《11.3--简谐运动的回复力和能量》教学设计
《简谐运动的回复力和能量--优质获奖精品教案 (12)
课时11.3简谐运动的回复力和能量1.理解回复力的概念,会根据回复力的特点判断物体是否做简谐运动。
2.会用动力学的方法分析简谐运动中位移、速度、回复力和加速度的变化规律。
3.会用能量守恒的观点分析水平弹簧振子中动能、势能、总能量的变化规律。
重点难点:回复力的特点、简谐运动的动力学分析及能量分析。
教学建议:前两节研究的是做简谐运动的质点的运动特点,不涉及它所受的力以及能量转换的情况,是从运动学的角度研究的。
而本节要讨论它所受的力和能量转换的情况,是从动力学和能量的角度研究的。
教学中要讲清回复力是根据振动物体所受力的效果来命名的,振子的惯性使振子远离平衡位置时,回复力总是使振子回到平衡位置,正是这一对矛盾才使振子形成振动。
从能量守恒的角度对简谐运动进行分析时,只限于对水平弹簧振子。
导入新课:很多同学都喜欢荡秋千,你思考过吗,为什么一次次荡起的秋千还会一次次回到最低点?又为什么荡秋千时能荡得很高?1.简谐运动的动力学特征(1)回复力的方向跟振子偏离平衡位置的位移方向①相反(填“相同”或“相反”),总是指向②平衡位置,它的作用是使振子能③回到平衡位置。
(2)水平放置的弹簧振子做简谐运动时,其回复力可表示为④F=-kx,式中k为比例系数,也是弹簧的劲度系数;负号表示⑤力F与位移x方向相反。
(3)如果质点受到的力与它偏离平衡位置的位移大小成⑥正比,并且总指向⑦平衡位置,该质点的运动就是简谐运动。
2.简谐运动的能量的特征(1)弹簧振子的速度在不断变化,因而它的⑧动能在不断变化;弹簧的形变量在不断变化,因而它的⑨势能在不断变化。
(2)理论证明:若忽略能量损耗,在弹簧振子运动的任意位置,系统的⑩动能与势能之和都是一定的,与机械能守恒定律相一致。
(3)实际运动都有一定的能量损耗,所以简谐运动是一种理想化模型。
1.回复力是按性质命名的力还是按效果命名的力?解答:回复力是按效果命名的力。
2.弹簧振子在什么位置动能最大?在什么位置势能最大?解答:在平衡位置动能最大,在最大位移处势能最大。
教学设计9:11.3 简谐运动的回复力和能量
11.3 简谐运动的回复力和能量教学目标1.掌握简谐运动回复力的特征。
2.对水平的弹簧振子,能定量地说明弹性势能与动能的转化。
教学过程一、简谐运动的回复力在已学的知识当中,我们知道不同的运动受的力也是不同的,例如:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向时刻都在改变,但方向总指向圆心。
那么物体简谐运动时,所受合力有何特点呢?当把弹簧振子从它静止的位置O拉开一小段距离到A再放开后,它会在A-O-B之间振动。
为什么会振动?物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,我们把这个力叫做简谐运动的回复力。
1、定义:受到总能使振动物体回到平衡位置,且始终指向平衡位置的力2、方向:始终指向平衡位置3、特点:回复力是根据力的效果命名的,不是什么新的性质的力,4、来源:振动方向的合力,可以是重力,弹力,摩擦力,还可以是几个力的合力或某个力的分力,对于水平方向的弹簧振子,回复力就是弹簧的弹力。
振子由于惯性而离开平衡位置,当振子离开平衡位置后,振子所受的回复力总是使振子回到平衡位置,这样不断地进行下去就形成了振动。
振动的平衡位置O也可以说成是振动物体振动时受到的回复力为零的位置。
5.回复力与位移关系弹簧振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,位移可以用振子的位置坐标x来表示,方向始终从平衡位置指向振子(外侧)。
回复力的方向始终指向平衡位置,因而回复力的方向与振子的位移方向始终相反。
对于水平方向的弹簧振子,回复力就是弹簧的弹力。
在弹簧发生弹性形变时,弹簧振子的回复力F跟振子偏离平衡位置的位移x成正比,方向跟位移的方向总是相反。
二、简谐运动的动力学特征:F=-kx式中F 为回复力,x 为偏离平衡位置的位移,k 是劲度系数,负号表示回复力与位移的方向总相反。
大量理论研究表明:如果质点所受的力与它偏离平衡位置的位移大小成正比,并且总指向平衡位置,质点的运动就是简谐运动。
简谐运动的回复力和能量 教学设计 说课稿
简谐运动的回复力和能量教学目标:(一)物理观念1、理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。
2、掌握简谐运动回复力的特征。
3、对水平的弹簧振子,能定量地说明弹性势能与动能的转化。
(二)科学思维、科学探究1、通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。
2、分析弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
(三)科学态度与责任通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。
教学重点:1、简谐运动的回复力特征及相关物理量的变化规律。
2、对简谐运动中能量转化和守恒的具体分析。
教学难点:1、物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。
2、关于简谐运动中能量的转化。
实验演示:讨论与归纳、推导与列表对比、多媒体模拟展示教学用具:CAI 课件、水平弹簧振子教学过程:(一)引入新课教师:前面两节课我们从运动学的角度研究了简谐运动的规律,不涉及它所受的力。
我们已知道:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向总指向圆心。
那么物体简谐运动时,所受合力有何特点呢?这节课我们就来学习简谐运动的动力学特征。
(二)新课教学1、简谐运动的回复力(1)振动形成的原因(以水平弹簧振子为例)问题:(如图所示)当把振子从它静止的位置O 拉开一小段距离到A 再放开后,它为什么会在A -O -A '之间振动呢?分析:物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力。
回复力是根据力的效果命名的,对于水平方向的弹簧振子,它是弹力。
①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
简谐运动的回复力和能量+示范教案
