浙教版七年级数学下册试题作业检测试题卷.3.20.docx

合集下载

浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含答案一、单选题1.12-的值是( ) A .2-B .2C .12-D .122.计算4322⨯的结果是( ) A .72B .82C .122D .1323.如图,不一定能推出a∥b 的条件是( )A .∥1=∥3B .∥2=∥4C .∥1=∥4D .∥2+∥3=180º4.下列运算正确的是( ) A .2333a a a += B .()3252?2a a a -=C .623422a a a ÷=D .()22238a a a --=5.如图:有a 、b 、c 三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A .a 户最长B .b 户最长C .c 户最长D .三户一样长6.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是( )A .2V V t x x+= B .4V V t x x += C .11224V Vt x x⋅+⋅= D .24V V t x x+= 7.已知35a b =,则a b a b -+的值是( )A .﹣23B .﹣25C .﹣14D .298.下列运算正确的是( ) A .2532a a a -= B .2324236ab a b a b ⋅= C .()3339327ab a b -=-D .222(2)42a b a ab b -=-+9.2022年我市有5800名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .5800名考生是总体 B .1000名考生是总体的一个样本 C .1000名考生是样本容量D .每位考生的数学成绩是个体10.下列各式能用平方差公式计算的是( ) A .(﹣12a +1)(﹣12a ﹣1) B .(2x +y )(2y ﹣x ) C .(a +b )(a ﹣2b )D .(2x ﹣1)(﹣2x +1)11.下列调查适合抽样调查的是( ) A .对某班全体学生出生日期的调查 B .上飞机前对乘客进行的安检C .审核将发表的一篇文稿中的错别字D .对全市中小学生的睡眠情况进行调查12.下列各组值中,哪组是二元一次方程2x ﹣y=5的解( ) A .26x y =-⎧⎨=⎩B .43x y =⎧⎨=⎩C .34x y =⎧⎨=⎩D .62x y =⎧⎨=⎩13.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( ) A .0B .5C .5-D .5或5-14.对于两个非零实数a 、b ,规定11a b b a⊕=-,若()2211x ⊕+=,则x 的值为( ) A .56B .54C .32D .16-15.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b216.如图,由图形的面积关系能够直观说明的代数恒等式是( )A .22()()a b a b a b -=-+B .222()2a b a ab b -=-+C .224()()ab a b a b =+--D .222()2a b a ab b +=++17.下列计算正确的是( ) A .235a a a += B .844a a a ÷= C .222(2)4ab a b -=-D .222()a b a b +=+18.如图是某班全体学生外出时选择乘车、步行、骑车人数的条形统计图和扇形统计图(两图都不完整),则下列结论中正确的是( )A .步行人数为30人B .骑车人数占总人数的10%C .该班总人数为50人D .乘车人数是骑车人数的40%19.已知m ﹣1m 1m+m 的值为( )A.B C . D .1120.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.二、填空题 21.若14-x 在实数范围内有意义,则x 的取值范围是________. 22.分解因式:my 2﹣9m =_____.23.某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是_____. 24.比较大小:4442____333325.关于x 、y 的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()ba -=____26.分解因式:224x y xy +=______.27.一个不透明的盒子中有若干个白球和5个黑球,从中摸出一球记下颜色后放回,重复摸球100次,其中摸到黑球的次数为25次,盒中有白球约______个. 28.分解因式:32a b b -=_______________. 29.若244(2)()x x x x n ++=++,则n =__________ 30.分解因式:2x x -=_________.31.如图,AB //CD ,∥2=135°,则∥1的度数是 ___.32.如图, 已知12180∠+∠=︒,375∠=︒,则4∠=__________.33.因式分解:2412x x +-=______.34.小玲想借助学过的几何图形设计图案,首先她将如图1的小长方形和如图2的小正方形组合成如图3的大正方形图案,已知小长方形的长为()cm a ,宽为()cm b ,则图2的小正方形的边长可用关于a 和b 的代数式表示为______;小玲随后用3个如图3的完全相同的图案和8个如图1的小长方形,组合成如图4的大长方形图案,则图4中阴影部分面积与整个图形的面积之比为______.35.分式方程1233x x x-=---解得______. 36.因式分解:516a a -= ____37.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∥1=28°,则∥2的度数是______.38.某个数的平方根是2a b +和44a --__________. 39.如图,O 是正六边形ABCDEF 的中心,下列图形:∥OCD ,∥ODE ,∥OEF ,∥OAF ,∥OAB ,其中可由∥OBC 平移得到的有_________个.三、解答题40.因式分解:2(2)(2)m a a -+-41.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠. 证明:AE 平分BAC ∠(已知)12∴∠=∠( )BED C ∠=∠(已知) //AC DE ∴( )13∠∠∴=( ) 23∴∠=∠(等量代换) //DF AE ( )25∴∠=∠( )3=4∠∠( )45∴∠=∠( ) DF ∴平分BDE ∠( )42.解方程组(1)2123211x y x y +=⎧⎨-=⎩①②(2)24230x y x y -=⎧⎨+-=⎩①②43.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:()1该调查的样本容量为______,a =______%,b =______%.“很少”对应扇形的圆心角为______;()2请补全条形统计图;()3若该校共有3500名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?44.先化简,再求值:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦,其中x =-1. 45.先化简,再求值2211xy x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中2x =,=2y -. 46.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动.小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查.她在300户家庭中随机调查了50户家庭5月份的用水量,结果如图所示.把图中每组用水量的值用该组的中间值(如06~的中间值为3)来代替,估计该小区5月份的用水量.47.仔细阅读下面例题,并解答问题:例题:已知二次三项式24x x m -+有一个因式为3x +,求另一个因式以及m 的值. 解:设另一个因式为x n +, 由题意得24(3)()x x m x x n -+=++,即224(3)3x x m x n x n -+=+++,则有343n n m +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩,所以另一个因式为7x -,m 的值是21-. 问题:请仿照上述方法解答下面问题,(1)若2(1)(3)x bx c x x ++=-+,则b =__________,c =__________;(2)已知二次三项式225x x k ++有一个因式为23x -,求另一个因式以及k 的值.48.计算:(1)212sin 302-; (2)(x ―2)2―(x +3)(x ―1).49.已知多项式x 2-mx -n 与x -2的乘积中不含x 2项和x 项,求m ,n 的值.参考答案:1.D【分析】根据负整数指数幂的法则计算即可.【详解】解:1,2-=12故选D.【点睛】本题考查了负整数指数幂,掌握运算法则才能正确计算.2.A【分析】根据同底数幂的乘法运算进行计算即可.【详解】解:344732==⨯2+22故选A【点睛】本题考查了同底数幂的乘法,掌握同底数幂的乘法是解题的关键.3.C【详解】解:A、∥∥1和∥3为同位角,∥1=∥3,∥a∥b;B、∥∥2和∥4为内错角,∥2=∥4,∥a∥b;C、∥∥1=∥4,∥3+∥4=180°,∥∥3+∥1=180°,不符合同位角相等,两直线平行的条件;D、∥∥2和∥3为同位角,∥2+∥3=180°,∥a∥b.故选C.4.D【详解】解:A、不是同类项,无法进行加法计算,计算错误;B、原式=5-,计算错误;2aC、462a a a÷=,计算错误;422D、原式=222-=,计算正确.98a a a故选D.5.D【分析】可理解为将最左边一组电线向右、向上平移所得,由平移的性质即可得出结论.【详解】解:∥a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∥将a向右、向上平移即可得到b、c,∥图形的平移是全等的,即不改变图形大小和形状,∥三户一样长.故选:D.【点睛】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键. 6.C【分析】根据题意先求出注入前一半容积水量所需的时间为12Vx ⋅,再求出后一半容积注水的时间为124Vx⋅,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为12Vx ⋅,后一半容积注水的时间为124V x⋅, 即可列出方程为11224V Vt x x⋅+⋅= , 故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程. 7.C 【分析】由35a b =,得35a b =,代入a b a b -+,即可得到答案.【详解】解:∥35a b =, ∥35a b =,∥315345b ba b a b b b --==-++, 故选择:C.【点睛】本题考查了分式化简求值,解题的关键是掌握化简的方法,正确的进行化简. 8.C【分析】分别根据合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则、完全平方公式计算各项,进而可得答案.【详解】解:A 、25a 与3a -不是同类项,不能合并,所以本选项运算错误,不符合题意; B 、2342432366ab a b a b a b ≠⋅=,所以本选项运算错误,不符合题意; C 、()3339327ab a b -=-,所以本选项运算正确,符合题意;D 、22222(2)4442a b a ab b a ab b -=-+≠-+,所以本选项运算错误,不符合题意. 故选:C .【点睛】本题考查了合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.9.D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A .5800名考生的数学成绩是总体,故此选项不合题意;B .1000名考生的数学成绩是总体的一个样本,故此选项不合题意;C .1000是样本容量,故此选项不合题意;D .每位考生的数学成绩是个体,说法正确,故此选项符合题意;故选:D .【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.A【分析】运用平方差公式()()22a b a b a b +-=-时,关键要找两数的和与两数的差,字母可以代表数或代数式.【详解】解:A. (﹣12a +1)(﹣12a ﹣1)符合平方差公式,故本选项符合题意;B. (2x +y )(2y ﹣x )不符合平方差公式,故本选项不符合题意;C. (a +b )(a ﹣2b )不符合平方差公式,故本选项不符合题意;D. ()()()()()22121212121x x x x x --+=---=--中符合完全平方公式,不能用平方差公式计算,故本选项不符合题意;故选A【点睛】考查了平方差公式,运用平方差公式计算时,关键要找两数的和与两数的差,字母可以代表数或代数式.11.D【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.对某班全体学生出生日期的调查,应用全面调查方式,故此选项不合题意;B.上飞机前对乘客进行的安检,应用全面调查方式,故此选项不合题意;C.审核将发表的一篇文稿中的错别字,应用全面调查方式,故此选项不合题意;D.对全市中小学生的睡眠情况进行调查,适合选择抽样调查,故此选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查,解题的关键是掌握由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.12.B【分析】把各项中x与y的值代入方程检验即可.【详解】A、把26xy=-⎧⎨=⎩代入方程得:左边4610=--=-,右边=5.∥左边≠右边,∥不是方程的解;B、把43xy=⎧⎨=⎩代入方程得:左边835=-=,右边=5.∥左边=右边,∥是方程的解;C、把34xy=⎧⎨=⎩代入方程得:左边642=-=,右边=5.∥左边≠右边,∥不是方程的解;D、把62xy=⎧⎨=⎩代入方程得:左边12210=-=,右边=5.∥左边≠右边,∥不是方程的解.故选:B.【点睛】此题考查了解二元一次方程的解,熟练掌握运算法则及理解方程的解即为能使方程左右两边相等的未知数的值是解本题的关键.13.C【分析】根据不含项的系数为0解答.【详解】解:∥多项式2(5)2x a x ++-中不含x 的一次项,∥5+a =0,解得a =-5,故选:C .【点睛】此题考查多项式不含项的问题,多项式中所不含的项应是合并同类项后该项的系数为零,掌握法则是解题的关键.14.D【分析】根据题中的新定义化简已知方程,求出解即可. 【详解】解:根据题中的新定义化简得:111212x +-=, 去分母得:2-2x -1=4x +2,解得:x =16-, 经检验x =16-是分式方程的解, 则x 的值为16-, 故选:D .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.解题的关键是根据新定义的运算法则列出方程.15.A【分析】根据图形,大长方形面积等于三个小正方形面积加上三个小长方形的面积和,列出等式即可.【详解】解:∥长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∥(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.16.B【分析】利用面积公式及割补法分别求出图中正方形∥的面积,即可获得答案.