高中数学常见函数图像
高中数学:函数的图像
高中数学:函数的图像1.描点法作图其基本步骤是列表、描点、连线,具体为: 首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点); 最后:描点、连线. 2.图像的变换题组一 常识题1.[教材改编] 对于函数f (x )=⎩⎪⎨⎪⎧1,x =0,x ,x ≠0,有下列三种说法:①图像是一个点和两条直线; ②图像是两条直线;③图像是一个点和两条不含端点的射线. 其中正确的说法是________.(填序号)2.[教材改编] 为了得到函数y =log 2(x +3)的图像,只需把函数y =log 3x 的图像上所有的点向________平移________个单位长度.3.[教材改编] 函数y =a x与y =⎝⎛⎭⎫1a x(a >0且a ≠1)的图像关于直线________对称.图2-10-1 4.[教材改编] 函数y =f (x )的图像如图2-10-1所示,则函数的定义域是________.题组二 常错题◆ 索引:图像平移的单位和方向.5.将函数y =f (-x )的图像向右平移2个单位得到函数________的图像;6.把函数y =f (2x )的图像向左平移________个单位得到函数y =f (2x +5)的图像. 题组三 常考题 7.[2015·安徽卷改编] 在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |+1的图像只有一个交点,则a 的值为________.8.[2012·新课标全国卷Ⅱ改编] 当0<x ≤12时,4x <log a x ,则a 的取值范围是________.探究点一 作函数的图像1 分别画出下列函数的图像:(1)y =|lg (x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________[总结反思] 为了正确地作出函数的图像,除了掌握“列表、描点、连线”的方法之外,还要做到以下两点:(1)熟练掌握几种基本函数的图像,以及形如y =x +1x 的函数图像.(2)掌握常用的图像变换方法,如平移变换、伸缩变换、对称变换、翻折变换、周期变换等,利用这些方法来帮助我们简化作图过程.式题 分别画出下列函数的图像:(1)y =|x 2-4x +3|;(2)y =2x +1x +1;(3)y =10|lg x |.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 探究点二 识图与辨图2 (1)[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图2-10-2(2)已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图像错误的是( )图2-10-3________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ [总结反思] 识图常用的方法:(1)定性分析法:通过对问题进行定性的分析,结合函数的单调性、对称性等特征分析解决问题;(2)定量计算法:通过定量的计算,如特殊点、特殊值等来分析解决问题;(3)函数模型法:由所提供的图像特征,结合实际问题的含义以及相关函数模型分析解决问题.式题(1)[2016·黄冈中学月考] 函数f(x)=(x2-1)sin x的图像大致是()图2-10-4(2)如图2-10-5,AB是圆柱的母线,动点P从点A出发在侧面上运动,绕过圆柱侧面到达点B,当点P走过的最短路程为x时,点P到圆柱下底面的距离为y,则y=f(x)的图像是()图2-10-52-10-6探究点三 函数图像的应用 考向1 确定方程根的个数3 (1)[2016·湖北优质高中联考] 函数f (x )=[x ]-x (函数y =[x ]的函数值表示不超过x 的最大整数,如 []-3.6=-4,[]2.1=2),则方程f (x )+lg x =0根的个数为( )A. 8B. 9C. 10D. 11(2)函数f (x )=2ln x 的图像与函数g (x )=x 2-4x +5的图像的交点个数为________. ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ [总结反思] 根据方程合理构造函数.若构造的是一个函数,则方程的根的个数就是函数图像与x 轴交点的个数;若是两个函数,则方程根的个数就是这两个函数图像交点的个数.考向2 求参数的取值范围4 (1)对实数a 和b ,定义运算“”:ab =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)(x-1),x ∈R ,若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2]∪(1,2]D .[-2,-1](2)已知方程|x 2-1|x -1-(kx -2)=0恰有两个交点,则实数k 的取值范围是________.________________________________________________________________________ ________________________________________________________________________ [总结反思] 图像不易作出时,可将函数(或方程)等价转化为方便作图的两个函数,根据题设条件和图像的变化确定参数的取值范围.