简谐运动的回复力和能量教学目标(1)会分析弹簧振子的受力情况,理解回复力的概念。
(2)认识位移、速度、回复力和加速度的变化规律及相互联系。
(3)会用能量观点分析水平弹簧振子动能、势能的变化情况,知道简谐运动中机械能守恒。
教学重难点教学重点(1)理解回复力的概念。
(2)位移、速度、回复力和加速度的变化规律。
(3)简谐运动中动能和势能的变化。
教学难点从回复力角度证明物体的运动是简谐运动。
教学准备水平弹簧振子,多媒体课件教学过程新课引入教师设问:当我们把弹簧振子的小球拉离平衡位置释放后,小球就会在平衡位置附近做简谐运动。
小球的受力满足什么特点才会做这种运动呢?根据牛顿运动定律,可以作出以下判断:做简谐运动的物体偏离平衡位置向一侧运动时,一定有一个力迫使物体的运动速度逐渐减小直到减为0,然后物体在这个力的作用下,运动速度又由0逐渐增大并回到平衡位置;物体由于惯性,到达平衡位置后会继续向另一侧运动,这个力迫使它再一次回到平衡位置;正是在这个力的作用下,物体在平衡位置附近做往复运动。
我们把这样的力称为回复力。
讲授新课一、简谐运动的回复力教师活动:做简谐运动的物体受到的回复力有什么特点?下面我们以弹簧振子做简谐运动为例进行分析。
如图1甲,当小球在O 点(平衡位置)时,所受的合力为0;在O 点右侧任意选择一个位置P ,无论小球向右运动还是向左运动,小球在P 点相对平衡位置的位移都为x ,受到的弹簧弹力如图1乙所示。
从图中可以看出,迫使小球回到平衡位置的回复力应该是由弹簧弹力提供的,回复力大小为F =kx (k 为弹簧的劲度系数),方向指向平衡位置。
同样道理,当小球在O 点左侧某一位置Q 时,迫使小球回到平衡位置的回复力还是由弹簧弹力提供,大小仍为F =kx (如图1丙所示),方向指向平衡位置。
从上面的分析可以看出,弹簧对小球的弹力是小球做简谐运动的回复力,(1)回复力的特点:大小与小球相对平衡位置的位移成正比,方向与位移方向相反。
《简谐运动的回复力和能量》教案
11.3、简谐运动的回复力和能量示范教案一、教学目的1.掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的能量变化规律。
2.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
二、教学难点1.重点是简谐运动的定义;2.难点是简谐运动的动力学分析和能量分析。
三、教具:弹簧振子,挂图。
四、主要教学过程(一)引入新课提问1:什么是机械振动?答:物体在平衡位置附近做往复运动叫机械振动。
提问2:振子做什么运动?日常生活中经常会遇到机械振动的情况:机器的振动,桥梁的振动,树枝的振动,乐器的发声,它们的振动比较复杂,但这些复杂的振动都是由简单的振动的组成的,因此,我们的研究仍从最简单、最基本的机械振动开始。
刚才演示的就是一种最简单、最基本的机械振动,叫做简谐运动。
提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的?今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学(第二次演示竖直方向的弹簧振子)提问4:大家应明确观察什么?(物体)提问5:上述四个物理量中,哪个比较容易观察?提问6:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变?小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置提问7:简谐运动是不是匀变速运动?小结:简谐运动是变速运动,但不是匀变速运动。
加速度最大时,速度等于零;速度最大时,加速度等于零。
提问8:从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。
提问9:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功)提问10:在A点,振子的动能多大?系统有势能吗?提问11:在O点,振子的动能多大?系统有势能吗?提问12:在D点,振子的动能多大?系统有势能吗?提问13:在B,C点,振子有动能吗?系统有势能吗?小结:简谐运动过程是一个动能和势能的相互转化过程。
11.3_简谐运动的回复力和能量(物理教案)
11.3 简谐运动的回复力和能量导学方案2011年4月22日编写:杨洪涛审阅:张四林课时:2学习要求1.理解回复力的概念2.会用动力学的方法,分析简谐运动中的位移、速度、回复力和加速度的变化规律3.会用能量守恒的观点,分析水平弹簧振子中动能、势能、总能量的变化规律学习重难点重点:从动力学和能量的角度,讨论它所受的力和能量转换的情况难点:回复力的理解和对振动形成原因的认识学习过程【提出问题】物体做匀变速直线运动时,所受合力_________,方向___________;物体做匀速圆周运动时,所受合力大小_______,方向与速度方向______并________,物体做简谐运动时,所受合力有什么特点?一、简谐运动的回复力1.振动形成的原因【观察】水平弹簧振子的振动【提出问题】如图所示,当把振子从静止的位置O拉开一小段距离到A再放开后,它为什么会在A-O-A'之间振动呢?(1)物体做机械振动时,一定受到指向__________的力,这个力的作用总能使物体回到中心位置,这个力叫__________。
(2)回复力是根据力的效果来命名的,它可以是重力、弹力或摩擦力,或者几个力的合力,或某个力的分力。
(3)振子由于_______而离开平衡位置,当振子离开平衡位置后,振子所受的回复力总是使振子回到___________,这样不断进行下去,就形成了振动。
2.简谐运动的动力学特征【问题】弹簧振子振动时,回复力与位移有什么关系?方向:大小:阅读课本P11完成:(1)理论研究表明:如果质点所受的力与它偏离平衡位置位移的大小_________,并且总是指向__________,质点的运动就是简谐运动。
(2)做简谐运动的质点,回复力总满足_____________的形式,式中k是比例系数。
这就是简谐运动的动力学特征。
(由于力的方向总是指向平衡位置,它的作用总是要把物体拉回到平衡位置,所以通常把这个力称为回复力)【做一做】弹簧下面悬挂的钢球,试推导小球所受合力与它的位移关系。
人教课标版高中物理选修3-4:《简谐运动的回复力和能量》教案-新版
第十一章第三节简谐运动的回复力和能量教学设计【教材分析】本节课是高中物理人教版选修3-4第十一章《机械振动》第五节《简谐运动的回复力和能量》。