【详解】解:如下图,图中正方形∥,其边长为()a b -,故其面积可表示为:21()S a b =-,利用割补法,正方形∥的面积也可计算如下:1234S S S S S =---正方形长方形长方形大正方形2222()()a ab b ab b b =-----222a ab b =-+,即有222()2a b a ab b -=-+.故选:B .【点睛】本题主要考查了完全平方公式与几何图形,理解并掌握完全平方公式是解题关键.17.B【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【详解】解:A 、23a a +,无法计算,故此选项错误;B 、844a a a ÷=,故此选项正确;C 、22224ab a b (﹣)=,故此选项错误;D 、2222a b a ab b +++()=,故此选项错误;故选B .【点睛】考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.18.C 【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【详解】A 、步行的人数有:2550%×30%=15人,故本选项错误; B 、骑车人数占总人数10÷2550%=20%,故本选项错误; C 、该班总人数为2550%=50人,故本选项正确; D 、乘车人数是骑车人数的2510=2.5倍,故本选项错误; 故选C .【点睛】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.A【分析】根据完全平方公式即可得到结果.【详解】1m-=m 21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m ∴, 22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭, 1m+m∴= 故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.20.C【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.21.x≠4【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】当分母40x -≠,即4x ≠时,分式14x -在实数范围内有意义, 故答案为:4x ≠.【点睛】考查了分式有意义的条件,注意:分式有意义⇔分母不为零.22.(3)(3)m y y +-【分析】首先提取公因式m ,进而利用平方差公式进行分解即可.【详解】my 2﹣9m =m (y 2﹣9)=m (y +3)(y ﹣3).故答案为:m (y +3)(y ﹣3)【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.23.100【分析】利用样本容量定义可得答案.【详解】解:某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是100,故答案为:100.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位. 24.<【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∥2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∥2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.25.-8【分析】先联立仅含有字母,x y 的方程,求出方程组的解,将方程组的解代入含有字母,a b的方程组中求解即可.【详解】解:由题意联立方程组得:35,234x y x y -=⎧⎨+=-⎩①② ∥3⨯+∥得:1111x =,即1x =,把1x =代入∥得:=2y -,将x ,y 值代入45228ax by ax by +=-⎧⎨-=⎩解得:23a b =⎧⎨=⎩, 则3()(2)8b a -=-=-故答案为8-.【点睛】本题考查了解二元一次方程组,乘方运算,正确的解方程组是解题的关键. 26.()22xy x +【分析】用提公因式法分解因式即可.【详解】解:()22422x y xy xy x +=+.故答案为:()22xy x +.【点睛】本题主要考查了因式分解,解题的关键是找出公因式2xy .27.15【分析】可根据“黑球数量=黑球所占比例⨯黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例⨯总共摸球的次数=随机摸到的黑球次数”.【详解】解:设盒中原有白球有x 个,根据题意得:()2555100x ⨯+=⨯, 解得:x =15,答:盒中原有白球约有15个.故答案为:15.【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.b (a+b )(a -b )【详解】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=b (22a b -)=b (a+b )(a -b ).考点:因式分解.29.2【分析】等号的左边符合完全平方公式的形式,所以可以利用完全平方公式解题.【详解】2244(2)(2)(2)x x x x x ++=+=++所以2n =【点睛】本题主要考查完全平方公式222()2a b a ab b ±=±+ ,熟练掌握完全平方公式并灵活应用是解题的关键.30.()1x x -【分析】根据提取公因式的方法进行因式分解即可.【详解】()21x x x x -=-故答案为:()1x x -.【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.31.45°【分析】根据根据对顶角相等得到∥3=135°,再根据平行线的性质,同旁内角互补即可求解.【详解】解:如图,∥3=∥2=135°∥AB //CD ,∥3=135°,∥∥1+∥3=180°;又∥∥1=180°−∥3=180°−135°=45°.故答案为:45°【点睛】能够明确各个角之间的位置关系.熟练运用平行线的性质以及对顶角相等的性质.32.105°【分析】根据平行线的判定得出a∥b ,根据平行线的性质得出∥5=∥3=75°,再求出∥4即可.【详解】解:∥∥1+∥2=180°,∥a∥b ,∥∥3=∥5,∥∥3=75°,∥∥5=75°,∥∥4=180°−∥5=105°,故答案为:105°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.33.()()26x x -+【分析】直接用()()()2x a b x ab x a x b +++=++分解即可.【详解】22412(26)(2)6(2)(6)x x x x x x +-=+-++-⨯=-+【点睛】本题考查了因式分解-十字相乘法,关键是确定两个合适的数:把常数项分解成两个数的积,其和恰好等于一次项系数.34. a −b 16【分析】根据图形所表示的长度,列代数式即可;根据图形列出阴影部分与整个矩形的面积,然后求比值即可.【详解】解:根据题意小正方形的边长为:a −b ;∥图3中阴影部分的面积为:()2a b -,小长方形的长为a ,宽为b ,∥图4中阴影部分的面积为:()23a b -,整个图形的面积为:4a (a +3b ),∥图4中阴影部分面积与整个图形的面积之比为:()()2343a b a a b -+, 又由图4得:3a +3b =4a ,∥a =3b ,∥()()()()2222333121434333726a b b b b a a b b b b b --===+⨯+, 故答案为:a −b ;16. 【点睛】本题考查了列代数式,整式的混合运算,分式的化简,关键是用代数式正确表示阴影部分的面积、大矩形的面积.35.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 36.a(2a +4)(a+2)(a -2)【详解】试题分析:本题首先提取公因式a ,然后连续利用两次平方差公式进行因式分解. 考点:因式分解.37.56°【分析】由折叠的性质可得∥3=∥1=28°,从而求得∥4=56°,再根据平行线的性质定理求出∥EBD =180°﹣∥4=124°,最后再根据平行线性质定理求出∥2=56°.【详解】解:如图,由折叠的性质,可得∥3=∥1=28°,∥纸带对边互相平行∥∥4=∥1+∥3=56°,∥CD∥BE,AC∥BD,∥∥EBD=180°﹣∥4=124°,又∥CD∥BE,∥∥2=180°﹣∥CBD=180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.38.36【分析】根据一个数的两个平方根互为相反数以及平方的非负数的性质,求得a、b的值,然后再求这个数即可.【详解】解:∥一个数的平方根是a2+b与4-4a∥a2+b+4-4a,即(a2-4a+4)+(b,则(a-2)21)2=0,∥a-2=01=0,解得a=2,b=2,∥a2+b=6,这个数是62=36.故答案为:36.【点睛】本题主要考查了平方根的性质,非负数的性质,完全平方公式的应用,利用平方根的性质得到(a-2)21)2=0是解题的关键.39.2【分析】根据平移的性质,结合图形,对题中给出的三角形进行分析,排除错误答案,求得正确选项.【详解】解∥∥OCD 方向发生了变化,不是平移得到;∥ODE 符合平移的性质,是平移得到;∥OEF 方向发生了变化,不是平移得到;∥OAF 符合平移的性质,是平移得到;∥OAB 方向发生了变化,不是平移得到.故答案为∥2.【点睛】此题考查平移的性质,准确把握平移的性质,平移变换不改变图形的形状、大小和方向是解题的关键.40.(2)(1)(1)a m m -+-【分析】根据代数式的特点先变形,再提取公因式法,最后用平方差公式进行因式分解.【详解】2(2)(2)m a a -+-=2(2)(2)m a a ---=2(2)(1)a m --=(2)(1)(1)a m m -+-【点睛】此题主要考查因式分解,解题的关键是根据代数式的特点进行变形再因式分解. 41.见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE 平分BAC ∠(已知)12∴∠=∠(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)3=4∠∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.42.(1)1214x y ⎧=⎪⎪⎨⎪=⎪⎩(2)21x y =⎧⎨=-⎩【分析】(1)利用加法消元法即可解方程组;(2)由第一个方程得到24x y =+,然后利用代入消元法即可解方程组.【详解】(1)解:2123211x y x y +=⎧⎨-=⎩①②, 由∥+∥得:2412x =,解得:12x =, 把12x =代入∥得:14y =, 即方程组的解为:1214x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)解:24230x y x y -=⎧⎨+-=⎩①②, 由∥得:24x y =+∥,将∥代入∥得:()22430y y ++-=,解得:1y =-,把1y =-代入∥得:()2142x =⨯-+=,即方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法和代入消元法求解二元一次方程组是解题关键.43.(1)200、12、36、43.2;(2)见解析(3)“总是”对错题进行整理、分析、改正的学生有1260名【详解】分析:(1)根据扇形统计图和条形统计图中的信息进行计算解答即可;(2)根据(1)中所得样本容量结合扇形统计图中的信息计算出“常常”这一组的人数,由此即可补充完整条形统计图;(3)先由(1)中所得样本容量计算出样本中“总是”这一组占总数的百分比,然后乘以3500即可求得所求结果了.详解:(1)由所给两幅统计图中的信息可知:属于“有时”这一组的有44人,占总数的22%, ∥样本容量为:44÷22%=200 ,∥ 24÷200×100%=12%,72÷200×100%=36%,∥ a=12% ,b=36%,∥很少部分对应的圆心角的度数为:360°×12%=43.2°.(2)∥样本容量为200,“常常”这一组的人数占总数的30%,∥被抽查的同学中,属于“常常”这一组的人数为:200×30%=60人,∥将条形统计图补充完整如下图所示:(3)由题意可得:3500×(72÷200×100%)=1260(人),答:估计其中“总是”对错题进行整理、分析、改正的学生有1260多少名点睛:这样一道通过从扇形统计图和条形统计图中获取信息来解题的统计类的题目,解题的关键是:熟悉相关“基本概念”、清楚条形统计图和扇形统计图中的相关统计数据间的关系.44.33,12x -- 【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】解:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦=223(1)3[](1)(1)x x x ----·12x x -- =236(1)x x --·12x x -- =23(2)(1)x x --·12x x -- =31x -. 当x =-1时,原式=311--=-32. 【点睛】本题考查了分式的化简求值.这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后再代入求值.45.2y,-1 【详解】解析:先根据分式混合运算的法则把原式进行化简,再把x 、y 的值代入计算即可.解:原式=()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==--. 易错:解:原式()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==. 错因:代入数值时丢了负号.满分备考:本例题是分式除法与加减混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意分子、分母能因式分解的先因式分解,然后约分.46.估计该小区5月份的用水量是3960吨【分析】用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后乘以该小区总的户数即可得出答案.【详解】解:根据题意得:()300369201512217275503960⨯⨯+⨯+⨯+⨯+⨯÷=吨, ∥估计该小区5月份的用水量是3960吨,答:估计该小区5月份的用水量是3960吨.【点睛】本题主要考查了平均数的实际应用,正确理解题意求出样本中每户居民的平均用水量是解题的关键.47.(1)2,3-;(2)另一个因式为4x +,k 的值是12-【分析】(1)由题意利用多项式乘多项式进行运算分析即可求出答案;(2)根据题意设另一个因式为x p +,利用整式的运算以及待定系数法求出另一个因式以及k 的值.【详解】解:(1)∥223(1)(32)x bx c x x x x ++=+-+-=,∥2b =,3c =-,故答案为:2b =,3c =-.(2)设另一个因式为x p +,由题意得:225()(23)x x k x p x ++=+-,即22252(23)3x x k x p p ++=+--,则有2353p p k -=⎧⎨-=⎩,解得124k p =-⎧⎨=⎩ 所以另一个因式为4x +,k 的值是12-.【点睛】本题考查因式分解的实际运用,正确读懂例题,理解如何利用待定系数法求解是解答本题的关键.48.(1)(2)-6x +7【详解】分析:(1)先进行负整数指数幂、二次根式的化简、特殊角的三角函数值的计算,然后合并.(2)先去括号,再合并同类项即可得出答案.详解:(1)解:原式=14+14=(2)解:原式= x 2―4x +4 -( x 2+2x -3)=-6x +7点睛: 本题考查了实数的运算和整式的化简求值,涉及了二次根式的化简、特殊角的三角函数值,完全平方公式,去括号,合并同类项等知识,属于基础题.49.m =-2,n =-4【详解】试题分析:根据多项式与多项式的乘法法则展开,再利用不含的项系数等于0列。