考向3 求不等式的解集 5 (1)设函数f (x )=|x +a |,g (x )=x -1,对于任意x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.(2)不等式log 2(-x )<x +1的解集为________.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ [总结反思] 根据不等式构造合适的函数,作出函数图像,观察函数图像与x 轴的交点或两个函数图像的位置关系,进而确定不等式的解集.答案【课前双基巩固】 知识聚焦f (x -a ) f (x )+b -f (x ) f (-x ) -f (-x ) log a x (a >0,且a ≠1) f (ax ) af (x ) y =|f (x )| y =f (|x |)对点演练 1. ③ 2.左 33.x =0(或y 轴) [解析] y =⎝⎛⎭⎫1a x=a -x,故两个函数的图像关于y 轴,即直线x =0对称. 4.(-3,-1]∪(0,2]5.y =f (-x +2) [解析] 将函数y =f (-x )的图像向右平移2个单位得到函数y =f [-(x -2)]=f (-x +2)的图像(注意平移方向).6.52 [解析] 因为y =f (2x +5)=f ⎣⎡⎦⎤2⎝⎛⎭⎫x +52,所以把函数y =f (2x )的图像向左平移52个单位可得到函数y =f (2x +5)的图像.7.12[解析] 依题意,在同一坐标系中作出直线y =2a 与函数y =|x -a |+1的图像(图略).由图像得,2a =1,解得a =12.8.0<a <22 [解析] 由指数函数与对数函数的图像知⎩⎪⎨⎪⎧0<a <1,log a 12>412,解得0<a <22. 【课堂考点探究】例1 [思路点拨] (1)利用图像的平移和翻折作图;(2)利用图像的平移作图;(3)利用偶函数的关系作图,先作x ≥0时的图像,再关于y 轴对称作出另一部分的图像.解:(1)首先作出y =lg x 的图像C 1,然后将C 1向右平移1个单位,得到y =lg(x -1)的图像C 2,再把C 2在x 轴下方的图像作关于x 轴对称的图像,即为所求图像y =|lg (x -1)|的图像.如图①所示(实线部分).(2)y =2x +1-1的图像可由y =2x 的图像向左平移1个单位,得y =2x +1的图像,再向下平移一个单位得到y =2x +1-1的图像,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图像如图③所示.变式题 解:(1)先画函数y =x 2-4x +3的图像,再将其x 轴下方的图像翻折到x 轴上方,如图①.(2)y =2x +1x +1=2-1x +1,故该函数的图像可由y =-1x 的图像向左平移1个单位,再向上平移2个单位得到,如图②.(3)y =10|lg x |=⎩⎪⎨⎪⎧x ,x ≥1,1x,0<x <1,其图像如图③所示.例2 [思路点拨] (1)重点考查自变量2的函数值以及x ∈[0,2]时,函数的单调性;(2)作出函数y =f (x )的图像,然后对照选项中的图像,利用平移、翻折等方式判断.(1)D (2)D [解析] (1) 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =f (x )=2x 2-e x ,则f ′(x )=4x -e x ,f ′(0)<0,f ′(1)>0,f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只可能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.(2)先在坐标平面内画出函数y =f (x )的图像(如图所示),再将函数y =f (x )的图像向右平移1个单位长度即可得到y =f (x -1)的图像,因此A 正确;作函数y =f (x )的图像关于y 轴的对称图形,即可得到y =f (-x )的图像,因此B 正确;y =f (x )的值域是[0,2],因此y =|f (x )|的图像与y =f (x )的图像重合,C 正确;y =f (|x |)的定义域是[-1,1],且是一个偶函数,当0≤x ≤1时,y =f (|x |)=x ,因此选项D 不正确.故选D.变式题 (1)A (2)D [解析] (1)因为函数f (x )的定义域为R ,且f (-x )=(x 2-1)sin (-x )=-f (x ),所以f (x )是奇函数,当x ∈(0,1)或x ∈⎝⎛⎭⎫π,3π2时,都有f (x )<0,结合选项知选项A 正确.(2)圆柱的侧面展开图是矩形,依题意,点P 在矩形的对角线上.设矩形的两边长分别为a ,b ,则有y x =b a 2+b 2,即y =bxa 2+b 2,所以y =f (x )的图像是一条线段.故选D.例3 [思路点拨] (1)根据方程f (x )+lg x =0构造函数y =-f (x )和y =lg x ,作出图像,观察两图像交点的个数;(2)作出函数f (x )与g (x )的图像,即可得出交点个数.