前两节研究的是做简谐运动的质点的运动特点,不涉及它所受的力以及能量转换的情况,是从运动学的角度研究的。
而本节要讨论它所受的力和能量转换的情况,是从动力学和能量的角度研究的。
在整个高中物理必修教材的教学中动力学以及功能转化关系贯穿始终,本节课再次从这两个角度深化了学生对物理学科的理解和体会,提高了学生分析问题解决问题的能力。
本节的学习学习的重点是使学生掌握简谐运动的回复力特征及相关物理量的变化规律。
回复力的特征是形成加速度、速度、位移等物理量周期性变化的原因。
弹簧振子振动形成的原因,一是回复力的特点(总指向平衡位置),二是振子的惯性,这是分析问题的关键。
对于竖直的弹簧振子,涉及弹性势能、重力势能、动能三者的变化,不要求从能量的角度对它进行分析。
【学情分析】学生对于运动学的角度分析简谐运动已经比较熟悉,学生对弹簧的弹力比较熟悉,对弹簧振子的受力容易接受,对回复力是运动方向的合力也易理解,但对平衡位置合力不为零的简谐运动较陌生,在本节课不提及此类问题,等讲解单摆时再做详细解释。
对能量的转换较易理解,对能量随时间的变化规律易模糊,可用图像讲解,形象准确。
新课程改革打破了以前的应试教育模式,教育教学过程中师生地位平等,充分贯彻以学生为本,坚持学生的主体地位,教师的主导地位。
本节课是一节科学探究课,呈现在学生面前的是现象,是问题,积极引导学生探究。
【核心素养】通过《简谐运动的回复力和能量》的学习过程,对学生进行物质世界遵循对立统一规律观点的渗透,知道从个别到一般的思维方法。
提高学生分析和解决问题的能力。
【教学目标】(1)理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。
(2)掌握简谐运动回复力的特征并知道回复力来源(3)对水平的弹簧振子,能定量地说明弹性势能与动能的转化。
简谐运动的回复力和能量 说课稿 教案 教学设计
简谐运动的回复力和能量教学目标1、知识与技能(1)掌握简谐运动的定义,了解简谐运动的运动特征;(2)掌握简谐运动的动力学公式,了解简谐运动的能量变化规律;(3)准确判断物体是否做简谐运动。
2、过程与方法:引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
3、情感、态度与价值观:结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
教学重点:是简谐运动的定义、动力学公式、能量变化规律。
教学难点:难点是简谐运动的动力学分析和能量分析。
教学教具:弹簧振子,挂图。
教学过程:(一)引入新课提问1:什么是机械振动?(物体在平衡位置附近做往复运动叫机械振动)提问2:振子做什么运动?(是一种最简单、最基本的机械振动,叫做简谐运动)提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的?今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学1、演示:竖直方向的弹簧振子。
提问1:大家应明确观察什么?(物体)提问2:上述四个物理量中,哪个比较容易观察?提问3:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变?小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置。
提问4:简谐运动是不是匀变速运动?小结:简谐运动是变速运动,但不是匀变速运动。
加速度最大时,速度等于零;速度最大时,加速度等于零。
从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。
提问5:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功)提问6:在A点,振子的动能多大?系统有势能吗?提问7:在O点,振子的动能多大?系统有势能吗?提问8:在D点,振子的动能多大?系统有势能吗?提问9:在B,C点,振子有动能吗?系统有势能吗?小结:简谐运动过程是一个动能和势能的相互转化过程。
新课标人教版3-4选修三11.3《简谐运动的回复力和能量》WORD教案3
【预习导引】1 .简谐运动的位移的物理含义是什 么 ?怎么表示 ?__________ I _____________ I _____ IC r Q' 仃 O P B2 .在弹簧振子一个周期的振动中,振子的合力怎么变化?方向有什么特点? 不论在什么位置(平衡位置除外),物体所受合力均指向平衡 位置,作用是使物体回到平衡位置,称为回复力•【建构新知】 「、回复力1. 意义:振动物体在振动方向的合力2. 特点:F= - KxK 为振动系统的振动系数,在不同的振动系统中具体含义不 同。
x 为质点相对平衡位置的位移,有具体方向。
3. 振子在质点方向所受合力如果大 小与振子相对平衡位置的位移成正比,方向与位移始终相反,这样 一 的振动是简谐运动。
证明以下几个物体为谐振子:--1 •证明漂浮在水面的木块为谐振 子。
(已知p 水,p 木,木块的横截面积 S )课题 教学 目标 重点 难点 教学 过程简谐运动的回复力和能量教案简谐运动的回复力和能量课型新授课 课时数 1课_______________________________________________________________ 时—1、理解回复力的物理意义和特点—;2、 能够根据简谐运动的回复力特点证明简谐运动;3、 知道简谐运动的机械能守恒及动能和势能的相互转化4、 进一步理解简谐运动的周期性和对称性重点:回复力的来源,特点,简谐运动的证明;简谐运动的能量特点• 难点:简谐运动的证明(教1师填 教法 或点 拨的 方 法,学生 填知 识要 点或思:[来源:学科网ZXXK ][来源:学§科§网][来源:学科网]2•竖直悬挂的弹簧振子(已知弹簧的劲度系数 K )引申:悬挂在光滑斜面上的弹簧振子(已知弹簧的劲度系数K ) 体会:1.回复力 可以由振动方向 的一个力充当, 也可能是振动方向 的合力! 2 .垂直振动方向的 受力与振动无关。
高中物理:11.3《简谐运动的回复力和能量》教案(新人教版选修3-4)
第三节简谐运动的回复力和能量【教学目标】一、知识目标1.知道振幅越大,振动的能量(总机械能)越大;2.对单摆,应能根据机械能守恒定律进行定量计算;3.对水平的弹簧振子,应能定量地说明弹性势能与动能的转化;简谐运动的回复力特点及回复力的来源。