浙教版七年级数学下册单元测试题全套(含答案)

浙教版七年级数学下册单元测试题全套(含答案)

一、1—5. CBCBB 6—10. BCBBA
二、11. 110°
12. 70 13. 150°
14. 105
15. 70° 16. 120°
17. 40°或 140° 18. 65
三、19. 略
20. 垂直的意义 ∠2 ∠4 内错角相等,两直线平行
21. ∠B 与∠C 互补. ∵AB∥CD,∴∠B+∠2=180°. ∵BF∥CE,∴∠C=∠2,∴∠B+∠C=180°. 22. ∵l1∥l2,∴∠1+∠α=180°. ∵∠1=∠β,∴∠α+∠β=180°. ∵∠α=2∠β,∴2∠β+∠β=180°,∴∠β=60°,
第 2 章 检测卷
(时间:90 分钟 满分:100 分)
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.方程(m2-9)x2+x-(m+3)y=0 是关于 x、y 的二元一次方程,则 m 的值为( )
A.±3
B.3
C.-3
D.9
x=1
2.若

y=2
是关于 x.y 的方程 2x-y+2a=0 的一个解,则常数 a 为(
浙教版七年级数学下册单元测试题全套(含答案)
第 1 章 检测卷
(时间:90 分钟 满分:100 分)
一、选择题(共 10 小题 ,每小题 3,共 30 分)
1. 如图,若直线 a,b 被直线 c 所截,则∠1 的同旁内角是( )
A. ∠2
B. ∠3
C. ∠4
D.∠5
2. 如图,直线 DE 经过点 A,DE∥BC,∠B=60°,下列结论成立的是( )
C. 若∠3+∠4+∠C=180°,则 AD∥BC

浙教七年级数学试卷下册

浙教七年级数学试卷下册

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3/4B. 0C. 3/4D. -22. 下列各式中,正确的是()A. a + b = b + aB. a - b = b - aC. a × b = b × aD.a ÷b = b ÷ a3. 若m + n = 7,且m - n = 3,则m的值为()A. 5B. 6C. 7D. 84. 下列图形中,是轴对称图形的是()A. 矩形B. 等腰三角形C. 平行四边形D. 正方形5. 下列各式中,是比例式的是()A. a ÷ b = c ÷ dB. a × b = c × dC. a + b = c + dD. a - b = c - d6. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 17. 若一个长方形的长是10cm,宽是5cm,则它的周长是()A. 15cmB. 20cmC. 25cmD. 30cm8. 下列各数中,有理数是()A. √2B. πC. 0D. 无理数9. 下列各式中,能化为最简二次根式的是()A. √18B. √24C. √36D. √4810. 若a、b、c是等差数列的前三项,且a + b + c = 12,则a的值为()A. 3B. 4C. 5D. 6二、填空题(每题3分,共30分)11. 已知x + y = 5,y - x = 1,则x的值为______。

12. 下列各数中,正有理数是______。

13. 下列各数中,无理数是______。

14. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是______。

15. 若a、b、c是等比数列的前三项,且abc = 64,则a的值为______。

16. 下列各数中,负数是______。

17. 下列各数中,整数是______。

18. 若一个圆的半径为r,则其面积为______。

浙教版七年级数学下册第3章检测卷附答案

浙教版七年级数学下册第3章检测卷附答案

浙教版七年级数学下册第3章检测卷一、选择题(每题3分,共30分) 1.计算(-x 3)2的结果是( )A .x 5B .-x 5C .x 6D .-x 62.下列计算正确的是( )A .2a -2=12aB .(2a +b )(2a -b )=2a 2-b 2C .2a ·3b =5abD .3a 4÷(2a 4)=323.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( ) A .3.7×10-5 g B .3.7×10-6 g C .3.7×10-7 gD .3.7×10-8 g4.在下列计算中,不能用平方差公式计算的是( )A .(m -n )(-m +n )B .()x 3-y 3()x 3+y 3C .(-a -b )(a -b )D .()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A .47B .74C .-3D .277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( )A .-3B .3C .0D .18.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )(第9题)A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8二、填空题(每题3分,共24分) 11.已知x n =4,则x 3n =________. 12.计算:(2a )3·(-3a 2)=________.13.若x +y =5,x -y =1,则式子x 2-y 2的值是________. 14.若(a 2-1)0=1,则a 的取值范围是________.15.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 16.如果(3m +3n +2)(3m +3n -2)=77,那么m +n 的值为________. 17.对实数a ,b 定义运算☆如下:a ☆b =⎩⎨⎧a b(a >b ,a ≠0),a -b (a ≤b ,a ≠0),如2☆3=2-3=18.计算[2☆(-4)]÷[(-4)☆2]=________.18.已知a +1a =5,则a 2+1a2的结果是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.计算:(1)-23+13(2 018+3)0-⎝ ⎛⎭⎪⎫-13-2;(2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(3)(-2+x)(-2-x); (4)(a+b-c)(a-b+c).20.先化简,再求值:[(x2+y2)-(x+y)2+2x(x-y)]÷(4x),其中x-2y=2.21.(1)已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图②中阴影部分的面积.(3)观察图②你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据(3)题中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.(写出过程)(第22题)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题)答案一、1.C 2.D3.D 提示:1 mg=10-3 g,将0.000 037 mg用科学记数法表示为3.7×10-5×10-3=3.7×10-8(g).故选D.4.A 提示:A中m和-m符号相反,n和-n符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 提示:因为a+b=m,ab=-4,所以(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m.故选D.6.A 提示:3x-2y=3x÷32y=3x÷9y=47.故选A.7.A 提示:(x+m)(x+3)=x2+(3+m)x+3m,因为乘积中不含x的一次项,所以m+3=0,所以m=-3.故选A.8.B9.A10.C 提示:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.因为216的末位数字是6,所以A的末位数字是6.二、11.6412.-24a513.514.a≠±115. 2 019 提示:由已知得x2-x=1,所以-x3+2x2+2 018=-x(x2-x)+x2+2018=-x+x2+2 018=2 019.16.±317.118.23 提示:由题意知⎝ ⎛⎭⎪⎫a +1a 2=25,即a 2+1a 2+2=25,所以a 2+1a 2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=-56x 2y 2-43xy +1.(3)原式=(-2)2-x 2=4-x 2.(4)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc .20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷(4x )=(2x 2-4xy )÷(4x )=12x-y .因为x -2y =2,所以12x -y =1.所以原式=1.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.②(a -b )2=(a +b )2-4ab =72-4×12=1.提示:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值. (2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260, 所以b >c >a >d . 22.解:(1)m -n .(2)方法一:(m -n )2;方法二:(m +n )2-4mn .(3)(m+n)2-4mn=(m-n)2,即(m+n)2-(m-n)24=mn.(4)由(3)可知(a-b)2=(a+b)2-4ab,∵a+b=7,ab=5,∴(a-b)2=49-20=29.23.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.因为展开式中不含x2和x3项,所以p-3=0,q-3p+8=0,解得p=3,q=1.24.解:(1)卧室的面积是2b(4a-2a)=4ab(平方米).厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(平方米),即木地板需要4ab平方米,地砖需要11ab 平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元.七年及数学下册计算专项练习1.计算:(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 023-3125.(3)-32+4×327; (4)16+|2-3 3|-3-64-(-6)2+ 3.(5)16+38-(-5)2; (6)(-2)3+|1-2|×(-1)2 021-3125.(7)35+23-|35-23|; (8)(-2)2-327+|3-2|+ 3. (9) 214+0.01-3-8;(10) (10)3-0.125+|3-2|-3-34+|3|-(-2)2.2.求下列各式中x 的值:(1)x 2-81=0; (2)x 3-3=38.(3)⎩⎨⎧6x +5y =31,①3x +2y =13;②(4)⎩⎨⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②(5)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10; (6)解不等式:x -52+1>x -3;(7)解不等式组:⎩⎨⎧x +5≤0,3x -12≥2x +1,并写出它的最大负整数解.(8)⎩⎨⎧3x -2y =-1,3x -4y =-5; (9)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1). 参考答案1.解:(1)原式=4+2-5=1.(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (3)原式=-9+2×3=-3.(4)原式=4+3 3-2+4-6+3=4 3. (5)原式=4+2-5=1;(6)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (7)原式=35+23-35+23=4 3. (8)原式=2-3+2-3+3=1.解:(9)原式=32+0.1+2=3.6. (10)原式=-0.5+2-3-32+3-2=-2.2.解:(1)依题意,得x 2=81,根据平方根的定义,得x =±9.(2)依题意,得x 3=278,根据立方根的定义,得x =32. 解:(3)②×2得,6x +4y =26,③①-③得,y =5.将y =5代入①得,6x +25=31,则x =1.所以方程组的解为⎩⎨⎧x =1,y =5.(4)解不等式①得,x <2;解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.解:(5)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.②-①,得4y =2,解得y =12.所以原方程组的解为⎩⎨⎧x =3,y =12.(6)去分母,得(x -5)+2>2(x -3),去括号,得x -5+2>2x -6,移项,得x -2x >-6+5-2,合并同类项,得-x >-3,系数化为1,得x <3.(7)解不等式x +5≤0,得x ≤-5.解不等式3x -12≥2x +1,得x ≤-3.所以不等式组的解集为x ≤-5.所以它的最大负整数解为-5.解:(8)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2.把y =2代入①,得x =1.所以这个方程组的解是⎩⎨⎧x =1,y =2.(9)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),②由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.。