(1)A (2)2 [解析] (1)方程f (x )+lg x =0根的个数就是函数y =-f (x )与y =lg x 图像交点的个数,又函数f (x )=[x ]-x 是周期为1的周期函数,所以y =-f (x )也是周期为1的周期函数.在同一个坐标系中作出函数y =-f (x )和y =lg x 的图像(如图).由图可知,它们共有8个交点,所以方程f (x )+lg x =0有8个实根.(2)在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5的图像(图略).因为f (2)=2ln 2>g (2)=1,所以f (x )与g (x )的图像的交点个数为2.例4 [思路点拨] (1)求出函数f (x )的解析式,作出f (x )的图像,观察图像与直线y =c 的位置关系,可得c 的取值范围;(2)构造函数f (x )=|x 2-1|x -1和g (x )=kx -2,根据图像求解.(1)B (2)(0,1)∪(1,4)[解析] (1)依题意知,f (x )=(x 2-2)(x -1)=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2.结合图像可知,当c ∈(-2,-1]∪(1,2]时,函数y =f (x )与y =c 的图像有两个公共点,所以c 的取值范围是(-2,-1]∪(1,2].(2)构造函数f (x )=|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x >1或x <-1,-x -1,-1≤x <1和g (x )=kx -2.在直角坐标系中作出函数y =f (x ),y =g (x )的图像.根据图像可知,当0<k <1或1<k <4时有两个交点.例5 [思路点拨] (1)作出函数f (x )=|x +a |,g (x )=x -1的图像,再根据图像求出实数a 的取值范围.(2)作出函数f (x )=log 2(-x ),g (x )=x +1的图像,再根据图像得出不等式f (x )<g (x )的解集.(1)[-1,+∞) (2){x |-1<x <0} [解析] (1)要使f (x )≥g (x )恒成立,则f (x )的图像必须在g (x )的图像上方(如图所示),所以-a ≤1,所以a ≥-1.(2)设f (x )=log 2(-x )(x <0),g (x )=x +1(x ∈R ).在同一坐标系中作出函数f (x )、g (x )的图像(如图所示).由图像可知不等式log 2(-x )<x +1的解集为{x |-1<x <0}.[备选理由] 例1是函数图像的识别问题,例2是图像的交点问题,例3是参数问题.希望通过练习加深对函数图像问题的理解,进一步提高利用函数图像解决问题的能力.例1 [配例2使用] [2016·北京海淀区期中] 函数f (x )=2x +sin x 的部分图像可能是( )[解析] A 由题意可知,x ∈R ,又f (-x )=-2x -sin x =-f (x ),所以函数f (x )的图像关于原点对称,又f ′(x )=2+cos x >0,所以函数单调递增,故选A.例2 [配例4使用] 已知函数f (x )是定义在R 上,且以2为周期的偶函数,当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .-14或-12 B .0C .0或-12D .0或-14[解析] D 根据已知可得函数f (x )=(x -2k )2,x ∈[2k -1,2k +1),k ∈Z .在直角坐标系中作出它的图像,如图,再作直线y =x +a ,可见当直线y =x +a 与抛物线y =x 2相切时,或直线y =x +a 过原点时,符合题意,此时a =-14或a =0.例3 [配例4使用] [2016·北京东城区期末] 已知函数f (x )=a -x 2(1≤x ≤2)与g (x )=x +1的图像上存在关于x 轴对称的点,则实数a 的取值范围是( )A.⎣⎡⎭⎫-54,+∞ B .[1,2] C.⎣⎡⎦⎤-54,1 D .[-1,1] [解析] D 设(x ,x +1)为函数g (x )=x +1的图像上的点,则(x ,-x -1)为函数f (x )=a-x 2(1≤x ≤2)图像上的点,所以-x -1=a -x 2.依题意,方程x 2-x -a -1=0在区间[1,2]上有解,设h (x )=x 2-x -1-a ,则有⎩⎪⎨⎪⎧h (1)≤0,h (2)≥0,解得-1≤a ≤1.。
初中高中数学七大函数的性质 图像
初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
高中数学的所有重要函数图像及其性质图像特点单调性定义域值域
数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
高中数学 14种函数图像和性质知识解析 新人教A版必修1
高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
常见函数的图像和性质
常见函数的图像和性质函数是高中数学学习中不可避免的部分,常见函数有一些图像和性质。
本文将介绍常见函数的图像和性质,包括线性函数、二次函数、指数函数、对数函数和三角函数。
线性函数是最基本的函数之一,也是最容易理解的函数之一。
线性函数的一般式是y = kx + b,其中k和b是常数,x和y表示函数的自变量和因变量。