二、能力目标1.分析单摆和弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
2.通过阻尼振动的实例分析,提高处理实际问题的能力。
三、德育目标1.简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。
【教学重点】。
【教学难点】关于简谐运动中能量的转化。
【教学过程】一、导入新课1.演示:取一个单摆,将其摆球拉到一定高度后释放,观察它的单摆摆动,最后学生概括现象;2.现象:单摆的振幅会越来越小,最后停下来。
3.教师讲解引入:实际振动的单摆为什么会运动,又为什么会停下来,今天我们就来学习这个问题。
板书:简谐运动的回复力与能量二、新课教学1. 简谐运动的回复力弹簧振子振动时,回复力与位移是什么关系?归纳根据胡克定律,弹簧振子的回复力与位移成正比,与位移方向相反。
回复力具有这种特征的振动叫简谐运动。
物体在跟位移大小成正比,并且总指向平衡位置的力作用下的振动,叫做简谐运动。
F=-kx式中F为回复力;x为偏离平衡位置的位移;k是常数,对于弹簧振子,k是劲度系数,对于其它物体的简谐运动,k是别的常数;负号表示回复力与位移的方向总相反。
弹簧振子的振动只是简谐运动的一种。
2.简谐运动的能量(1)水平弹簧振子在外力作用下把它拉伸,松手后所做的简谐运动。
不计阻力。
单摆的摆球被拉伸到某一位置后所做的简谐运动;如下图甲、乙所示(2)试分析弹簧振子和单摆在振动中的能量转化情况,并填入表格。
表一:振子的运动A→O O→A′A′→O O→A能量的变化动能增大减少增大减少势能减少增大减少增大总能不变不变不变不变表二:单摆的运动A→O O→A′A′→O O→A能量的变化动能增大减少增大减少势能减少增大减少增大总能不变不变不变不变(3)学生讨论分析后,抽代表回答,并把结果填入表中。
简谐运动的回复力和能量(物理教案)
简谐运动的回复力和能量(一)引入新课提问1:什么是机械振动?(物体在平衡位置附近做往复运动叫机械振动)提问2:振子做什么运动?(是一种最简单、最基本的机械振动,叫做简谐运动)前两节只研究做简谐运动的质点运动的特点,不涉及它所受的力,是从运动学的角度研究的。
本节要讨论它所受的力,是从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学请大家看书11页图,观察振子的运动,可以看出振子在做变速运动,请同学们分析一下振子做往复运动的原因是什么?可以先画出弹簧伸长时振子的受力分析,再分组讨论。
再让学生对弹簧被压缩时的振子进行受力分析。
弹簧振子所受合力有什么特点?教师总结:从两次受力分析中可以看出弹簧无论是被拉伸还是被压缩,其产生的弹力总是指向平衡位置O,其作用效果就是使振子回到平衡位置O点。
所以,我们根据弹力F的这一作用效果把这个力命名为回复力,其方向总是指向平衡位置。
一、简谐运动的回复力1、回复力(1)定义:振动物体偏离平衡位置后,所受到的使它回到平衡位置的力叫做回复力。
(2)回复力的理解○1方向特点:总是指向平衡位置○2作用效果:把物体拉到平衡位置○3来源:回复力是根据力的作用效果命名的,它可以是弹力,也可以是其他力,或几个力的合力,或某个力的分力。
继续观察振子的运动,并运用已有的知识来分析各时刻弹簧振子所受的回复力的情况,判断振子是否在做匀变速运动?学生答:不是。
教师总结:力学中学习过胡克定律F=kx,公式中的k值与弹簧的弹性强弱有关,x 是指弹簧长度的变化量。
在振动过程中x指的就是振动的位移。
但由于回复力的方向总是指向平衡位置而位移的方向总是由平衡位置指向末位置,两者方向相反,因此,回复力的公式为: F=-kx公式中负号表示回复力F与振动位移x的方向相反,但大小与位移x成正比。
当振子处于平衡位置时,位移X=0,所以回复力F=0。
2、 回复力的表达式:kx F -=理解:(1)“负号”表示回复力的方向与位移方向始终相反。
11.3 简谐运动的回复力和能量 优秀教案优秀教学设计高中物理选修3-4新课 (6)
11.3 简谐运动的回复力和能量【教学目标】(一)知识与技能1、理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。
2、掌握简谐运动回复力的特征。
3、对水平的弹簧振子,能定量地说明弹性势能与动能的转化。
(二)过程与方法1、通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。
2、分析弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
(三)情感、态度与价值观1、通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。
2、简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。
【教学重点】1、简谐运动的回复力特征及相关物理量的变化规律。
2、对简谐运动中能量转化和守恒的具体分析。
【教学难点】1、物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。
2、关于简谐运动中能量的转化。
【教学方法】实验演示、讨论与归纳、推导与列表对比、多媒体模拟展示【教学用具】CAI课件、水平弹簧振子【教学过程】(一)引入新课教师:前面两节课我们从运动学的角度研究了简谐运动的规律,不涉及它所受的力。
我们已知道:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向总指向圆心。
那么物体简谐运动时,所受合力有何特点呢?这节课我们就来学习简谐运动的动力学特征。
(二)进行新课1.简谐运动的回复力(1)振动形成的原因(以水平弹簧振子为例)问题:(如图所示)当把振子从它静止的位置O拉开一小段距离到A再放开后,它为什么会在A-O-A'之间振动呢?分析:物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力。
回复力是根据力的效果命名的,对于水平方向的弹簧振子,它是弹力。
《简谐运动的回复力和能量》教学设计
《11.3 简谐运动的回复力和能量》回忆前面学的判断物体是否做简谐运动的方法? 课件展示:两种判断物体是否做简谐运动的条件: ①x-t 图像为正弦曲线 ②F-x 满足 F=-kx 的形式 下面用第二种方法来判断竖直的弹簧拉一个小球的振动是不是简谐运动?提醒:先找平衡位置。