浙江省金华市七年级数学下学期第三次学力检测试题浙教版

浙江省金华市七年级数学下学期第三次学力检测试题浙教版

一.选择题(每小题3分,共30小题)1.如图,左边的图案是由下列四个选项中的哪个图案平移得到的()A. B. C. D.2.如图,直线b、c被直线a所截,则∠1与∠2是()A.同旁内角 B.同位角C.内错角D.对顶角3.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生 B.调查七、八、九年级各30名学生C.调查全体女生 D.调查全体男生4. 王老师对某班50名学生的跳绳成绩进行了统计,跳绳个数在145以上的有29人,则跳绳个数在145以上的频率是()A.0.20 B.0.29 C. 29 D. 0.585.下列计算正确的是()A.a3•a4=a12 B.(ab)3=ab3 C.(a3)2=a6 D.a6÷a3=a26.下列分解因式正确的是()A.2x2﹣xy=2x(x﹣y) B.﹣xy2+2xy﹣y=﹣y(xy﹣2x)C. x2﹣4x+4=(x﹣2)2 D.x2﹣x﹣3=x(x﹣1)﹣37.要使分式有意义,则x的取值应满足()A.x≠﹣2 B.x≠1 C.x>﹣2 D.x=1且x≠﹣28.用“☆”定义一种新运算:对于任意有理数x和y,规定x☆y=xy2+2xy+x,若☆(﹣3)=8,则a的值为()A.﹣1 B.0 C.1 D.3.9.若方程=7有增根,则k=()A.﹣1 B.0 C.1 D.610.现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是 .A.5B.10C.3D.15 二. 填空题(每小题3分,共18分)11. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 076克,用科学记数法表示是 . 12. 分解因式:m 2﹣4m= .13. 如图,已知直线AB∥CD,∠GEB 的平分线EF 交CD 于点F ,∠1=40°,则∠2等于 . 14. 若a 2+5ab-b 2=0,则=-baa b 15.已知关于x ,y 的二元一次方程组的解为,那么关于m ,n 的二元一次方程组的解为 .16.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使BC 边与三角形ADE 的一边互相平行.则∠BAD(0°<∠BAD<180°)所有可能符合条件的度数为 .二.解答题(本题共有8小题,共52分,其中第17、18、19、20、21、22、题每小题6分,第23、24题每小题8分)17.计算:(1)(2)化简:(x﹣1)2﹣(x+1)(x﹣3)18.解方程(组):(1)(2).19.如图,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1与∠2互补,判断HF与AB是否垂直,并说明理由(填空)解:垂直.理由如下:∵DE⊥AC,AC⊥BC,∴∠AED=∠ACB=90°(垂直的意义).∴DE∥BC(① )∴∠1=∠DCB(② )∵∠1与∠2互补(已知).∴∠DCB与∠2互补∴③(同旁内角互补,两直线平行)∴∠BFH=∠CDB(④)∵CD⊥AB,∴∠CDB=90°.∴∠BFH=⑤(⑥).∴HF⊥AB.20. 先化简再求值:(x﹣2)(3x2﹣1)﹣12x(x2﹣x﹣3),其中x=﹣21. 某中学积极开展“阳光体育”活动,共开设了跳绳、乒乓球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出) (1)求本次被调查的学生人数 (2)补全条形统计图(3)根据统计的数据估计实验中学3200名学生中最喜爱篮球的人数约有 人22. 仔细阅读下面例题,解答问题:例题:已知二次三项式x 2﹣4x+m 有一个因式是(x+3),求另一个因式以及m 的值. 解:设另一个因式为(x+n ),得x 2﹣4x+m=(x+3)(x+n ),则x 2﹣4x+m=x 2+(n+3)x+3n ∴ ⎩⎨⎧=-=+nm n 343 解得:n=﹣7,m=﹣21∴ 另一个因式为(x ﹣7),m 的值为﹣21. 问题:(1)若二次三项式x 2﹣5x+6可分解为(x ﹣2)(x+a ),则a= ; (2)若二次三项式2x 2+bx ﹣5可分解为(2x ﹣1)(x+5),则b= ; (3)仿照以上方法解答下面问题:已知二次三项式2x 2+5x ﹣k 有一个因式是 (2x ﹣3),求另一个因式以及k 的值.23.共享单车作为一种低碳、时尚、绿色的出行方式,它俨然成为市民出行的“新宠”。

浙教版七年级数学下册试题期末综合能力诊断性测评数学试卷(含答案).docx

浙教版七年级数学下册试题期末综合能力诊断性测评数学试卷(含答案).docx

& 鑫达捷致力于精品文档 精心制作仅供参考 &第二学期期末综合能力诊断性测评七年级数学试卷题号一精心选一选二耐心填一填三细心做一做总分得分温馨提示:1.全卷共三大题,25小题,满分120分,考试时间90分钟。

2.请用钢笔在试卷..的密封区填上学校、班级、姓名、考号。

3.答题时,请将答案直接写在试卷..相应的位置上。

希望你认真答题,获取成功。

一、精心选一选(本题有10小题,每小题3分,共30分)【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】 1. 比-1小1的数是 ( )A 、-1B 、1C 、0D 、-216 )A 、4B 、±4C 、2D 、±23. 在 -(-2),-2-,(-2),-2这4个数中,负数的个数是( )A 、1B 、2C 、3D 、44. 数6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( )A 、-3B 、-1C 、3D 、25、下列关于单项式3222b a π-的说法正确的是( )A 、次数是2,系数是π2-B 、次数是5,系数是32- B 、次数是4,系数是π32-D 、次数是4,系数是32 6.哥哥今年的年龄是弟弟的2倍,弟弟说:“六年前,我们俩的年龄和为15岁”,若用x 表示哥哥今年的年龄,则可列方程( )题号 1 2 3 4 5 6 7 8 9 10 答案封线答A 、152=+x x B 、15)62()6(=-+-xx C 、152)6(=+-x x D 、1526)6(=-+-x x 7.若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )A 、14B 、-4C 、-12D 、128.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( )A 、–3B 、3C 、0D 、19.不等式组⎩⎨⎧<<+<<-5321x a x a 的解集为23+<<a x ,则a 的取值范围是( )A 、1>aB 、3≤aC 、1<a 或3>aD 、31≤<a10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定二、耐心填一填(每小题4分,共24分) 11. 在71-,-π,0,3.14,2-,0.3,49-,313-中,是无理数的有 。

浙教版七年级下册数学期末测试卷及含答案

浙教版七年级下册数学期末测试卷及含答案

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.2、当分式的值为0时,字母x的取值应为()A.﹣1B.1C.﹣2D.23、如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互补C.互余D.不能确定4、在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。

若矩形ABCD的面积为16,HP:PF=1:4,则CH的值为( )A. B.1 C. D.25、下列是分式方程的是()A. +1=0B. =0C.D.6x 2+4x+1=06、为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A. B. C. D.7、下列运算正确的是()A.a 2•a 3=a 6B.(﹣2ab 3)2=﹣4a 2b 6C.(﹣a 2)3=﹣a6 D.2a+3b=5ab8、下列运算正确的是()A.(a3)2=a6B.a2•a4=a8C.a6÷a2=a3D.3a2-a2=39、如图,可以判定AD//BC的是( )A. B. C. D.10、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. -2 mB. 2 mC. 2 m-8D.611、太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×10 14B.2×10 14C.76×10 15D.7.6×10 1412、下列计算中正确的是( )A.a 6÷a 2=a 3B.(a 4)2=a6C.3a 2-a 2=2D.a 2·a 3=a 513、一元一次方程组的解的情况是()A. B. C. D.14、下列关于x的方程中,是分式方程的是( ).A. B. C. D.3x-2y=115、为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为________.17、因式分解:=________.18、如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.19、已知方程x m-3+y2-n=6是二元一次方程,则m-n=________20、分解因式:m2+2m=________.21、计算:x(x﹣2)=________22、如图,在一块边长为a的正方形花圃中,两纵两横的4条宽度为的人行道把花圃分成9块,下面是四个计算花圃内种花土地总面积的代数式:① ;② ;③ ;④ .其中正确的有________.23、化简:= ________ 。

浙教版七年级数学下册试题第3章检测题.docx

浙教版七年级数学下册试题第3章检测题.docx

第3章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列计算正确的是( D )A .a 3+a 3=a 6B .3a -a =3C .(a 3)2=a 5D .a ·a 2=a 32.下列计算:①a 9÷(a 7÷a)=a 3;②3x 2yz ÷(-xy)=-3xz ;③(10x 3-16x 2+2x)÷2x =5x 2-8x ;④(a -b)6÷(a -b)3=a 3-b 3,其中运算结果错误的是( B )A .①②B .③④C .①④D .②③3.20a 7b 6c ÷(-4a 3·b 2)÷ab 的值( D )A .-5a 5b 2B .-5a 5b 5C .5a 5b 2D .-5a 3b 3c4.下列计算错误的有( D )①(-12)-3=8;②(3-π)0=1;③39÷3-3=3-3;④9a -3·4a 5=36a 2;⑤5x 2÷(3x )×13x=5x 2. A .①③④ B .②③④ C .①②③ D .①③⑤5.下列计算正确的是( B )A .(2x +y )(3x -y )=x 2y 2B .(-x +2y )2=x 2-4xy +4y 2C .(2x -12y )2=4x 2-xy +14y 2 D .(-4x 2+2x )·(-7x )=28x 3-14x 2+7x 6.若a =2b -2,则(a -2b +1)999+(2b -a)0的值为( B )A .-1B .0C .1D .无法确定7.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( A )A .-1B .1C .-3D .38.要使多项式(x 2-px +2)(x -q)不含x 的二次项,则p 与q 的关系是( B )A .相等B .互为相反数C .互为倒数D .乘积为-19.若a +b =3,a -b =7,则ab 的值是( A )A .-10B .-40C .10D .4010.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n +nC .y =2n +1+nD .y =2n +n +1二、填空题(每小题3分,共24分)11.如果(-3x m +n y n )3=-27x 15y 9,那么(-2m)n 的值是__-64__.12.已知A =813,B =274,比较A 与B 的大小,则A__=__B .(填“>”“=”“<”)13.已知x 2+2x -1=0,则3x 2+6x -2=__1__.14.630 700 000用科学记数法表示为__6.307×108__;0.000 000 203 8用科学记数法表示为__2.038×10-7__;-5.19×10-5用小数表示为__-0.000_051_9__.15.计算:(-5)0×(43)-1+0.5-100×(-2)-102=__1__. 16.已知x m =9-4,x n =3-2,则计算式子x m -3n 的值为__19__.17.如图是四张形状、大小完全相同的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式__(a +b )2-4ab =(a -b )2__.18.小亮在计算(5m +2n)(5m -2n)+(3m +2n)2-3m(11m +4n)的值时,把n 的值看错了,其结果等于25,细心的小敏把正确的n 的值代入计算,其结果也是25.为了探究明白,她又把n =2020代入,结果还是25.则m 的值为__±5__.三、解答题(共66分)19.(12分)计算:(1)(-3x 2y 2z)·x(x 2y)2÷(3x 2y 2)2; (2)a 2b(ab -3)-3ab(a 2b -a);解:(1)原式=-13x 3z (2)原式=-2a 3b 2 (3)(y +2x )(2x -y )+(x +y )2-2x (2x -y ); (4)-2-2-(-2)-2+(23)-1+(3-π)0. 解:(3)原式=x 2+4xy (4)原式=220.(8分)用简便方法计算:(1)99×101; (2)752+252-50×75.解:(1)原式=(100-1)(100+1)=9999 (2)原式=(75-25)2=250021.(6分)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-2ab.当ab =-12时,原式=4+1=5 22.(6分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值.解:原式=8a 2+16a -6=8(a 2+2a )-6,∵a 2+2a =8,∴原式=5823.(6分)已知x 2-x -1=0,求式子x 3-2x +1的值.解:∵x 2-x -1=0,∴x 2=x +1,∴x 3-2x +1=x ·x 2-2x +1=x (x +1)-2x +1=x 2-x +1=1+1=224.(8分)观察下列等式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;④__4×6-52=-1__……(1)请你按以上规律写出第4个等式;(2)把这个规律用含字母n 的等式表示出来;(n 为正整数)(3)你认为(2)中所写出的等式一定成立吗?并说明理由.解:(2)n ·(n +2)-(n +1)2=-1 (3)因为左边=n 2+2n -(n 2+2n +1)=-1,所以(2)中所写的等式一定成立25.(10分)甲、乙二人共同计算2(x +a)(x +b),由于甲抄错了第一个多项式中a 的符号,得到的结果为2x 2+4x -30;由于乙漏抄了2,得到的结果为x 2+8x +15.(1)求a ,b 的值;(2)求出正确的结果.解:(1)依题意得2(x -a )(x +b )=2x 2+2(-a +b )x -2ab =2x 2+4x -30,∴2(-a +b )=4,即-a +b=2①,(x +a )(x +b )=x 2+(a +b )x +ab =x 2+8x +15,∴a +b =8②,由①,②得a =3,b =5 (2)正确结果是2(x +3)(x +5)=2x 2+16x +3026.(10分)已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……(1)请你据此推测出264的个位数字是几?(2)利用上面的结论,求(2+1)(22+1)(24+1)(28+1)…(232+1)的个位数字.解:(1)∵64÷4=16,∴264的个位数字与24的个位数字相同,是6(2)原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)=(22-1)(22+1)(24+1)(28+1)…(232+1)=(24-1)(24+1)(28+1)…(232+1)=…=264-1,∴此式结果的个位数字是5初中数学试卷。

