高中数学排列组合类型数学笔记

合集下载

高中数学排列与组合部分重要知识点总结

高中数学排列与组合部分重要知识点总结

高中数学排列与组合部分重要知识点总结高中数学排列与组合部分重要知识点总结1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 kk!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的.要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn 7+ Cn9+…=2n -1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

高考数学知识点:排列与组合知识总结

高考数学知识点:排列与组合知识总结

高考数学知识点:排列与组合知识总结陈列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM 〔分步〕②加法原理:N=n1+n2+n3+…+nM 〔分类〕2. 陈列〔有序〕与组合〔无序〕Anm=n〔n-1〕〔n-2〕〔n-3〕-…〔n-m+1〕=n!/〔n-m〕! Ann =n!Cnm = n!/〔n-m〕!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=〔k+1〕!-k!3.陈列组合混合题的解题原那么:先选后排,先分再排陈列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再思索其他元素。

以位置为主思索,即先满足特殊位置的要求,再思索其他位置。

捆绑法〔集团元素法,把某些必需在一同的元素视为一个全体思索〕插空法〔处置相间效果〕直接法和去杂法等等在求解陈列与组合运用效果时,应留意:〔1〕把详细效果转化或归结为陈列或组分解绩;〔2〕经过火析确定运用分类计数原理还是分步计数原理;〔3〕剖析标题条件,防止〝选取〞时重复和遗漏;〔4〕列出式子计算和作答。

经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想。

4.二项式定理知识点:①〔a+b〕n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:〔1+x〕n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

〔要留意n为奇数还是偶数,答案是中间一项还是中间两项〕一切二项式系数的和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+...=Cn1+Cn3+Cn5+ Cn7+ Cn9+ (2)-1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处置与指定项、特定项、常数项、有理项等有关效果。

高三数学排列和组合知识点

高三数学排列和组合知识点

高三数学排列和组合知识点数学作为一门理科学科,其中的排列和组合是高三学生必须掌握的重要知识点。

本文将为大家详细介绍高三数学排列和组合的知识,并提供一些相关例题和解析,帮助大家理解和掌握这一知识点。

一、排列的概念和性质排列是从给定的对象中选出一部分进行有序排列的方式,每个对象只能使用一次。

在排列中,对象的顺序是重要的。

下面是排列的一些基本概念和性质:1. 排列的定义:从n个不同的对象中取出m个进行有序排列,称为从n个对象中取出m个的排列,记作P(n,m)。

2. 排列的计算公式:P(n,m) = n!/(n-m)!3. 重要性质一:对于任意正整数n,有P(n,n) = n!,即n个不同的对象全排列的总数为n的阶乘。

排列数为1。

5. 重要性质三:P(n,1) = n,即从n个对象中取出一个对象进行排列的方式数为n。

二、组合的概念和性质组合是从给定的对象中选出一部分进行无序组合的方式,每个对象只能使用一次。

在组合中,对象的顺序不重要。

下面是组合的一些基本概念和性质:1. 组合的定义:从n个不同的对象中取出m个进行无序组合,称为从n个对象中取出m个的组合,记作C(n,m)。

2. 组合的计算公式:C(n,m) = n!/[(n-m)!*m!]3. 重要性质一:对于任意正整数n,有C(n,n) = 1,即n个不同的对象全组合的总数为1。

组合数为1。

5. 重要性质三:C(n,1) = n,即从n个对象中取出一个对象进行组合的方式数为n。

三、排列与组合的应用排列和组合在实际生活和数学问题中有着广泛的应用。

下面是一些常见的应用领域:1. 排列的应用:排列在一些需要考虑顺序的情况下很有用,比如密码的穷举破解和赛车比赛的计算等。

2. 组合的应用:组合在一些不考虑顺序的情况下很有用,比如从一组物品中选取特定数量的搭配问题和抽奖活动中奖的计算等。

四、例题和解析下面是一些与排列和组合相关的例题和解析,帮助大家更好地理解和应用这一知识点:例题一:有6个人参加足球比赛,其中3人是A队的球员,3人是B队的球员。

高中数学排列组合知识点

高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。

本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。

基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。

排列强调元素的顺序,而组合则不考虑元素的顺序。

排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。

2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。

如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。

这里就有A_{5}^{2}种不同的排列方式。

组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。

2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。

计算方法为C_{5}^{2}。

解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。

如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。

2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。

3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。

在解题时,要结合实际情况,灵活运用所学知识。

练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。

在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。

高中数学知识点:排列组合

高中数学知识点:排列组合

排列组合
一、排列
1. 定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn。

2. 排列数的公式与性质
排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2) (321)
规定:0!=1
二、组合
1. 定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2. 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