因为x 为振子到平衡位置的位移。
规定向下为正方向 平衡位置:0kx mg =振子在C 点受到的弹力为:()0'x x k F +=振子受的回复力()kxkx kx mg x x k mg F mg F -=--=+-=-=00'回复力与位移的关系符合简谐运动的定义问:此时弹簧振子的回复力还是不是弹簧的弹力?(不是)那是什么?指点受到的合力重力和弹力的合力所以说:回复力不一定是弹力可能是几个力的合力。
振动具有周期性和重复性,在振动过程中,相关物理量的变化情况分析:x ;a ;F ;v三、简谐运动的能量因不考虑各种阻力,因而振动系统的总能量守恒。
(用CAI 课件模拟弹簧振子的振动,分别显示分析x 、F 、a 、v 、E k 、E p 、E 的变化情况)观察振子从A →O →B →O →A 的一个循环,这一循环可分为四个阶段:A →O 、O →B 、B →O 、O →A ,分析在这四个阶段中上述各物理量的变化,并将定性分析的结论填入表格中。
分析:弹簧振子由C →O 的变化情况分步讨论弹簧振子在从C →O 运动过程中的位移、回复力、加速度、速度、动能、势能和总能量的变化规律。
①从C 到O 运动中,位移的方向如何?大小如何变化?由C 到O 运动过程中,位移方向由O →C ,随着振子不断地向O 靠近,位移越来越小。
②从C 到O 运动过程中,小球所受的回复力有什么特点?11.3 简谐运动的回复力和能量思考题:竖直方向振动的弹簧振子所做的振动是不是简谐运动 步骤:1、找平衡位置,并受力分析2、找实际位置的位移3、找实际位置,并受力分析4、找回复力,列出表达式?判断简谐运动中x ,F , a ,v 的变化规律振子的运动各物理量 C →O O → B B →O O →C 位移的方向怎样? 大小如何变化?回复力的方向怎样?大小如何变化? 加速度的方向怎样?大小如何变化? 速度的方向怎样? 大小如何变化?动能 弹性势能 机械能反馈练习:OC B F F1、作简谐运动的物体,当它每次经过同一位置时,一定相同的物理量是()A.速度B.位移C.回复力D.加速度2、做简谐运动的质点通过平衡位置时,具有最大值的物理量是()。
高中物理人教版选修3-4第11章第3节教案设计《简谐运动的回复力和能量》
简谐运动的回复力和能量三维教学目标1、知识与技能(1)掌握简谐运动的定义,了解简谐运动的运动特征;(2)掌握简谐运动的动力学公式,了解简谐运动的能量变化规律;(3)准确判断物体是否做简谐运动。
2、过程与方法:引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
3、情感、态度与价值观:结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
教学重点是简谐运动的定义、动力学公式、能量变化规律。
教学难点难点是简谐运动的动力学分析和能量分析。
教学教具弹簧振子,挂图。
教学过程(一)引入新课提问1:什么是机械振动?(物体在平衡位置附近做往复运动叫机械振动)提问2:振子做什么运动?(是一种最简单、最基本的机械振动,叫做简谐运动)提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的?今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学1. 简谐运动的回复力a. 简谐运动的回复力弹簧振子振动时,回复力与位移是什么关系?归纳根据胡克定律,弹簧振子的回复力与位移成正比,与位移方向相反。
回复力具有这种特征的振动叫简谐运动。
物体在跟位移大小成正比,并且总指向平衡位置的力作用下的振动,叫做简谐运动。
F=-kx式中F 为回复力;x 为偏离平衡位置的位移;k 是常数,对于弹簧振子,k 是劲度系数,对于其它物体的简谐运动,k 是别的常数;负号表示回复力与位移的方向总相反。
b 、弹簧振子的振动只是简谐运动的一种。
质点方向所受合力如果大小与振子相对平衡位置的位移成正比,方向与位移始终相反,这样的振动是简谐运动。
c 、证明;竖直悬挂的弹簧振子的振动为简谐振动d 、如图的弹簧振子的振动为简谐运动,位移-时间关系为x =Asin ωt ,回复力F =-Kx ,所以有 F =-KA sin ωt=-F m sin ωt可以用不同的图像表示上述特点.2、简谐运动的能量演示:水平方向的弹簧振子:已知轻质弹簧的劲度系数为K ,k 振幅为A 。
人教版高中物理教案-简谐运动的回复力与能量
第十一章 機械振動11.3簡諧運動的回復力與能量【學習目標】1.掌握物體做簡諧運動時回復力的特點,據此可判斷物體是否做簡諧運動。
2.理解回復力的含義。
3.知道簡諧運動中的能量相互轉化及轉化的過程中機械能是守恆的。
重點:簡諧運動時回復力的特點及描述簡諧運動的歌物理量的變化規律難點:簡諧運動的動力學分析及能量分析【自主預習】1.簡諧運動的回復力(1)定義:使振動物體回到平衡位置的力(2)效果:把物體拉回到平衡位置.(3)方向:總是指向 .(4)運算式:F=-kx .即回復力與物體的位移大小成 ,“-”表明同複力與位移方向始終 ,k 是一個常數,由簡諧運動系統決定.(5)簡諧運動的動力學定義:如果質點所受的力與它偏離平衡位置位移的大小成 ,並且總是指向 ,質點的運動就是簡諧運動.2.簡諧運動的能量(1)振動系統的狀態與能量的關係:一般指振動系統的機械能.振動的過程就是動能和勢能互相轉化的過程.①在最大位移處, 最大, 為零;②在平衡位置處, 最大, 最小;③在簡諧運動中,振動系統的機械能 (選填“守恆”或“減小”),因此簡諧運動是一種理想化的模型.(2)決定能量大小的因素振動系統的機械能跟有關.越大,機械能就越大,振動越強.對於一個確定的簡諧運動是(選填“等幅”或“減幅”)振動.[關鍵一點] 實際的運動都有一定的能量損耗,因此實際的運動振幅逐漸減小,簡諧運動是一種理想化的模型.【典型例題】一、對簡諧運動的理解【例1】.一品質為m的小球,通過一根輕質彈簧懸掛在天花板上,如圖11-3-2所示。
(1)小球在振動過程中的回復力實際上是________;(2)該小球的振動________(填“是”或“否”)為簡諧運動;(3)在振子向平衡位置運動的過程中()A.振子所受的回復力逐漸增大B.振子的位移逐漸增大C.振子的速度逐漸減小D.振子的加速度逐漸減小二、簡諧運動的對稱性【例2】如圖11-3-5所示,彈簧下面掛一品質為m的物體,物體在豎直方向上做振幅為A 的簡諧運動,當物體振動到最高點時,彈簧正好為原長。