最新浙教版七年级下数学期末检测试卷含答案

最新浙教版七年级下数学期末检测试卷含答案

最新浙教版七年级下数学期末检测试卷含答案答案:4a5b512.已知a=2,b=3,c=4,求a2+b2+c2的值。

答案:2913.化简:(3x2y3)3÷(9xy)2答案:27y14.已知正方形ABCD,点E、F分别在AB、BC上,且AE=BF,连接AF、BE,交于点G,若AB=2,求AG的长度。

答案:AG=√515.已知函数y=3x2-4x+1,求其对称轴的方程。

答案:x=2/316.已知正方形ABCD,点E、F分别在AB、BC上,连接AF、BE,交于点G,若AB=2,AG=√5,求EF的长度。

答案:EF=√5-117.已知函数y=2x-1,求其在x=3处的函数值。

答案:518.已知三角形ABC,其中∠A=60°,AB=3,AC=4,求BC的长度。

答案:BC=212.定义运算:$a\oplus b=(a+b)(b-2)$,下面给出这种运算的四个结论:①$3\oplus 4=14$;②$a\oplus b=b\oplus a$;③若$a\oplus b=0$,则$a+b=2$;④若$a+b=2$,则$a\oplus b=0$。

其中正确的结论序号为①、②、③、④。

13.化简分式:$\frac{2}{a+6}\div\frac{a+9}{a+32}\times\frac{a+4}{a}=\frac{4(a+4)}{(a+6)(a+32)}$。

