高中的常见函数图像及基本性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见函数性质汇总及简单评议对称变换

常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势

2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线

一次函数 f (x )=kx +b (k ≠0,b ∈R)

1)、两种常用的一次函数形式:斜截式——

点斜式——

2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:

3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R

单调性:当k>0时 ;当k<0时

奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性;

例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1

(x)函数的图像关于y=x 对称,若g (5)=2016,求)=

周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )=

x

k

(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三

象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞

单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身

补充:1、反比例函数的性质

2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)

3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较

3)、f (x )=

d

cx b

ax ++ (c ≠0且 d ≠0)(补充一下分离常数)

(对比标准反比例函数,总结各项内容)

二次函数

一般式:)0()(2

≠++=a c bx ax x f 顶点式:)0()()(2

≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f

图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为

②当0>a 时,开口向上,有最低点 当0

= >0时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。

④)0()(2

≠++=a c bx ax x f

关系

)0()(2

≠=a ax x f

定 义 域:R 值 域:当0>a 时,值域为( );当0

单 调 性:当0>a 时;当0

反 函 数:定义域范围内无反函数,在单调区间内有反函数 周 期 性:无 补充:

1、a 的正/负;大/小与和函数图象的大致走向(所以,a 决定二次函数的 )

2、 c bx ++

3、二次函数的对称问题:关于x 轴对称;关于y 轴对称;关于原点对称;关于(m ,n )对称

4、二次函数常见入题考法:⑴交点(交点之间的距离) ⑵值域、最值、极值、单调性 ⑶数形结合判断图形走势(选择题)

指数函数

)1,0()(≠>=a a a x f x

,系数只能为1。 图象及其性质:

1、恒过)1,0(,无限靠近x 轴;

2、x

a x f =)(与x

x a a

x f -==)1()(关于y 轴对称;但均不具有奇偶性。

3、在y 轴右边“底大图高”;在y 轴左边“底大图低”——靠近关系

定 义 域:R 值 域:),0(+∞

单 调 性:当0>a 时;当0=a a x x f a 周 期 性:无 补充: 1、

2、图形变换

Log 21/x 和Log 2- x

ln (x-1)和lnx - 1

对数函数(和指数函数互为反函数)

)1,0(log )(≠>=a a x x f a

图象及其性质:①恒过)0,1(,无限靠近y 轴;

②x x f a log )(=与x x x f a a

log log )(1-==关于x 轴对称;

③x >1时“底大图低”;0<x <1时“底大图高”(理解记忆)

定 义 域:R 值 域:),0(+∞

单 调 性:当0>a 时;当0=a a a x f x

周 期 性:无 补充:

1、

)

f (x )=a x

x

y

O

f (x )=)1(lo

g >a x a

f (x )=)10(lo

g <

双钩函数

x

x x f 1

)(+

=(变形式 ) 图象及其性质:①两条渐近线: ②最值计算: 定 义 域: 值 域:

单 调 性: 奇 偶 性:奇函数 反 函 数:定义域内无反函数 周 期 性:无

注意 :双沟函数在最值、数形结合、单调性的考察中用得较多,需特别注意最值得算法

幂函数(考察时,一般不会太难)

无论n 取任何实数,幂函数图象必然经过第一象限,并且一定不经过第四象限。

不需要背记,只要能够快速画出n=±1, ±1/2,±3,,1/3,0,的图象就行

注意:

掌握y=x 3

的图像;

掌握y=ax 3+bx 2

+cx+d 的图像(当a>0,当a<0时);

补充:

利用数形结合,判断非常规方程的根的取值范围。 例:P 393,例题10

相关文档
最新文档