2021年高中物理 11.3 简谐运动的回复力和能量教案 新人教版选修34
2021年高中物理 11.3 简谐运动的回复力和能量教案新人教版选修3-4一、教材分析本节内容是从动力学和能量转换的的角度认识简谐运动,进一步认识简谐运动的特点,也是本章的重点内容之一。
二、教学目标(一)、知识与技能1.知道振幅越大,振动的能量(总机械能)越大;2.对单摆,应能根据机械能守恒定律进行定量计算;3.对水平的弹簧振子,应能定量地说明弹性势能与动能的转化;4.知道简谐运动的回复力特点及回复力的来源。
5.知道在什么情况下可以把实际发生的振动看作简谐运动。
(二)、过程与方法1.分析单摆和弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
2.通过阻尼振动的实例分析,提高处理实际问题的能力。
(三)、情感态度与价值观1.简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。
2.振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现。
三、教学重点难点教学重点对简谐运动中回复力的分析。
教学难点关于简谐运动中能量的转化。
四、学情分析学生对弹簧的弹力比较熟悉,对弹簧振子的受力容易接受,对回复力是运动方向的合力也易理解,但对平衡位置合力不为零的简谐运动较陌生,需强调对其实质的把握。
对能量的转换较易理解,对能量随时间的变化规律易模糊,需认真对待。
五、教学方法实验、观察与总结六、课前准备弹簧振子、坐标纸、预习学案七、课时安排 1课时八、教学过程(一)预习检查、总结疑惑学生回答预习学案的内容,提出疑惑(二)精讲点拨1. 简谐运动的回复力a. 简谐运动的回复力弹簧振子振动时,回复力与位移是什么关系?归纳根据胡克定律,弹簧振子的回复力与位移成正比,与位移方向相反。
回复力具有这种特征的振动叫简谐运动。
物体在跟位移大小成正比,并且总指向平衡位置的力作用下的振动,叫做简谐运动。
F=-kx式中F 为回复力;x 为偏离平衡位置的位移;k 是常数,对于弹簧振子,k 是劲度系数,对于其它物体的简谐运动,k 是别的常数;负号表示回复力与位移的方向总相反。
优质教案:11_3 简谐运动回复力和能量
第11章第3节简谐运动的回复力和能量【学习目标】1.掌握简谐运动的动力学特征,明确回复力的概念。
2.知道简谐运动是一种没有能量损耗的理想情况。
3.理解简谐运动过程中位移、回复力、加速度、速度、动能、势能的变化情况。
4.知道什么是单摆。
5.理解摆角很小时单摆的振动是简谐运动。
6.知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。
知识回顾:1.上一讲课说的弹簧振子的振子为什么围绕着中心点来回往复的运动?答:因为它受到了指向中心的回复力。
2.振子所作的运动是不是匀变速运动呢?答:不是,因为它受到的力是变力。
3.简谐运动中涉及的我们学过的那些物理量?答:位移、回复力、加速度、速度、动能、势能知识点一、简谐运动的回复力、能量回复力:物体振动时受到的回复力的方向总是指向平衡位置,即总是要把物体拉回到平衡位置的力称为回复力.F kx-.要点诠释:(1)负号表示回复力的方向是与位移方向相反.(2)k为F与x的比例系数,对于弹簧振子,k为劲度系数.(3)对水平方向振动的弹簧振子,回复力由弹簧的弹力提供;对竖直方向振动的弹簧振子,回复力由弹簧的弹力与重力两力的合力提供.(4)物体做简谐运动到平衡位置时,回复力为0(但合力可能不为0).(5)回复力大小随时间按正弦曲线变化.简谐运动的能量:(1)弹簧振子运动的任意位置,系统的动能与势能之和都是一定的,即振动过程中机械能守恒.(2)水平方向的振子在平衡位置的机械能以动能的形式出现,势能为零;在位移最大处势能最大,动能为零.(3)简谐运动中系统的动能与势能之和称为简谐运动的能量,即212E kA =。
(4)简谐运动中的能量跟振幅有关,振幅越大,振动的能 量越大.(5)在振动的一个周期内,动能和势能间完成两次周期性变化,经过平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小.简谐运动的特征物体做简谐运动的三个特征: (1)振动图像是正弦曲线; (2)回复力满足条件F kx =-;(3)机械能守恒. 简谐运动的判定方法:(1)简谐运动的位移一时间图像是正弦曲线或余弦曲线.(2)故简谐运动的物体所受的力满足F kx =-,即回复力F 与位移x 成正比且方向总相反.(3)用F kx =-判定振动是否是简谐运动的步骤: ①对振动物体进行受力分析;②沿振动方向对力进行合成与分解;③找出回复力,判断是否符合F kx=-.简谐运动的运动特点:简谐运动的加速度分析方法:简谐运动是一种变加速的往复运动,由ka xm=-知其加速度周期性变化,“-”表示加速度的方向与振动位移x的方向相反,即总是指向平衡位置,a的大小跟x成正比.简谐运动的运动特点:物体位置位移x回复力F加速度a速度v势能pE动能kE方向大小方向大小方向大小方向大小平衡位置O 零零零mv零kmE最大位移处M 指向MA指向OkA指向OkAm零pmE零O M →指向A→零指向kA→零指向kAm→零指向mv→零pmE→零kmE→零M O O M M O → 指向 M A →零 指向O kA →零 指向O kA m→零 指向Om v →零 pm E →零 km E →零通过上表不难看出:位移、回复力、加速度三者同步变化,与速度的变化相反.通过上表可看出两个转折点:平衡位置O 点是位移方向、加速度方向和回复力方向变化的转折点;最大位移处是速度方向变化的转折点.还可以比较出两个过程的不同特点,即向平衡位置O 靠近的过程及远离平衡位置O 的过程的不同特点:靠近O 点时速度大小变大,远离O 点时位移、加速度和回复力大小变大 弹簧振子在光滑斜面上的振动:光滑斜面上的小球连在弹簧上,把原来静止的小球沿斜面拉下一段距离后释放,小球的运动是简谐运动.分析如下:如图所示,小球静止时弹簧的伸长量为0sin mg x kθ=, 往下拉后弹簧相对于静止位置伸长x 时,物体所受回复力()0sin F k x x mg kx θ=++=--.由此可判定物体是做简谐运动的.例题1.