线性函数的图像是一条直线,斜率k和截距b决定了直线的位置和倾斜程度。
当k>0时,函数是单调递增的,当k<0时,函数是单调递减的。
斜率越大,直线越陡峭,斜率越小,直线越平缓。
截距决定直线和y轴的交点。
当b>0时,直线在y轴上方,当b<0时,直线在y轴下方,当b=0时,直线经过原点。
线性函数的性质是简单的,任何两个不同的点都能确定一条直线,而且任何一条直线都可以写成y = kx + b的形式。
二次函数是另一个基本函数,一般式是y = ax^2 + bx + c,其中a、b、c是常数。
二次函数的图像是一个开口向上或向下的抛物线,抛物线的开口方向由系数a的正负决定。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
二次函数图像的性质和线性函数有所不同,首先,二次函数不是单调函数,也就是说,它有一个最值点,最值点的坐标为(-b/2a,c-b^2/4a)。
第二,二次函数图像的对称轴是一个垂直于x轴的线,它的坐标是x = -b/2a。
第三,二次函数图像上任何一条水平线和抛物线只有一个交点,因此,二次函数也称为单峰函数。
指数函数是一种以底数为e的指数型函数,一般式是y = a^x,其中a是正常数。
指数函数的图像呈现出一种快速增长或快速衰减的趋势,指数函数的性质是独特的。
当a>1时,指数函数单调递增,当0<a<1时,指数函数单调递减,当a=1时,指数函数恒等于1。
指数函数图像的特点是固定的x值下y值呈指数型增长或衰减,在坐标系中的图像表现出“指数型曲线”。
高中数学函数图像总结
编制者;石嘉炜
①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
|k|越大,直线与x轴相交的锐角度数越大〔直线陡〕,|k|越小,直线与x轴相交的锐角度数越小〔直线缓〕;
①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.
①当k>0,b>0时,直线经过第一、二、三象限〔直线不经过第四象限〕;②当k>0,b﹥O时,直线经过第一、三、四象限〔直线不经过第二象限〕;③当k﹤O,b>0时,直线经过第一、二、四象限〔直线不经过第三象限〕;④当k﹤O,b﹤O时,直线经过第二、三、四象限〔直线不经过第一象限〕
〔1〕正比例函数y=kx的图象必经过原点;
〔2〕当k>0时,图象经过第一、三象限,y随x的增大而增大;〔3〕当k<0时,图象经过第二、四象限,y随x的增大而减小.。
高中数学常见函数图像
-高中数学常见函数图像1.指数函数:2.对数函数:过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性非奇非偶单调性@在(0,)+∞上是增函数在(0,)+∞上是减函数定义形如αx y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.图像性质【过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.。
#>4.函数sin y x =cos y x = tan y x =图象!定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域·[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,@max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π2ππ、奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.。
初中高中数学七大函数的性质 图像
初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
高中数学ppt课件大全
06
排列组合与概率初步
排列组合的概念与运算
排列
从n个元素中取出m个元素,按照一定的顺序排列起来,叫做从n 个元素中取出m个元素的一个排列。
组合
从n个元素中取出m个元素,并成一组,叫做从n个元素中取出m个 元素的一个组合。
排列与组合的计数原理
分步乘法计数原理、分类加法计数原理。
概率的初步概念与计算方法
互斥事件的概率计算
P(A∪B)=P(A)+P(B)。
THANKS
感谢观看
02
三角函数与解三角形
三角函数的概念与性质
总结词
基础核心概念、周期性、振幅、相位、初相、终相、正弦函数、余弦函数、正切 函数、余切函数、反正弦函数、反余弦函数、反正切函数、反余切函数。
详细描述
三角函数是高中数学的基础核心概念,包括正弦函数、余弦函数、正切函数、余 切函数等。这些函数都具有周期性,且与振幅、相位、初相、终相等相关。通过 对这些函数的图像和性质的掌握,可以深入理解三角函数的本质和应用。
掌握空间几何体的表面积和体积的计算方法,能够正确 计算简单几何体的表面积和体积。
详细描述
本节内容主要介绍空间几何体的表面积和体积的计算方 法,包括长方体、正方体、圆柱体、圆锥体等立体图形 的表面积和体积的计算方法,让学生能够掌握各种立体 图形的表面积和体积的计算方法,为后续学习打下基础 。同时,本节还介绍了立体图形的组合与分解,让学生 能够更好地理解立体几何的基本概念和性质,提高解决 实际问题的能力。
概率
表示事件发生的可能性大小的数 值,叫做该事件的概率。
概率计算方法
公式法、列举法、列表法、图示 法。