14.如图,已知$\angle1=122°$,$\angle2=122°$,$\angle3=73°$,则$\angle4$的度数为 $63°$。

15.如果关于$x$的方程$\frac{x+a}{x-2}-1=0$无解,那么$a$的值必为 $-2$。

16.二元一次方程$2x+3y=20$的所有正整数解是$(2,6)$、$(5,2)$、$(8,0)$。

17.如图,长方形$ABCD$中,$AB=5$ cm,$AD=8$ cm。

最新浙教版七年级数学下册单元测试题全套及答案

最新浙教版七年级数学下册单元测试题全套及答案

最新浙教版七年级数学下册单元测试题全套及答案第1章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格,第4题图),第5题图),第6题图) 4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件(B) A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A)A.26°B.32°C.25°D.36°,第7题图),第8题图),第9题图),第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B)A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.,第11题图),第12题图),第13题图),第14题图)12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.,第15题图),第17题图),第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE =70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号) 18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF(2)∵∠BEG =∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE 与DF 的位置关系,并说明理由;(2)如图②,延长CB ,DF 相交于点G ,过点B 作BH ⊥FG ,垂足为H ,试判断∠FBH 与∠GBH 的大小关系,并说明理由.解:(1)BE ∥DF.理由:∵BE ,DF 分别平分∠ABC 和∠ADC ,∴∠1=12∠ADC ,∠ABE =12∠ABC ,∵∠ABC +∠ADC =180°,∴∠1+∠ABE =12∠ADC +12∠ABC =12(∠ADC +∠ABC )=12×180°=90°,即∠1+∠ABE =90°,又∵∠1+∠2=90°,∴∠ABE =∠2,∴BE ∥DF (2)∠FBH =∠GBH.理由:∵BH ⊥FG ,∴∠BHG =90°,由(1)知,BE ∥DF ,∴∠EBH =∠BHG =90°,∴∠FBH +∠ABE =90°,∠GBH +∠CBE =180°-90°=90°,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠FBH =∠GBH第2章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知下列方程:①x +xy =7;②2x -3y =4;③1x +1y =1;④x +y =z -1;⑤x +12=2x -13,其中二元一次方程的个数是( A )A .1B .2C .3D .42.已知二元一次方程3x -4y =1,则用含x 的代数式表示y 是( B )A .y =1-3x 4B .y =3x -14C .y =3x +14D .y =-3x +143.已知二元一次方程2x +3y =4,其中x 与y 互为相反数,则x ,y 的值为( A )A.⎩⎪⎨⎪⎧x =-4,y =4B.⎩⎪⎨⎪⎧x =4,y =-4C.⎩⎪⎨⎪⎧x =3,y =-3D.⎩⎪⎨⎪⎧x =-3,y =3 4.如下图所示的程序,已知当输入的x 的值为1时,输出值为1;当输入的x 的值为2时,输出值为-5,则当输入的x 的值为3时,输出值为( B )输入x →×k →+b →输出A .-13B .-11C .-9D .-75.已知方程组⎩⎪⎨⎪⎧x +y =3,ax +by =7和⎩⎪⎨⎪⎧ax -by =-9,3x -y =-7的解相同,则a ,b 的值分别为( C )A .a =-1,b =2B .a =1,b =-2C .a =1,b =2D .a =-1,b =-26.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,要使每个房间都住满,她们有几种租住方案( C )A .5种B .4种C .3种D .2种7.在一定范围内,弹簧的长度x(cm )与它所挂物体的重量y(g )之间满足关系式y =kx +b.已知挂重为50 g 时,弹簧长12.5 cm ;挂重为200 g 时,弹簧长20 cm ;那么当弹簧长15 cm 时,挂重为( B )A .80 gB .100 gC .120 gD .150 g8.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人.则3艘大船与6艘小船一次可以载乘客的人数为( D )A .129B .120C .108D .969.开学后某书店向学校推销两种图书,如果原价买这两种书共需要850元.书店推销时第一种书打八折,第二种书打七五折,结果买两种书共少用200元.则原来买第一、二种书分别需要( A )A .250元,600元B .600元,250元C .250元,450元D .450元,200元10.两位同学在解方程组时,甲同学由⎩⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎨⎧x =3,y =-2,乙同学因把c 看错了,解得⎩⎨⎧x =-2,y =2,那么a ,b ,c 的正确的值应为( D ) A .a =4,b =5,c =-1 B .a =-4,b =-5,c =0 C .a =-4,b =-5,c =2 D .a =4,b =5,c =-2 二、填空题(每小题3分,共24分)11.请写出一个二元一次方程组__⎩⎨⎧x +y =1,x -y =3(答案不唯一)__,使它的解是⎩⎪⎨⎪⎧x =2,y =-1.12.二元一次方程组⎩⎪⎨⎪⎧7x -4y =13,5x -6y =3的解为__⎩⎨⎧x =3,y =2__.13.方程组⎩⎪⎨⎪⎧x +y -z =11,y +z -x =5,z +x -y =1的解是__⎩⎨⎧x =6,y =8,z =3__.14.已知x ,y 满足方程组⎩⎨⎧x +2y =5,2x +y =4,则x -y 的值是__-1__.15.已知x =2t -3,y =10-4t ,则用含y 的式子表示x 为__x =4-y2__.16.金块放在水里称重时,要减轻本身重量的119,银块放在水里称重时,要减轻110,一块金与银的合金重530克放在水里称重时,减轻了35克,则这块合金含金__380__克,银__150__克.17.某车间共有86名工人,已知每人平均每天可以加工甲种部件15个,乙种部件12个或丙种部件9个,要使加工后的部件按3个甲种部件,2个乙种部件和1个丙种部件配套,则应安排__36__人加工甲种部件,__30__人加工乙种部件,__20__人加工丙种部件.18.关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =1-m ,x -3y =5+3m 中,m 与方程组的解中的x 或y 相等,则m 的值为__2或-12__.三、解答题(共66分) 19.(8分)解方程组:(1)⎩⎪⎨⎪⎧x -2y =1,2x +3y =16; (2)⎩⎪⎨⎪⎧x +y 2+x -y3=6,4(x +y )-5(x -y )=2.解:(1)⎩⎨⎧x =5,y =2 (2)⎩⎨⎧x =7,y =120.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是二元一次方程2x +y =-6的解,求m 的值.解:m =2321.(7分)已知y =ax 2+bx +c ,当x =1时,y =5;当x =-2时,y =14;当x =-3时,y =25.求a ,b ,c 的值.解:依题意得⎩⎨⎧a +b +c =5,4a -2b +c =14,9a -3b +c =25,解得⎩⎨⎧a =2,b =-1,c =422.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =6m +3,2x -y =2m +1的解互为相反数,求m 的值.解:m =-1223.(8分)随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式,黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车去福州,那么他此行与乘飞机相比减少二氧化碳排放量多少千克?解:设黄先生乘飞机和乘汽车每小时二氧化碳的排放量分别为x 千克和y 千克,依题意得⎩⎨⎧x +y =70,x -y =44,解得⎩⎨⎧x =57,y =13,∴3x -9y =54.则他此行将减少二氧化碳排放量54千克24.(8分)A ,B 两地相距20千米,甲从A 地向B 地方向前进,同时乙从B 地向A 地方向前进,2小时后二人在途中相遇,相遇后甲就返回A 地,乙仍向A 地前进,甲回到A 地时,乙离A 地还有2千米,求甲、乙二人的速度.解:设甲的速度为x 千米/时,乙的速度为y 千米/时,根据题意得⎩⎨⎧2x +2y =20,2x -2y =2,解得⎩⎨⎧x =5.5,y =4.5.则甲的速度为5.5千米/时,乙的速度为4.5千米/时25.(10分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,则饮料加工厂生产了A ,B 两种饮料各多少瓶?解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得⎩⎨⎧x +y =100,2x +3y =270.解得⎩⎨⎧x =30,y =70.则A种饮料生产了30瓶,B 种饮料生产了70瓶26.(12分)小丽购买学习用品的收据如表:因污损导致部分数据无法识别,根据下表,解决下列问题: (1)小丽购买自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种学习用品,共花费15元,则有哪几种不同的购买方案?解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意可得⎩⎨⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎨⎧x =1,y =2.则小丽购买自动铅笔1支,记号笔2支 (2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得92m +1.5n =15,∵m ,n 为正整数,∴⎩⎨⎧m =1,n =7或⎩⎨⎧m =2,n =4或⎩⎨⎧m =3,n =1.则共有3种方案:①购买1本软皮笔记本与7支记号笔;②购买2本软皮笔记本与4支记号笔;③购买3本软皮笔记本与1支记号笔第3章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列计算正确的是( D )A .a 3+a 3=a 6B .3a -a =3C .(a 3)2=a 5D .a ·a 2=a 32.下列计算:①a 9÷(a 7÷a)=a 3;②3x 2yz ÷(-xy)=-3xz ;③(10x 3-16x 2+2x)÷2x =5x 2-8x ;④(a -b)6÷(a -b)3=a 3-b 3,其中运算结果错误的是( B )A .①②B .③④C .①④D .②③ 3.20a 7b 6c ÷(-4a 3·b 2)÷ab 的值( D )A .-5a 5b 2B .-5a 5b 5C .5a 5b 2D .-5a 3b 3c 4.下列计算错误的有( D )①(-12)-3=8;②(3-π)0=1;③39÷3-3=3-3;④9a -3·4a 5=36a 2;⑤5x 2÷(3x )×13x =5x 2.A .①③④B .②③④C .①②③D .①③⑤ 5.下列计算正确的是( B )A .(2x +y )(3x -y )=x 2y 2B .(-x +2y )2=x 2-4xy +4y 2C .(2x -12y )2=4x 2-xy +14y 2 D .(-4x 2+2x )·(-7x )=28x 3-14x 2+7x6.若a =2b -2,则(a -2b +1)999+(2b -a)0的值为( B )A .-1B .0C .1D .无法确定7.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( A ) A .-1 B .1 C .-3 D .38.要使多项式(x 2-px +2)(x -q)不含x 的二次项,则p 与q 的关系是( B ) A .相等 B .互为相反数 C .互为倒数 D .乘积为-1 9.若a +b =3,a -b =7,则ab 的值是( A ) A .-10 B .-40 C .10 D .4010.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1 二、填空题(每小题3分,共24分)11.如果(-3x m +n y n )3=-27x 15y 9,那么(-2m)n 的值是__-64__.12.已知A =813,B =274,比较A 与B 的大小,则A__=__B .(填“>”“=”“<”)13.已知x 2+2x -1=0,则3x 2+6x -2=__1__.14.630 700 000用科学记数法表示为__6.307×108__;0.000 000 203 8用科学记数法表示为__2.038×10-7__;-5.19×10-5用小数表示为__-0.000_051_9__.15.计算:(-5)0×(43)-1+0.5-100×(-2)-102=__1__.16.已知x m =9-4,x n =3-2,则计算式子x m-3n的值为__19__.17.如图是四张形状、大小完全相同的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式__(a +b )2-4ab =(a -b )2__.18.小亮在计算(5m +2n)(5m -2n)+(3m +2n)2-3m(11m +4n)的值时,把n 的值看错了,其结果等于25,细心的小敏把正确的n 的值代入计算,其结果也是25.为了探究明白,她又把n =2020代入,结果还是25.则m 的值为__±5__.三、解答题(共66分) 19.(12分)计算:(1)(-3x 2y 2z)·x(x 2y)2÷(3x 2y 2)2; (2)a 2b(ab -3)-3ab(a 2b -a); 解:(1)原式=-13x 3z (2)原式=-2a 3b 2(3)(y +2x )(2x -y )+(x +y )2-2x (2x -y ); (4)-2-2-(-2)-2+(23)-1+(3-π)0. 解:(3)原式=x 2+4xy (4)原式=220.(8分)用简便方法计算:(1)99×101; (2)752+252-50×75.解:(1)原式=(100-1)(100+1)=9999 (2)原式=(75-25)2=250021.(6分)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-2ab.当ab =-12时,原式=4+1=522.(6分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值.解:原式=8a 2+16a -6=8(a 2+2a )-6,∵a 2+2a =8,∴原式=5823.(6分)已知x 2-x -1=0,求式子x 3-2x +1的值.解:∵x 2-x -1=0,∴x 2=x +1,∴x 3-2x +1=x·x 2-2x +1=x (x +1)-2x +1=x 2-x +1=1+1=224.(8分)观察下列等式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;④__4×6-52=-1__……(1)请你按以上规律写出第4个等式;(2)把这个规律用含字母n的等式表示出来;(n为正整数)(3)你认为(2)中所写出的等式一定成立吗?并说明理由.解:(2)n·(n+2)-(n+1)2=-1(3)因为左边=n2+2n-(n2+2n+1)=-1,所以(2)中所写的等式一定成立25.(10分)甲、乙二人共同计算2(x+a)(x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为2x2+4x-30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.解:(1)依题意得2(x-a)(x+b)=2x2+2(-a+b)x-2ab=2x2+4x-30,∴2(-a+b)=4,即-a+b=2①,(x+a)(x+b)=x2+(a+b)x+ab=x2+8x+15,∴a+b=8②,由①,②得a=3,b=5(2)正确结果是2(x+3)(x+5)=2x2+16x+3026.(10分)已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……(1)请你据此推测出264的个位数字是几?(2)利用上面的结论,求(2+1)(22+1)(24+1)(28+1)…(232+1)的个位数字.解:(1)∵64÷4=16,∴264的个位数字与24的个位数字相同,是6(2)原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)=(22-1)(22+1)(24+1)(28+1)…(232+1)=(24-1)(24+1)(28+1)…(232+1)=…=264-1,∴此式结果的个位数字是5第4章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列从左到右的变形属于因式分解的是(D)A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C .2x 2+1=x (2x +1x) D .x 2-5x +6=(x -2)(x -3) 2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)23.下列各式中,不能分解因式的是( D )A .4x 2+2xy +14y 2B .4x 2-2xy +14y 2C .4x 2-14y 2D .-4x 2-14y 2 4.