如图所示,水平面的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量为 2.0 kg m =,物体与水平面间的动摩擦因数0.4μ=,弹簧的劲度系数200 N/m k =.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能1.0 J p E =,物体处于静止状态.若取210m/s g =,则撤去外力F 后( ).A .物体向右滑动的距离可以达到12.5 cmB .物体向右滑动的距离一定小于12.5 cmC .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0【答案】B 、D【解析】如图所示,物体m 由最大位移处释放,在弹力作用下向右加速,由于受滑动摩擦力的作用,物体向右运动时的平衡位置应在O 点左侧O '处,由平衡条件0mg kx μ= 得00.04m 4cm mgx kμ===,即4 cm O D ='由简谐运动的对称性可知到达O 点右侧 6 cm O A =''的A '点时物体速度减小为零,即12 cm 12.5 cm AA =<',A 项错误,B 项正确;在平衡位置O '处速度最大,C 项错误;物体到达最右端时动能为零,弹簧处于压缩状态,系统机械能不为零,故D 项正确.课堂练习一:如图所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连,整个系统处于静止状态.t=0时刻起用一竖直向上的力F 拉动木块,使A 向上做匀加速直线运动.t 1时刻弹簧恰好恢复原长,t 2时刻木块B 恰好要离开水平面.以下说法正确的是( )A .在0~t 2时间内,拉力F 与时间t 成正比B .在0~t 2时间内,拉力F 与A 位移成正比C .在0~t 2间间内,拉力F 做的功等于A 的机械能增量D .在0~t 1时间内,拉力F 做的功等于A 的动能增量【思路点拨】以木块A 为研究对象,分析受力情况,根据牛顿第二定律得出F 与A 位移x 的关系式,再根据位移时间公式,得出F 与t 的关系.根据功能关系分析拉力做功与A 的机械能增量关系.【答案】C【解析】A 、B 设原来系统静止时弹簧的压缩长度为x 0,当木块A 的位移为x 时,弹簧的压缩长度为(x 0─x),弹簧的弹力大小为k (x 0─x),根据牛顿第二定律得:F+ k (x 0─x)─mg=ma 得到:F=kx─kx 0+ma+mg , 又kx 0=mg ,则得到:F=kx+ma可见F 与x 是线性关系,但不是正比. 由212x at =得:212F k at ma =⋅+,F 与t 不成正比.故AB 错误. 据题t=0时刻弹簧的弹力等于A 的重力,t 2时刻弹簧的弹力等于B 的重力,而两个物体的重力相等,所以t=0时刻和t 2时刻弹簧的弹力相等,弹性势能相等,根据功能关系可知,在0~t 2时间内,拉力F 做的功等于A 的机械能增量,故C 正确.根据动能定理可知:在0~t 1时间内,拉力F 做的功与弹力做功之和等于A 的动能增量,故D 错误.【总结升华】对于匀变速直线运动,运用根据牛顿第二定律研究力的大小是常用的思路.分析功能关系时,要注意分析隐含的相等关系,要抓住t=0时刻和t 2时刻弹簧的弹性势能相等进行研究. 课堂练习二:如图所示,质量为m 的物块A 放置在质量为M 的物块B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A B 、之间无相对运动,设弹簧的劲度系数为k ,当物块离开平衡位置的位移为x 时,A B 、间摩擦力的大小等于( )A .0B .kxC .mkx MD .mkx M m+【答案】D 课堂练习三:如图所示,一质量为M 的无底木箱,放在水平地面上,一轻质弹簧一端悬于木箱的上边,另一端挂着用细线连接在一起的两物体A 和B ,A B m m m ==.剪断A B 、间的细线后,A 做简谐运动,则当A 振动到最高点时,木箱对地面的压力为________。
2019-2020学年度人教版选修3-4 11.3简谐运动的回复力和能量 教案(5)
简谐运动的回复力和能量教学目标:(一)知识与技能1.理解简谐运动的受力与运动的特征。
2.理解弹簧振子的回复力,其公式表达以及物理意义。
3.初步了解简谐运动的动能、势能、机械能的变化特征。
4.知道弹簧振子一次全振动过程中位移、回复力、加速度、速度、动能、弹性势能、机械能的变化情况。
(二)过程与方法1.经历仔细观察与认真思考弹簧振子的简谐运动在不同位置的受力与速度情况,理解简谐运动的力的特征。
2.通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。
3.通过同学间交流与讨论的合作学习,分析简谐运动的全振动过程中位移、回复力、加速度、速度、动能、弹性势能、机械能的变化情况,提高学生分析和解决问题的能力。
4.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
(三)情感、态度与价值观1.通过物体做简谐运动时回复力的教学,使学生认识到回复力和惯性是两个对立面能够使物体做简谐运动。
2.简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律的渗透。
3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
教学重点1.理解简谐运动的运动规律,理解简谐运动的回复力特征。
2.对水平的弹簧振子,能定量地说明相关物理量的变化规律。
教学难点1.理解回复力概念,理解简谐运动回复力的特点。
2.关于简谐运动中简谐运动的能量及变化规律的分析总结。
教学方法实验演示、讨论与归纳、推导与对比、多媒体模拟展示教学过程一、引入新课演示水平弹簧振子的振动。
通过同学的观察、分析、讨论得到:①滑块的运动是平动,可以看作质点。
②弹簧的质量远远小于滑块的质量,可以忽略不计。
明确:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成弹簧振子。
在同学回答的基础上归纳出:物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《11.3 简谐运动的回复力和能量》
回忆前面学的判断物体是否做简谐运动的方法? 课件展示:两种判断物体是否做简谐运动的条件: ①x-t 图像为正弦曲线
②F-x 满足 F=-k x的形式 下面用第二种方法来判断竖直的弹簧拉一个小球的
振动是不是简谐运动?