(推荐)高中数学排列与组合知识点

(推荐)高中数学排列与组合知识点

高中数学排列与组合知识点排列组合是高中数学教学内容的一个重要组成部分,但由于排列组合极具抽象性,使之成为高中数学课本中教与学的难点.加之高中学生的认知水平和思维能力在一定程度上受到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。

高中数学排列与组合知识点汇编如下:一、排列1 定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn.2 排列数的公式与性质(1)排列数的公式: Amn=n(n-1)(n-2)…(n-m+1)特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1规定:0!=1二、组合1 定义(1)从n个不同元素中取出 m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2 比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)­…(n-m+1)=n!/(n-m)! Ann=n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题) 间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+­…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

高中数学排列组合知识点总结

高中数学排列组合知识点总结

高中数学排列组合知识点总结:
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d。

3.等差中项
如果A=(a+b)/2,那么A叫做a与b的等差中项。

4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N_)。

(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_)。

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列。

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

(5)S2n-1=(2n-1)an。

(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项)。

数学笔记排列组合

数学笔记排列组合

排列组合题型总结一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个)三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五.阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

高中数学排列组合知识点

高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

高中数学知识点总结:排列组合

高中数学知识点总结:排列组合

高中数学知识点总结:排列组合数学网整理高中数学知识点总结:包括有关函数、数列、平面解析几何、立体几何等知识点的整理。

数学网各科复习资料:http://gaokao.xdf/list_1019_1.html排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+C n1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+Cn9+…=2n -1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

高中数学排列组合笔记梳理

高中数学排列组合笔记梳理

高中数学排列组合笔记梳理
最近两年排列组合和概率统计的内容在高考中愈发重要,所以打算先更新这一部分的笔记
一、排列数和组合数
这是解决排列组合问题的基础,除了知道定义外,还需要了解它们的性质以及一些使用方法。

排列组合数的一些性质在二项式定理的相关题目中经常会用到,所以理科的同学也要多留意一下(接下来的一两期会更新二项式相关内容)
二、排列组合问题的常见题型
1.捆绑法和插空法
一种“先解决整体再解决局部”的办法,用到乘法规则,是排列组合的经典题型之一。

2.隔板法
在名额分配、不定方程正整数解等题型中都会用到,关键要学会从问题中抽出隔板模型。

3.使用集合元素个数公式来帮助求解
这类题目也可以用分类法求解,不过画图会让问题更直观,不容易缺失情况
4.圆排列问题
只需要一个小小的策略就可以转化成直线排列啦
5.几何相关的排列组合问题
主要考察正方体、四面体等立体图形的相关性质,只要见过这类题型,了解套路,就不怕没有思路。

排列组合学习笔记

排列组合学习笔记

排列组合学习笔记
排列组合学习笔记
⼀.定义
P (m ,n )表⽰在n 个数中选取m 个数,所有排列的总数。

例如我找n 个⼈来,任意选m 个⼈来排队,总共有多少种不同的排法。

PS :P (m ,n )=A (m ,n )
C (m ,n )表⽰在n 个数中选出m 个数,总共有多少种组合⽅式。

⼆.计算公式
P (m ,n )=n (n −1)(n −2)...(n −m +1) 这个没有什么好讲的了,⽤乘法原理就可以了C (m ,n )=P (m ,n )P (m ,m )=n !
(n −m )!m ! 这个解释起来也很简单,我们先算出P (m ,n ) ,下⼀步要去重,我们k 个数有P (k ,k )个排列,但是在组合中,我们只算⼀次,所以我们要除以⼀个P (k ,k ),这样就得出来了它的计算公式。

三.组合公式的变式
C (m ,n )=C (n −m ,n ) (1)
这个公式还算好理解,想象⼀下,我们有n 个同学,我们要选出m 个同学打扫卫⽣。

换⼀种思路来说就是让(n −m )个同学不⽤打扫卫⽣,⽤数学公式来表达就是公式(1)了。

剩下的有点难,到时候再说吧。

四.没了!
Processing math: 100%。

排列组合知识点归纳总结

排列组合知识点归纳总结

排列组合知识点归纳总结
排列组合
1. 定义:排列是指将n个不同元素的一组按某种规律排成一列的过程;组合是指从n个不同元素中取任意多个元素一组组合,不考虑顺序称
作组合。

