【精选】八年级数学上册三角形解答题单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精选】八年级数学上册三角形解答题单元培优测试卷

一、八年级数学三角形解答题压轴题(难)

1.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).

(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,

①当∠ABO=60°时,求∠AEB的度数;

②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;

(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.

【答案】(1)①135°②∠AEB的大小不会发生变化,∠AEB=135°,详见解析(2)

∠ABO=60°或45°

【解析】

【分析】

(1)①根据三角形内角和定理、角分线定义,即可求解;

②方法同①,只是把度数转化为角表示出来,即可解答;

(2)根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果,要对谁是谁的3倍分类讨论..

【详解】

(1)如图1,①∵MN⊥PQ,

∴∠AOB=90°,

∵∠ABO=60°,

∴∠BAO=30°,

∵AE、BE分别是∠BAO和∠ABO的角平分线,

∴∠ABE=1

2

∠ABO=30°,∠BAE=

1

2

∠BAO=15°,

∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.②∠AEB的大小不会发生变化.理由如下:

同①,得∠AEB=180°﹣∠ABE﹣∠BAE=180°﹣1

2

∠ABO﹣

1

2

∠BAO

=180°﹣1

2

(∠ABO+∠BAO)=180°﹣

1

2

×90°=135°.

(2)∠ABO的度数为60°.理由如下:如图2,

∵∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,

∴∠OAE+∠OAF=1

2

(∠BAO+∠GAO)=90°,即∠EAF=90°,

又∵∠BOA=90°,∴∠GAO>90°,

①∵∠E=1

3

∠EAF=30°,

∠EOQ=45°,∠OAE+∠E=∠EOQ=45°,∴∠OAE=15°,

∠OAE=1

2

∠BAO=

1

2

(90﹣∠ABO)

∴∠ABO=60°.

②∵∠F=3∠E,∠EAF=90°

∴∠E+∠F=90°

∴∠E=22.5°

∴∠EFA=90-22.5°=67.5°

∵∠EOQ=∠EOM= ∠AOE= 45°,

∴∠BAO=180°-(180°-45°-67.5°)×2=45°

∴∠ABO=90°-45°=45°

【点睛】

本题考查了三角形内角和定理及外角的性质、角分线定义,解决本题的关键是灵活运用三角形内角和外角的关系.

2.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,

(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;

(2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点

B、C,∠A=40°,则∠ABX+∠ACX等于多少度;

②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;

③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,

∠BG1C=70°,求∠A的度数.

【答案】(1)详见解析;(2)①50°;②85°;③63°.

【解析】

【分析】

(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,

∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;

(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;

②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;

③由②得∠BG1C=

1

10

(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得

1

10

(133-x)+x=70,

求出x的值即可.

【详解】

(1)如图(1),连接AD并延长至点F,

根据外角的性质,可得

∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,

又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;

(2)①由(1),可得

∠ABX+∠ACX+∠A=∠BXC,

∵∠A=40°,∠BXC=90°,

∴∠ABX+∠ACX=90°-40°=50°;

②由(1),可得

∠DBE=∠DAE+∠ADB+∠AEB,

∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,

∴1

2

(∠ADB+∠AEB)=90°÷2=45°,

∵DC平分∠ADB,EC平分∠AEB,

1

2

ADC ADB

∠=∠,

1

2

AEC AEB

∠=∠,

∴∠DCE=∠ADC+∠AEC+∠DAE,

=1

2

(∠ADB+∠AEB)+∠DAE,

=45°+40°, =85°;

③由②得∠BG1C=

1

10

(∠ABD+∠ACD)+∠A,

∵∠BG1C=70°,

∴设∠A为x°,

∵∠ABD+∠ACD=133°-x°

1

10

(133-x)+x=70,

∴13.3-

1

10

x+x=70,

解得x=63,

即∠A的度数为63°.

【点睛】

此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.

3.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令

∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;

(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;

相关文档
最新文档