提醒:先找平衡位置。
因为x为振子到平衡位置的位
移。
规定向下为正方向 平衡位置:0kx mg =
振子在C 点受到的弹力为:()0'
x x k F +=
振子受的回复力
()kx
kx kx mg x x k mg F mg F -=--=+-=-=00'
回复力与位移的关系符合简谐运动的定义
问:此时弹簧振子的回复力还是不是弹簧的弹力?(不是)那是什么?指点受到的合力 重力和弹力的合力
所以说:回复力不一定是弹力可能是几个力的合力。
振动具有周期性和重复性,在振动过程中,相关物理量的变化情况分析:x ;a;F;v 三、简谐运动的能量
因不考虑各种阻力,因而振动系统的总能量守恒。
(用CAI 课件模拟弹簧振子的振动,分别显示分析x 、F 、a 、v、E k 、E p 、E 的变化情况)
观察振子从A →O→B →O →A的一个循环,这一循环可分为四个阶段:A →O 、O →B 、B →O、O→A ,分析在这四个阶段中上述各物理量的变化,并将定性分析的结论填入表格中。
分析:弹簧振子由C →O的变化情况
分步讨论弹簧振子在从C →O运动过程中的位移、回复力、加速度、速度、动能、势能和总能量的变化规律。
①从C到O 运动中,位移的方向如何?大小如何变化?
由C 到O 运动过程中,位移方向由O →C ,随着振子不断地向O 靠近,位移越来越小。
②从C 到O 运动过程中,小球所受的回复力有什么特点?
小球共受三个力:弹簧的拉力、杆的支持力和小球的重力,而重力和支持力已相互平衡,所以回复力由弹簧弹力提供。
11.3 简谐运动的回复力和能量
思考题:竖直方向振动的弹簧振子所做的振动
是不是简谐运动 步骤:
1、找平衡位置,并受力分析 2、找实际位置的位移
3、找实际位置,并受力分析
4、找回复力,列出表达式
也是有时一致,有时相反。
因而速度的方向与其它各物理量的方向间没有必然联系。
在四个阶段中,x 、F 、a 、v 、Ek 、E p、E 的大小变化可分为两组,x 、F 、a、
E p 为一组, v 、E k 为另一组,每组中各量的变化步调一致,两组间的变化步调相反。
整个过程中总能量保持不变。
当物体向着平衡位置运动时,a 、v同向,振子做变加速运动,此时 x ↓ F ↓ a ↓ E p↓ v ↑ E k↑
当物体远离平衡位置运动时,a 、v 反向,振子做变减速运动,此时 x↑ F ↑ a ↑ E p ↑ v ↓ E k↓
在平衡位置的两侧,距平衡位置等距离的点,各量的大小对应相等,振子的运动具有对称性。
特别说明:以上分析是在忽略摩擦等阻力的条件下进行的。
实际的运动都具有一定的能量损耗,
课堂小结
本节课学习了简谐运动的动力学特征和简谐运动的能量。
简谐运动是在与位移大小成正比,并且方向总指向平衡位置的回复力作用下的振动。
做简谐运动的质点,回复力总满足F=-k x的形式。
式中k 是比例常数。
简谐运动系统的动能和势能相互转化,机械能守恒。
板书设计 11.3 简谐运动的回复力和能量 一、简谐运动的回复力
1、 定义:振动物体受到总能使振动物体回到平衡位置,且始终指向平衡位置的力
2、 方向:始终指向平衡位置
3、 特点:效果力
4、 来源:振动方向的合力
振子由于惯性而离开平衡位置,当振子离开平衡位置后,振子所受的回复力总是使振子回到平衡位置,这样不断地进行下去就形成了振动。
二、简谐运动的动力学特征:F=-kx
式中F 为回复力,x 为偏离平衡位置的位移,k是劲度系数,负号表示回复力与位移的方向总相反。
三、简谐运动的能量
简谐运动系统的动能和势能相互转化,机械能守恒。
?
判断简谐运动中x ,F, a ,v 的变化规律
反馈练习:
1、作简谐运动的物体,当它每次经过同一位置时,一定相同的物理量是( )
A .速度 B.位移
C.回复力 D.加速度
2、做简谐运动的质点通过平衡位置时,具有最大值的物理量是
( ) 。
A.加速度B.速度 C.位移 D.回复力
3、弹簧振子作简谐运动时,以下说法正确的是( )
A.振子通过平衡位置时,回复力一定为零
B.振子做减速运动,加速度却在增大
C.振子向平衡位置运动时,加速度方向与速度方向相反
D.振子远离平衡位置运动时,加速度方向与速度方向相反
开放题:
这是一个竖直方向弹簧振子,质点的x-t图像如图,从图像中能得到什么信息?
2 -2
O。