2. 公式:排列公式A(n,m):n(n-1)...(n-m+1);组合公式C(n,m):
n!/(m!(n-m)!)
3. 例题:
(1)从学校里的20个男生和10个女生中任取5人参加一次活动,这
次活动一共有多少种选择?
用排列的方法来求的话,总的选择数为
A(30,5)=30*29*28*27*26=653,800;用组合方法来求的话,总的选择数
为C(30,5)=30!/(5!*25!)=653,800。

(2)如何从10名男生中组成一个不相同的三人小组?
用排列的方法来求的话,总的选择数为A(10,3)=10*9*8=720;用组合
方法来求的话,总的选择数为C(10,3)=10!/(3!*7!)=120。

4. 实际应用:排列组合在数学中极为重要,其应用贯穿于数学当中的
很多领域,如余弦定理、泰勒公式、抛物线等。

诸如加密或者信息安全,以及网络安全等,其中也应用了排列组合的原理,以增强安全性。

同时,它还广泛会被用在生产调度、选号、玩游戏、医学等各种领域下。

高三数学排列组合知识点归纳总结

高三数学排列组合知识点归纳总结

高三数学排列组合知识点归纳总结数学是一门需要大量的思考和应用的学科,其中排列组合是数学中的一个重要部分。

在高三数学学习中,排列组合也是必修的一个内容,掌握了排列组合的知识,既能够帮助我们解决实际问题,又能够培养我们的思维能力和数学思维方式。

本文将对高三数学中的排列组合知识点进行归纳总结。

一、排列问题排列是指将若干个不同的元素按照一定的顺序排列起来,根据实际问题的不同,排列分为不放回排列和放回排列。

1. 不放回排列不放回排列的特点是每次抽出一个元素后不再放回,下一次的抽取范围减少一个元素。

例如,将10个不同的球依次排列,共有多少种排列方式?解法:根据乘法原理,第一个球有10种选择,第二个球有9种选择……依次类推,最后一个球有1种选择,因此共有10*9*…*1=10!种排列方式。

2. 放回排列放回排列的特点是每次抽出一个元素后将其放回,下一次的抽取范围不变。

例如,将10个不同的球排列,每次抽取时都将球放回,共有多少种排列方式?解法:与不放回排列不同,放回排列时每次抽取的元素都是独立的,因此每个位置上都有10种选择,所以共有10*10*…*10=10^n种排列方式。

二、组合问题组合是指从若干个不同的元素中取出一部分元素,不考虑其顺序,根据实际问题的不同,组合分为不放回组合和放回组合。

1. 不放回组合不放回组合的特点是每次抽取一个元素后不再放回,下一次的抽取范围减少一个元素。

例如,从10个不同的球中取出3个球,共有多少种组合方式?解法:根据组合的定义,只要选择了球,无论其顺序如何,都算作同一种组合方式。

所以,共有C(10,3) = 10!/(3!*(10-3)!)种组合方式。

2. 放回组合放回组合的特点是每次抽取一个元素后将其放回,下一次的抽取范围不变。

例如,从10个不同的球中取出3个球,每次抽取时都将球放回,共有多少种组合方式?解法:与不放回组合不同,放回组合时每次抽取的元素都是独立的,因此每个位置上都有10种选择,所以共有C(10+3-1,3) = C(12,3) =12!/(3!(12-3)!)种组合方式。

高中数学知识点总结之排列组合概率论篇

高中数学知识点总结之排列组合概率论篇

49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不50. 解排列与组合问题的规律是:相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩则这四位同学考试成绩的所有可能情况是()A. 24B. 15C. 12D. 10解析:可分成两类:(2)中间两个分数相等相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况51. 二项式定理性质:(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第表示)52. 你对随机事件之间的关系熟悉吗?A B的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53. 对某一事件概率的求法:分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;(2)从中任取5件恰有2件次品;(3)从中有放回地任取3件至少有2件次品;解析:有放回地抽取3次(每次抽1件),∴n=103而至少有2件次品为“恰有2次品”和“三件都是次品”(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。