将下列多项式因式分解,结果中不含有因式a +1的是( C )A .a 2-1B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+15.下列各式分解因式错误的是( D )A .(x -y )2-x +y +14=(x -y -12)2 B .4(m -n )2-12m (m -n )+9m 2=(m +2n )2C .(a +b )2-4(a +b )(a -c )+4(a -c )2=(b +2c -a )2D .16x 4-8x 2(y -z )+(y -z )2=(4x 2-y -z )26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( C )A .我爱美B .中华游C .爱我中华D .美我中华7.把多项式x 2+ax +b 分解因式,得(x +2)(x -3),则a ,b 的值分别是( B )A .a =1,b =6B .a =-1,b =-6C .a =-1,b =6D .a =1,b =-68.若x 2+12mx +k 是完全平方式,则k 的值是( C ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( B )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( A )A .M >NB .M =NC .M <ND .不能确定二、填空题(每小题3分,共24分)11.已知m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是__100__.12.已知a +b =5-3,a -b =5+3,则a 2-b 2=__2__.13.多项式a(a -b -c)+b(c -a +b)+c(b +c -a)提出公因式a -b -c 后,另外一个因式为__a -b -c __.14.若a -b =1,则代数式a 2-b 2-2b 的值为__1__.15.分解因式:x 2+2x(x -3)-9=__3(x +1)(x -3)__;-3x 2+2x -13=__-13(3x -1)2__. 16.若x 2-4y 2=-32,x +2y =4,则y x =__19__. 17.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:__(2n +1)2-(2n -1)2=8n __.18.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为__325__.三、解答题(共66分)19.(18分)分解因式:(1)m3+6m2+9m; (2)a2b-10ab+25b;解:(1)原式=m(m+3)2(2)原式=b(a-5)2(3)4x2-(y-2)2; (4)9x2-8y(3x-2y);解:(3)原式=(2x+y-2)(2x-y+2)(4)原式=(3x-4y)2(5)m2-n2+(2m-2n); (6)(x2-5)2+8(5-x2)+16.解:(5)原式=(m-n)(m+n+2)(6)原式=(x+3)2(x-3)220.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.解:a3b+2a2b2+ab3=ab(a+b)2,将a+b=3,ab=2代入得ab(a+b)2=2×32=1821.(8分)已知y(2x+1)-x(2y+1)=-3,求6x2+6y2-12xy的值.解:由已知得2xy+y-2xy-x=-3,∴x-y=3,∴6x2+6y2-12xy=6(x2+y2-2xy)=6(x-y)2=5422.(8分)已知x 2+y 2+6x +4y =-13,求y x 的值.解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823.(8分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.解:(a2-2ab+b2)+(b2-2bc+c2)=0,(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,∴a=b且b=c,∴a=b=c24.(8分)两位同学将x2+ax+b分解因式,一位同学因看错了一次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解成(x-2)(x-4),请将原多项式分解因式.解:依题意得b=9,a=-6,∴x2+ax+b=x2-6x+9=(x-3)225.(10分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为__(m+2n)(2m+n)__;(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.解:(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,裁剪线长为2(2m+n)+2(m+2n)=6m+6n=42,∴图中所有裁剪线(虚线部分)长之和为42 cm第5章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各式1x ,1π,x x -1,1x +y ,x +y 3,x +1y中,是分式的有( D ) A .1个 B .2个 C .3个 D .4个2.与分式-a +b -a -b相等的是( B ) A.a +b a -b B.a -b a +b C .-a +b a -b D .-a -b a +b3.已知分式(x -1)(x +2)x 2-1的值为0,那么x 的值是( B ) A .-1 B .-2 C .1 D .1或-24.如果分式x +y 2xy中的x 和y 都扩大3倍,那么分式的值( C ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍5.化简x 2-11-x的结果是( D ) A .x -1 B .x +1 C .1-x D .-x -16.解分式方程12x -3x +1x=3,去分母后所得的方程是( C ) A .1-2(3x +1)=3 B .1-2(3x +1)=2x C .1-2(3x +1)=6x D .1-6x +2=6x7.下列算式中,你认为正确的是( D )A.b a -b -a b -a=1 B .1÷b a ×a b =1 C .3a -1=13a D.1(a +b )2·a 2-b 2a -b =1a +b 8.已知a<b<0,x =a +b 2,y =2ab a +b,则下列结论正确的是( A ) A .x <y B .x >y C .x =y D .无法确定9.某生态示范园计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩产量x 万千克,则改量后平均每亩产量为1.5x 万千克,根据题意列方程为( A )A.36x -36+91.5x =20B.36x -361.5x =20C.36+91.5x -36x =20D.36x +36+91.5x=20 10.关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( A ) A .-5 B .-8 C .-2 D .5二、填空题(每小题3分,共24分)11.在分式|x|-1x -1中,当x =__1__时,分式无意义,当x =__-1__时,分式的值为零. 12.化简1x +3-69-x 2的结果是__1x -3__. 13.若x ∶y =1∶3,2y =3z ,则2x +y z -y的值为__-5__.14.方程x x -2=x +4x -22x -x 2的解是__x =3__. 15.在公式1f =1f 1+1f 2(f 1≠f 2)中,已知f ,f 2,则求得f 1=__ff 2f 2-f__. 16.一项工程需在规定日期内完成,如果甲队单独做,就要超规定日期1天,如果乙队单独做,就要超过规定日期4天,现在由甲、乙两队共做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为__8__天.17.如果x +1x =3,则x 2x 4+x 2+1的值为__18__. 18.若a 1=1-1m ,a 2=1-1a 1,a 3=1-1a 2,…,则a 2020=__m -1m__.(用含m 的式子表示) 三、解答题(共66分)19.(10分)化简:(1)x 2-a 2x 2+a 2·x 4-a 4x 2-2ax +a 2÷(x 2+2ax +a 2); (2)⎝⎛⎭⎫2+1x -1-1x +1÷⎝⎛⎭⎫x -x 1-x 2. 解:(1)原式=1 (2)原式=2x20.(10分)解方程:(1)x 2x 2-4+22-x =1+1x +2; (2)12x 2-9-2x -3=1x +3. 解:(1)x =23(2)无解21.(6分)小明解方程1x -x -2x=1的过程如图,请指出他解答过程中的错误,并写出正确的解答过程. 解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x ,得1-(x -2)=x ,去括号,得1-x +2=x ,合并同类项,得3-x =x ,移项,得2x =3,解得x =32,经检验x =32是 分式方程的根,则方程的解为x =32解:方程两边同乘x ,得 1-(x -2)=1 ……①去括号,得 1-x -2=1 ……②合并同类项,得 -x -1=1 ……③移项,得 -x =2 ……④解得 x =-2……⑤∴原方程的解为 x =-2……⑥22.(6分)先化简(x -x x +1)÷(1+1x 2-1),再以-4<x<4中取一个合适的整数x 代入求值. 解:原式=x 2+x -x x +1÷x 2-1+1x 2-1=x 2x +1÷x 2x 2-1=x 2x +1·(x +1)(x -1)x 2=x -1,取x =2,则原式=1.注意:只能取x =±2,±323.(7分)已知4y ÷[(x 2+y 2)-(x -y)2+2y(x -y)]=1,求4x 4x 2-y 2-12x +y的值. 解:由已知得4y 4xy -2y 2=1,即22x -y =1,∴2x -y =2,4x 4x 2-y 2-12x +y =12x -y =1224.(7分)已知关于x 的方程x +m x -3=2x -33-x有增根,求m 的值. 解:去分母,得x +m =-2x +3,∴x =3-m 3,此方程的增根是x =3,∴3-m 3=3,∴m =-625.(8分)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米,高速列车的平均速度是普通列车的平均速度的3倍,高速列车的乘车时间比普通列车的乘车时间缩短了2小时,高速列车的平均速度是每小时多少千米?解:设普通列车平均速度为每小时x 千米,则高速列车平均速度为每小时3x 千米,根据题意得240x-1803x=2,解得x =90,经检验,x =90是所列方程的根,则3x =3×90=270.所以高速列车平均速度为每小时270千米26.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.解:(1)设原计划每天生产的零件x 个,依题意有24000x =24000+300x +30,解得x =2400,经检验,x =2400是原方程的根,且符合题意,∴规定的天数为24000÷2400=10(天) (2)设原计划安排的工人人数为y 人,依题意有[5×20×(1+20%)×2400y+2400]×(10-2)=24000,解得y =480,经检验,y =480是原方程的根,且符合题意.所以原计划安排的工人人数为480人第6章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下面调查中,最适合用全面调查方式的是( B )A .调查一批电视机的使用寿命情况B .调查某中学九年级(1)班学生的视力情况C .调查某市初中学生每天锻炼所用的时间情况D .调查某市初中学生利用网络媒体自主学习的情况2.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是( D )A .抽取的10台电视机B .这一批电视机的使用寿命C .10D .抽取的10台电视机的使用寿命3.为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这6000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200.其中正确的有(C)A.4个B.3个C.2个D.1个4.下列统计图能够显示数据变化趋势的是(C)A.条形图B.扇形图C.折线图D.直方图5.对某中学70名女生身高进行测量,得到一组数据的最大值是169 cm,最小值是143 cm,对这组数据整理时取组距为5 cm,则应分(B)A.5组B.6组C.7组D.8组6.某个样本的频数直方图中,一组数据的频数为50,频率为0.5,则抽查样本的样本容量是(A) A.100 B.75 C.25 D.无法确定7.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图,根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是(A)A.800 B.600 C.400 D.200,第7题图),第9题图) 8.某学校将为七年级学生开设A,B,C,D,E,F共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整).根据图表提供的信息,下列结论错误的是(D)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E,F的人数分别为80,70D.喜欢选修课C的人数最少9.将一次知识竞赛成绩(整数)进行整理后,分成五组,绘成频数直方图,如图中从左到右的前四组的百分比分别是4%,12%,40%,28%,最后一组的频数是8,则①第五组的百分比为16%;②该班有50名同学参赛;③成绩在70.5~80.5的人数最多;④80分以上(不含80分)的学生共有22名.其中正确的有(A)A.4个B.3个C.2个D.1个10.以下是某手机店1~4月份的销售额统计图,四个同学通过分析统计图,对3,4月份三星手机的销售情况得出以下结论,其中正确的为(B)A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题(每小题3分,共24分)11.我市今年中考数学学科开考时间是6月22日15时,数串“201706221500”中“0”出现的频数是__4__.12.如图,是某班同学一次献爱心捐款的条形图,写出一条你从图中所获得的信息:__有15人每人捐100元(答案不唯一)__.13.某市为了了解七年级学生数学考试成绩,从全体学生的成绩中抽取了一部分,其中有10人得100分,20人得95分,80人得90分,100人得80分,150人得70分,在这个问题中,总体是__某市七年级学生数学成绩的全体__,个体是__每名七年级学生数学成绩__,样本是__抽取的360人的数学成绩__.14.一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%,由此在广告中宣传,他们的产品在国内同类产品销量中占40%.请你根据所学的统计知识,判断该宣传中的数据是否可靠:__不可靠__,理由是__样本不具代表性__.15.学校为七年级学生订做校服,校服有小号、中号、大号、特大号四种,随机抽取了100名学生调查他们的身高,得到如下表格,已知该校七年级学生有800名,那么中号校服大约应订制__360__套.,第15题图),第16题图),第17题图)16.某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形统计图表示上述分布情况,已知来自甲地区的为180人,则下列说法:①扇形甲的圆心角是72°;②学生的总人数是900人;③甲地区的人数比丙地区的人数少180人;④丙地区的人数比乙地区的人数多180人.其中正确的是__①②④__.17.八年级(1)班共48名学生,他们身高(精确到0.1 cm)的频数直方图如图,各小长方形的高的比为1∶1∶3∶2∶1,则身高范围在__165~170__ cm的学生最多,是__18__人,此组的组中值是__167.5_cm__.18.某校要在园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图的统计图,则一共调查了__200__人,条形统计图中的m=__70__,n=__30__.三、解答题(共66分)19.(10分)你对:“你觉得该不该在公共场所禁烟”作民意调查,下面是三名同学设计的调查方案:同学A:我把要调查的问题放到访问量最大的网站上,这样大部分上网的人就可以看到调查的问题,并很快就可以反馈给我.同学B:我给我们小区的居民每一位住户发一份问卷,一两天也可以得到结果了.同学C:我只要在班级上调查一下同学就可以了,马上就能得到结果.请问:上面三个同学哪个能获得比较准确的民意吗?为什么?解:同学B能获得比较全面的民意.理由:同学A放在网上,调查的人不够全面,同学C调查的人群不具有代表性,只有同学B的调查能比较准确地反映出民意.因为小区里包括了各年龄层次的人20.(14分)为了深化课程改革,某校积极开展新课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1-(35%+20%+10%+5%)=30%(2)“文学鉴赏”的人数:30%×200=60(人),“手工编织”的人数:10%×200=20(人)(3)全校选择“科学实验”社团的学生人数:1200×35%=420(人)21.(14分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40(人) (2)喜欢足球的有40×30%=12(人),喜欢跑步的有40-10-15-12=3(人),补图略 (3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×15-1240=90(人)22.(14分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.解:(1)(400+600)÷2-260=1 000÷2-260=500-260=240(人),故“跳绳”项目的女生人数是240人 (2)“掷实心球”项目平均分:(400×8.7+600×9.2)÷(400+600)=(3 480+5 520)÷1 000=9 000÷1 000=9(分),投篮项目平均分大于9分,其余项目平均分小于9分.故该县上届毕业生的考试项目中达到“优秀”的有投篮、掷实心球两个项目 (3)如:游泳项目考试的人数最多,可以选考游泳23.(14分)中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生 海选成绩分组表。

