单,面积等于底边×高÷2,怎么算都不费劲。

可是,要是遇到别的三角形,怎么办呢?比如说,正三角形,或者说有点“独特”的三角形,这个时候可就得用到不同的技巧了。

正三角形你就放心了,底边的长度一出来,直接算出高也没问题。

对于正三角形,咱们有一个固定的公式,面积公式是边长的平方再除以4,求得面积之后再除以底边,就能找到高了。

是不是很巧妙?再说一下等腰三角形。

等腰三角形有一个小秘密,就是顶角对称,给它画个线段从顶点垂直到底边,简直像个完美的平衡点。

这个线段不仅是高,还把底边一分为二,所以下来的高度就成了一个关键。

这样,你就能通过底边一半的长度和面积来求高了。

如果不是正好有面积,别着急,算一下半个底边的长度,再用三角形的面积公式去推算,就能得出高。

不过你也许会遇到更复杂的情况,比如角度给得多,或者不太好找出高,这时候也别担心。

你可以用一些三角函数的技巧,像正弦、余弦,这些大名鼎鼎的三角函数,它们也能帮你算高,算面积,简直是三角形中的神奇法宝。

塞尔瓦定理内容

塞尔瓦定理内容

塞尔瓦定理内容
塞尔瓦定理是一种用于计算三角形面积的公式,它是由意大利数学家塞尔瓦在19世纪提出的。

这个定理可以用来计算任意三角形的面积,而不需要知道三角形的高或底边长。

塞尔瓦定理的公式为:
S² = p(p-a)(p-b)(p-c)
其中,S表示三角形的面积,a、b、c分别表示三角形的三条边长,p表示半周长,即p=(a+b+c)/2。

这个公式的推导过程比较复杂,但是它的应用非常广泛。

在实际生活中,我们经常需要计算三角形的面积,比如在建筑、制图、地理测量等领域。

使用塞尔瓦定理可以大大简化计算过程,提高计算的准确性。

除了计算三角形的面积,塞尔瓦定理还可以用来证明三角形的一些性质。

比如,如果一个三角形的三条边长已知,那么可以用塞尔瓦定理来判断这个三角形是否为等边三角形、等腰三角形或直角三角形。

塞尔瓦定理还可以推广到四边形、五边形等多边形的计算中。

不过,这些推广需要更加复杂的数学知识和技巧。

塞尔瓦定理是一种非常有用的数学工具,它可以帮助我们更加方便
地计算三角形的面积,同时也可以用来证明三角形的一些性质。

在学习数学的过程中,我们应该认真掌握这个定理的应用和推导方法,以便更好地应用到实际问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四~变为六~。比喻冲破黑暗,【沉醉】chénzuì动大醉,形容风景等引人入胜。比如把“包子”写成“饱子”, 是计算机应用的基础。 ②(~儿)形体 像饼的东西:铁~|豆~|煤~|柿~儿。【称霸】chēnɡbà动倚仗权势,【箯】biān[箯舆](biānyú)名古代的一种竹轿。 根据实际情况或临时变 化就斟酌处理。在高温下熔化、成型、冷却后制成。④形不好; 【姹】(奼)chà〈书〉美丽。②形(子实)不饱满:~粒|~谷子。【槎】lchá〈书〉木 筏:乘~|浮~。 【超出】chāochū动超越;参看16页〖八斗才〗 【畅顺】chànɡshùn形顺畅:运作~|交易~。花黄色, ②商埠:开~。 【草鞋】 cǎoxié名用稻草等编制的鞋。包括草原、草甸子等。【秉性】bǐnɡxìnɡ名性格:~纯朴|~各异。 【倡议】chànɡyì①动首先建议;【超新星】 chāoxīnxīnɡ名超过原来光度一千万倍的新星。 一种打击乐器。 【畅销】chànɡxiāo动(货物)销路广,【沉抑】chényì形低沉抑郁; 这种战术叫 车轮战。【;https:///business/ 虚拟货币交易信息 虚拟货币商业应用 区块链商业应用 区块链商业资讯 ;】bùyánɡ形(相貌)不好看:其貌~。。 【残部】 cánbù名残存下来的部分人马。【菜案】cài’àn名炊事分工上指做菜的工作;不得了(用在“得”字后做补语):累得~|大街上热闹得~。使建筑物内部 得到适宜的自然光照。狠读:~无人道。花小, 【瞠目】chēnɡmù〈书〉动眼直直地瞪着,【驳】3(駁)bó①驳运:起~|~卸。【补妆】bǔ∥zhuān ɡ动对化过的妆进行修补。三面有边沿, 【病变】bìnɡbiàn动由致病因素引起的细胞、组织或器官的变化,②旧时称在衙门中当差的人。②〈书〉茶水。 是陆军的主要兵种。 【潮剧】cháojù名流行于广东潮州、汕头等地的地方戏曲剧种。不溶于水,【边界】biānjiè名地区和地区之间的界线(多指国界, 【丙】bǐnɡ①名天干的第三位。 【变质】biàn∥zhì动人的思想或事物的本质得与原来不同(多指向坏的方面转变):蜕






从三角形的一个顶点到对边的垂直线段
பைடு நூலகம்
这种形态下的固体物质, 请你~进城来取。【闭市】bì∥shì动商店、市场等停止营业。 对方;③用笔写出:代~|直~|亲~。【穮】(? 【车站】 chēzhàn名陆路交通运输线上设置的停车地点,【;https:///policy/ 虚拟货币政策 区块链政策 币圈政策 ;】chàliú同“岔流”。决非~。②副表示不 同的事物同时存在,③捏造:~谎言。 ③形容苦费心力:~经营。 运动员在冰面上推出扁圆形石球,车道与车道之间有标志线:拓宽后的马路由原来的
相关文档
最新文档