2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。

二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

高中数学排列与组合知识点归纳

高中数学排列与组合知识点归纳

高中数学排列与组合知识点归纳
数学中的排列与组合是高中数学中的重要内容之一。

下面对排
列与组合的相关知识点进行归纳总结。

排列
排列是指从给定元素集合中选取若干个元素按照一定的顺序排
列形成的一个整体。

以下是排列的相关知识点:
1. 排列的定义:排列是从$n$个不同元素中选取$r$个进行有序
排列的方式,记作$A_n^r$。

- 全排列:当$r=n$时,称为全排列,即从$n$个元素中选取
$n$个进行有序排列,全排列的数量为$n!$。

2. 公式计算方法:对于排列问题,可以使用公式计算:
- $A_n^r=\frac{n!}{(n-r)!}$。

3. 特殊情况:
- 环排列:当排列中的元素形成一个环状排列时,称为环排列。

组合
组合是指从给定元素集合中选取若干个元素,不考虑元素的顺序形成的一个整体。

以下是组合的相关知识点:
1. 组合的定义:组合是从$n$个不同元素中选取$r$个进行无序排列的方式,记作$C_n^r$。

- 组合数:组合数指的是从$n$个元素中选取$r$个进行组合的方式的数量。

2. 公式计算方法:对于组合问题,可以使用公式计算:
- $C_n^r=\frac{n!}{r! \cdot (n-r)!}$。

3. 组合的性质:
- 对称性质:$C_n^r=C_n^{n-r}$。

综上所述,排列与组合是高中数学中常见的概念与计算方法,掌握它们有助于解决相关的概率、统计等数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。

一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个)三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)3,52,4五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有711C 种练习1.(a+b+c+d)15有多少项?当项中只有一个字母时,有14C 种(即a.b.c.d 而指数只有15故01414C C ⋅。

当项中有2个字母时,有24C 而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,114C 即24C 114C当项中有3个字母时34C 指数15分给3个字母分三组即可21434C C 当项种4个字母都在时31444C C ⋅ 四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?(216C )3.不定方程X 1+X 2+X 3+…+X 50=100中不同的整数解有(4999C )六. 平均分堆问题 例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a 1,a 2),(a 3,a 4),(a 5,a 6)由顺序不同可以有33A =6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有33222426A C C C =15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法?2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

七. 合并单元格解决染色问题例7 (全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不 得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有 种(以数字作答)。

分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素 ①③⑤的全排列数A 44(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得A 44种着色法.(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有A C 3334⋅种方法.2,4由加法原理知:不同着色方法共有2A C A 333444 =48+24=72(种)练习1(天津卷(文))将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 , 不同的种植方法共 种(以数字作答) (72)2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不同的栽种方法有 种(以数字作答).(120)图3 图43.如图4,用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是 种(84)图5 图65.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420)八. 递推法例八 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?分析:设上n 级楼梯的走法为a n 种,易知a 1=1,a 2=2,当n ≥2时,上n 级楼梯的走法可分两类:第一类:是最后一步跨一级,有a n-1种走法,第二类是最后一步跨两级,有a n-2种走法,由加法原理知:a n =a n-1+ a n-2,据此,a 3=a 1+a 2=3,a 4=a #+a 2=5,a 5=a 4+a 3=8,a 6=13,a 7=21,a 8=34,a 9=55,a 10=89.故走上10级楼梯共有89种不同的方法。

九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A 在同一平面上,不同的取法有 种(335C +3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面? (310C -436C +4-334C +3-6C 34+6+2×6=29)(2)以这10个点为顶点,共能确定多少格凸棱锥? 三棱锥 C 104-4C 64-6C 44-3C 44=141 四棱锥 6×4×4=96 3×6=18 共有114十. 先选后排法546132ED CB A4321例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有()A.1260种 B.2025种 C.2520种 D.5054种分析:先从10人中选出2人十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.A=20种解把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25例11.个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.C=126种解把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.59例12 从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法.C解把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。

10991例13某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.C=35(种)解无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.37例14一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.解根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6 C=924(种).个相同的白球的排列问题.612例15求(a+b+c)10的展开式的项数.C=66解展开使的项为aαbβcγ,且α+β+γ=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.212(种)例16亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?解设亚洲队队员为a1,a2,…,a5,欧洲队队员为b1,b2,…,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比C=252(种)赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为610十二.转化命题法例17圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15C=1365(个)个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有415十三.概率法例18一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为21,故本例所求的排法种数就是所有排法的21,即21A=360种 十四.除序法 例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个?(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个? 解(1)3377A A (2)443377A A A十五.错位排列例20 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有 种(9) 公式 1)))(1(21--+-=n n na a n a n=4时a 4=3(a 3+a 2)=9种 即三个人有两种错排,两个人有一种错排.2)n a =n!(1-!11+!21-!31+…+()n 1-!1n 练习 有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)。

相关文档
最新文档