独立事件与互斥事件及其概率计算
独立事件
(完整版)高中数学常见函数图像
高中数学常见函数图像1.2.对数函数:3.幂函数:定义形如αxy=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.4.函数sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。
高中数学函数图像大全
高中数学函数图像大全1. 常用数学函数1.1. 直线函数直线函数是数学中最简单的函数之一。
它的特点是图像为一条直线,表达式为y=kx+b,其中k和b是常数。
直线函数的图像与直线的斜率和截距有关。
1.2. 平方函数平方函数的图像为抛物线,表达式为y=x2。
平方函数的特点是对称于y轴,并且开口向上。
1.3. 立方函数立方函数的图像为一条类似于S字形的曲线,表达式为y=x3。
立方函数的特点是对称于原点,并且开口向上。
1.4. 平方根函数平方根函数的图像为一条向右开口的抛物线,表达式为 $y = \\sqrt{x}$。
平方根函数的特点是定义域为非负实数集。
1.5. 绝对值函数绝对值函数的图像为一条折线,表达式为y=|x|。
绝对值函数的特点是对称于y轴,并且在原点处转折。
2. 复合函数复合函数是由两个或多个函数相互组合而成的函数。
其图像可以通过将各个函数的图像进行组合来得到。
3. 反函数反函数是与给定函数互为反函数的函数。
其图像可以通过将给定函数的图像关于直线y=x进行对称得到。
4. 常见函数图像的变换常见函数图像可以通过平移、伸缩、翻转等操作进行变换,从而得到新的函数图像。
4.1. 平移变换平移变换是将函数图像沿x轴或y轴方向移动的操作。
对于函数y=f(x),平移变换的一般形式为y=f(x−a)或y=f(x)+b。
4.2. 伸缩变换伸缩变换是将函数图像在水平或垂直方向进行拉伸或压缩的操作。
对于函数y=f(x),伸缩变换的一般形式为 $y = a \\cdot f(bx)$。
4.3. 翻转变换翻转变换是将函数图像关于x轴或y轴进行翻转的操作。
对于函数y=f(x),翻转变换的一般形式为y=−f(x)或y=f(−x)。
5. 实际应用数学函数图像在实际应用中起到了重要的作用。
例如,在物理学中,函数图像可以用来描述物体的运动轨迹;在经济学中,函数图像可以用来描述经济变量之间的关系;在计算机科学中,函数图像可以用来进行数据的可视化等。
高中数学基本函数图像
高中数学基本函数图像,是指高中数学中常用的函数图像,这些函数图像通常
以y=f(x)的形式表示,其中f(x)可以是一元函数、二元函数或多元函数。
常见的
基本函数图像有直线、抛物线、圆、椭圆、正弦函数、余弦函数等。
直线的函
数图像一般为直线的斜率表示,如y=mx+b;抛物线的函数图像一般为二次项的
系数表示,如y=ax2+bx+c;圆的函数图像一般为圆心坐标和半径表示,如(x-
a)2+(y-b)2=r2;椭圆的函数图像一般为椭圆中心坐标、水平半径和竖直半径表示,如(x-a)2/a2+(y-b)2/b2=1;正弦函数的函数图像一般为正弦函数的周期、偏移量
和振幅表示,如y=Asin(ωx+φ)+k;余弦函数的函数图像也是正弦函数的同样表
示方法,如y=Acos(ωx+φ)+k。
高中数学三角函数公式、图像大全
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =a sin 1 sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanαsin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
《高中数学PPT课件——函数》
3
反函数
反函数是函数的逆运算,将函数的输 出值映射回输入值。
对数与指数的关系
对数函数与指数函数是互为反函数的 关系,它们可以互相抵消。
指数函数与对数函数的图像与性质
指数函数
指数函数的图像呈现出指数增 长或指数衰减的特点。
对数函数
对数函数的图像呈现出反比例 关系,随着自变量的增大,函 数值逐渐变化缓慢。
指数增长和指数衰减
指数函数可以呈现出快速增长 或快速衰减的趋势。
复合函数及其求法
1
复合函数
复合函数由两个函数组成,其中一个函数的输出值作为另一个函数的输入值。
2
求法
可以通过代入法、求导法或递推法等方法来求解复合函数。
3
函数运算法则
复合函数满足函数运算的一些基本法则,如分配律和结合律。
函数的奇偶性与周期性
奇函数与偶函数
奇函数关于坐标原点对称, 即f(x)=-f(-x),偶函数关于 y轴对称,即f(x)=f(-x)。
周期函数
周期函数的图像在一定区 间内不断重复,满足 f(x+T)=f(x),其中T是函数 的周期。
常用周期函数
正弦函数、余弦函数和正 切函数都是常见的周期函 数。
常用函数的图像与性质
正弦函数
函数是数学中的一种基本关系。它将一个集合的每个元素映射到另一个集合 的元素上。函数能够描述事物之间的联系和变化规律。
函数的符号表示及基本性质
符号表示
函数用f(x)或y来表示,其中x是自变量,y是 因变量。
奇偶性和周期性
函数的奇偶性决定了它的对称性,周期性描 述了函数的重复性规律。
定义域和值域
函数的定义域是自变量的取值范围,值域是 函数所有可能的输出值。
高中数学三角函数图像和性质
三角函数的图象和性质
知识点
一.正弦函数:
1.正弦函数的图象:
2.
定义域为
;值域为•
(1)
当且仅当
时,取得最大值1;
⑵
当且仅当
时,取得最小值1
3.单调性:
在闭区间上都是增函数,其值从1增大到1;
在闭区间上都是减函数,其值从1减小到1.
4.奇偶性:.
5.周期性:最小正周期是,周期是
6.对称性:对称轴是,对称中心是.
r
rK,
(1)将正切函数y tanx在区间(亍'上的图象向左、右扩展,就可以得到正切函y tanx,(x R, x-k , k Z)的图象,我们把它叫做正切曲线.正切曲线是由被互相平行的直线x
(k Z)所隔开的无数多支曲线组成的.这些平行直线x=(k Z)叫做正切曲线各支的
⑵结合正切曲线的特征,类比正弦、余弦函数的“五点法”作图,也可用三点两线作图法作出正切函数
6.对称性:对称轴是,对称中心是.
题型一 正弦,余弦函数的图象和性质
【例1】求函数y=g+sinx的定义域
函数y=2sin(4x+^)的对称轴方程为
3
【过关练习】
1•求函数y 3sin x2的值域以及取得最值时x的值
2.判断函数y=xsin( x)的奇偶性
3.求函数y1sinx的单调区间
二.余弦函数:
1.余弦函数的Βιβλιοθήκη 象:2.定义域为值域为
(1)当且仅当
时,取得最大值1;
(2)当且仅当
时,取得最小值1.
3.单调性:
在闭区间
上都是增函数,其值从
1增加到1;
在闭区间
上都是减函数,其值从
高中数学的所有重要函数图像及其性质 图像特点 单调性 定义域 值域等
高中数学的所有重要函数图像及其性质图像特点单调性定义域值域等对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学常见函数图像1.
2.对数函数:
3.幂函数:
定义形如αx
y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.
图像
性质过定点:所有的幂函数在(0,)
+∞都有定义,并且图象都通过点(1,1).单调性:如果0
α>,则幂函数的图象过原点,并且在[0,)
+∞上为增函数.如果0
α<,则幂函数的图象在(0,)
+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.
4.
函数
sin y x =
cos y x = tan y x =
图象
定义域
R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值
当
22
x k π
π=+
()
k ∈Z 时,
max 1y =; 当22
x
k π
π=-
()k ∈Z 时,min 1y =-.
当()2x k k π
=∈Z 时,
max 1y =;
当2x k π
π=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性 2π
2π
π
奇偶性
奇函数 偶函数 奇函数
单调性
在
2,222k k ππππ⎡
⎤-+⎢⎥⎣⎦
()k ∈Z 上是增函数;在
32,222k k π
πππ⎡⎤++⎢⎥⎣
⎦ ()k ∈Z 上是减函数.
在[]()
2,2k k k πππ-∈Z 上
是
增
函
数
;
在
[]2,2k k πππ+
()k ∈Z 上是减函数.
在,2
2k k π
ππ
π⎛
⎫
-
+
⎪⎝
⎭
()k ∈Z 上是增函数.
对称性
对称中心
()(),0k k π∈Z
对称轴
()2
x k k π
π=+
∈Z
对称中心
(),02k k ππ⎛⎫+∈Z
⎪⎝
⎭ 对称轴()x k k π
=∈Z
对称中心(),02k k π⎛⎫
∈Z ⎪⎝⎭
无对称轴。