浙教版七年级下册数学全册单元测试卷含答案全套

浙教版七年级下册数学全册单元测试卷含答案全套

浙教版七年级下册数学全册单元试卷(含期末)第一章测试卷一、选择题(每题3分,共30分)1.下面四个选项中,∠1=∠2一定成立的是( )2.如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为( )A.15° B.25° C.35° D.55°(第2题) (第3题)3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将△ABC平移到△DEF的位置,下面的平移步骤正确的是( )A.先向右平移5个单位,再向下平移2个单位B.先向左平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位4.一个人从A点出发沿北偏东60°方向走到B点,再从B点出发沿南偏东15°方向走到C点,那么∠ABC等于( )A.75°B.105°C.45°D.135°5.下列说法:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中错误的有( )A.①②B.①③C.②④D.③④6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( ) A.60°B.50°C.40° D.30°7.如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为( )A.65°B.85°C.95°D.115°(第7题) (第8题)8.如图,把三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )A.60°B.50°C.40°D.30°9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于( )A.81°B.99°C.108°D.120°(第9题) (第10题)10.如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC 经过灯碗反射以后平行射出,如果∠ABO=α,∠DCO=β,则∠BOC的度数是( )A.α+βB.180°-αC.12(α+β) D.90°+(α+β)二、填空题(每题3分,共24分)11.如图,木工师傅在工件上作平行线时,只要用角尺画出工件(长方形ABCD)边缘的两条垂线即可,则a∥b,理由是_________________________________ ___________________.(第11题) (第12题)12.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F.若∠1=42°,则∠2=________.13.如图,在所标识的角中,∠1的同位角有________个;添加条件______________(填一个条件即可),可使a∥b.14.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=________°.(第14题) (第15题)15.如图,a∥b,∠1=65°,∠2=140°,则∠3的度数是________.16.如图,将周长为10的△ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为________.17.以下三种沿AB折叠的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).18.已知:直线a∥b,点A,B分别是a,b上的点,APB是a,b之间的一条折线段,且50°<∠APB<90°,Q是a,b之间且在折线段APB左侧的一点,如图.若∠AQC的一边与PA的夹角为40°,另一边与PB平行,请直接写出∠AQC,∠1,∠2之间满足的数量关系是____________________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分) 19.如图,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.20.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,试确定图中有几对平行线,并说明你的理由.21.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.22.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.23.如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.24.如图,直线AB,CD被直线EF,MN所截.(1)若AB∥CD,EF∥MN,∠1=115°,试求∠3和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果填空:如果一个角的两边分别和另一个角的两边平行,那么这两个角______________;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的度数.答案一、1.B点拨:对顶角相等.2.C3.B4.A点拨:先画出正确的图形,然后利用平行线的性质求出角度.5.D6.C7.B8.B9.B点拨:如图,过点B作MN∥AD,则∠ABN=∠A=72°.∵CH∥AD,AD∥MN,∴CH∥MN,∴∠NBC+∠BCH=180°,∴∠NBC=180°-∠BCH=180°-153°=27°.∴∠ABC=∠ABN+∠NBC=72°+27°=99°.10.A二、11.在同一平面内,垂直于同一条直线的两条直线互相平行12.159° 13.2;∠1=∠4(第2个空答案不唯一)14.55点拨:∵∠1=110°,纸条的两条对边互相平行,∴∠3=180°-∠1=180°-110°=70°.根据折叠的性质可知∠2=12(180°-∠3)=12((180°-70°)=55°.15.105°点拨:反向延长射线b,如图,∵∠2+∠5=180°,∴∠5=180°-∠2=180°-140°=40°.∴∠4=180°-∠1-∠5=180°-65°-40°=75°.又∵a∥b,∴∠3=180°-∠4=180°-75°=105°.(第15题) (第18题)16.1417.(1)(2)18.∠AQC=∠1+∠2+40°点拨:如图,作DQ∥a.∵a∥b,∴DQ∥a∥b.∴∠1+∠QAP=∠AQD,∠DQC=∠QCB.又∵CQ∥BP,∴∠2=∠QCB.∴∠QCB=∠DQC=∠2.∴∠AQC=∠AQD+∠DQC=∠1+40°+∠2.三、19.解:如图.20.解:有两对平行线,分别是AB∥CD,EF∥HG.理由如下:因为∠1=∠2=90°,所以AB∥CD.因为∠3=30°,所以∠5=90°-30°=60°.又因为∠4=60°,所以∠4=∠5,所以EF∥HG.21.解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°.∵BC平分∠ABD,∴∠ABD=2∠ABC=130°.∴∠BDC=180°-∠ABD=50°.∴∠2=∠BDC=50°.22.解:如图,过点C作∠ACF=∠A,则AB∥CF.∵∠A+∠ACD+∠D=360°,∴∠ACF+∠ACD+∠D=360°.又∵∠ACF+∠ACD+∠FCD=360°,∴∠FCD=∠D,∴CF∥DE.∴AB∥DE.点拨:本题运用了构造法,通过添加辅助线构造平行线,从而利用平行于同一条直线的两条直线平行进行判定.23.解:∵AD∥BC,∴∠3=∠EFG=55°,∠2+∠1=180°.由折叠的性质得∠3=∠4,∴∠1=180°-∠3-∠4=180°-2∠3=70°,∴∠2=180°-∠1=110°.24.解:(1)因为AB ∥CD ,所以∠2=∠1=115°.因为EF ∥MN ,所以∠3=∠2=115°,∠4+∠2=180°.所以∠4=180°-∠2=65°.(2)相等或互补(3)设较小角的度数为x °,则较大角的度数为(2x )°,根据题意,得x +2x =180,解得x =60,所以2x =120.故这两个角的度数分别为60°和120°.点拨:本题是平行线性质的综合运用,注意考虑问题一定要全面.第2章 测试卷一、选择题(每题3分,共30分)1.⎩⎨⎧x =2,y =1是下列哪个方程的一个解( ) A .3x +y =6 B .-2x +y =-3 C .6x +y =8 D .-x +y =12.下列方程组中,是二元一次方程组的是( )A.⎩⎨⎧x +13=1,y =x 2B.⎩⎨⎧3x -y =5,2y -z =6C.⎩⎨⎧x 5+y 2=1,xy =1D.⎩⎨⎧x 2=3,y -2x =43.用代入法解方程组⎩⎨⎧2y -3x =1,x =2y +1,下面的变形正确的是( ) A .2y -6y -3=1B .2y -6y +3=1C .2y -6y +1=1D .2y -6y -1=14.已知⎩⎨⎧x =2,y =1是方程组⎩⎨⎧ax +by =5,bx +ay =1的解,则a -b 的值是( ) A .-1 B .2 C .3 D .45.解方程组⎩⎨⎧ax +by =2,cx -7y =8时,一学生把c 看错而得⎩⎨⎧x =-2,y =2,而正确的解是⎩⎨⎧x =3,y =-2,那么a ,b ,c 的值是( )A .不能确定B .a =4,b =5,c =-2C .a ,b 不能确定,c =-2D .a =4,b =7,c =26.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的2倍少15°,根据题意,下列方程组正确的是( )A.⎩⎨⎧x +y =90,x =y -15B.⎩⎨⎧x +y =90,x =2y -15C.⎩⎨⎧x +y =90,x =15-2yD.⎩⎨⎧x +y =90,x =2y +157.关于x ,y 的二元一次方程组⎩⎨⎧x +y =9k ,x -y =5k 的解也是二元一次方程2x +3y =6的解,则k 的值为( ) A.310B.103C .-310D .-1038.如果关于x ,y 的二元一次方程组⎩⎨⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( ) A.34B .-47C.74D .-439.甲、乙两人各买了相同数量的信封和信笺,甲每发出一封信只用1张信笺,乙每发出一封信用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封,则甲、乙两人买的信笺张数、信封个数分别为( ) A .150,100B .125,75C .120,70D .100,15010.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②所示的竖式和横式的两种无盖纸盒.现在仓库里有m张长方形纸板和n张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是( )A.2 015 B.2 016 C.2 017 D.2 018二、填空题(每题3分,共24分)11.1元的人民币x张,10元的人民币y张,共120元,这个关系用方程可以表示为________.12.已知方程3x+y=2,用关于x的代数式表示y,则y=________.13.已知(n-1)x|n|-2y m-2 018=0是关于x,y的二元一次方程,则n m=________. 14.在三角形ABC中,∠A-∠B=20°,∠A+∠B=140°,则∠A=________,∠C=________.15.定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*1=6,则2*3=________.16.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm.设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=________,y=________.17.已知关于x ,y 的方程组⎩⎨⎧2x +5y =-6,ax -by =-4和⎩⎨⎧3x -5y =16,bx +ay =-8的解相同,则代数式3a +7b 的值为________.18.已知关于x ,y 的方程组⎩⎨⎧3y +2x =100-2a ,3y -2x =20的解及a 都是正整数.①当a ≤6时,方程组的解是____________;②满足条件的所有解的个数是________. 三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分) 19.解方程组:(1)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9; (2)⎩⎨⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1.20.已知关于x ,y 的方程组⎩⎨⎧mx +ny =7,2mx -3ny =4的解为⎩⎨⎧x =1,y =2,求m ,n 的值.21.对于x,y定义一种新运算“∅”,x∅y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算.已知3∅5=15,4∅7=18,求1∅1的值.22.小强用8 个边长不全相等的正三角形拼成如图所示的图案,其中阴影部分是边长为1 cm的正三角形.试求出图中正三角形A、正三角形B的边长分别是多少厘米.23.某村粮食专业队去年计划生产水稻和小麦共150 t,实际生产了170 t.其中水稻超产15%,小麦超产10%.问:该专业队去年实际生产水稻、小麦各多少吨?24.温州苍南马站四季柚,声名远播,今年又是一个丰收年,某经销商为了打开销路,对1 000个四季柚进行打包优惠出售.打包方式及售价如图所示.假设用这两种打包方式恰好装完全部柚子.(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值;(2)当销售总收入为7 280元时:①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋装共包装了多少袋.②若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值.答案一、1.B 2.D 3.A 4.D5.B 点拨:把⎩⎨⎧x =3,y =-2代入cx -7y =8中得c =-2;分别把⎩⎨⎧x =-2,y =2与⎩⎨⎧x =3,y =-2代入方程ax +by =2中,得到关于a ,b 的方程组⎩⎨⎧-2a +2b =2,3a -2b =2,解得⎩⎨⎧a =4,b =5,故选B .6.B 7.A 8.B9.A 点拨:设他们每人买了x 个信封和y 张信笺.由题意得⎩⎪⎨⎪⎧y -x =50,x -y3=50,解得⎩⎨⎧x =100,y =150.故选A .10.A二、11.x +10y =12012.2-3x 13.-1 14.80°;40°15.10 点拨:根据题中的新定义化简已知等式得⎩⎨⎧a +2b =5,4a +b =6,解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10.16.4;5 点拨:根据题意得⎩⎨⎧2x +3y =23,3x +2y =22,解得⎩⎨⎧x =4,y =5.17.-18 18.①⎩⎨⎧x =17,y =18点拨:解方程组可得⎩⎪⎨⎪⎧x =20-a2,y =20-a3,又x ,y ,a 均为正整数且a ≤6,所以a =6.故x =17,y =18.② 6 点拨:当a =6,12,18,24,30,36时,x ,y ,a 均为正整数.三、19.解:(1)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①得32-y2=6, 解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(2)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②(6,得3(x +y )-(x -y )=6,③ ①-③,得-3(x -y )=0,即x =y .将x =y 代入③,得3(x +x )-0=6,即x =1.所以y =1. 所以原方程组的解为⎩⎨⎧x =1,y =1.20.解:将⎩⎨⎧x =1,y =2代入方程组得⎩⎨⎧m +2n =7,2m -6n =4,解得⎩⎨⎧m =5,n =1. 21.解:由题意,得⎩⎨⎧3a +5b =15,4a +7b =18,解得⎩⎨⎧a =15,b =-6.∴1∅1=15(1+(-6)(1=9.22.解:设正三角形A 的边长为x cm ,正三角形B 的边长为y cm.根据题意,得⎩⎨⎧y =2x ,y =x +3,解得⎩⎨⎧x =3,y =6.答:正三角形A 的边长为3 cm ,正三角形B 的边长为6 cm.点拨:本题渗透数形结合思想,易知正三角形A ,H ,G 的边长相等,且正三角形B 的边长=正三角形A 的边长(2;正三角形F ,E 的边长相等,正三角形D ,C 的边长也相等,且正三角形F 的边长=正三角形G 的边长+1 cm ,正三角形D 的边长=正三角形E 的边长+1 cm ,正三角形B的边长=正三角形C 的边长+1 cm ,从而可得正三角形B 的边长=正三角形A 的边长+3 cm.分别设出正三角形A ,B 的边长,依此可列二元一次方程组,求出方程组的解即可得出答案. 23.解:设计划生产水稻x t ,小麦y t ,依题意,得⎩⎨⎧x +y =150,15%x +10%y =170-150,解得⎩⎨⎧x =100,y =50. 则实际生产水稻(1+15%)(100=115(t), 实际生产小麦(1+10%)(50=55(t).所以该专业队去年实际生产水稻115 t 、小麦55 t. 24.解:(1)由题意得64a +126a =950,得a =5.(2)①设纸盒装共包装了x 箱,编织袋装共包装了y 袋. 由题意得⎩⎨⎧8x +18y =1 000,64x +126y =7 280,解得⎩⎨⎧x =35,y =40.∴纸盒装共包装了35箱,编织袋装共包装了40袋.②当8x +18y =1 000时,得x =1 000-18y 8=125-9y4,由题意得64⎝ ⎛⎭⎪⎫125-9y 4-b +126y =7 280,得y =40-32b 9. ∵x ,y ,b 都为整数,且x ≥0,y ≥0,b >0, ∴b =9,x =107,y =8.∴b 为9.第3章 测试卷一、选择题(每题3分,共30分) 1.计算(-x 3)2的结果是( )A .x 5B .-x 5C .x 6D .-x 62.下列计算正确的是( )A .2a -2=12aB .(2a +b )(2a -b )=2a 2-b 2C .2a ·3b =5abD .3a 4÷(2a 4)=323.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( ) A .3.7×10-5 g B .3.7×10-6 g C .3.7×10-7 gD .3.7×10-8 g4.在下列计算中,不能用平方差公式计算的是( )A .(m -n )(-m +n ) B.()x 3-y 3()x 3+y 3C .(-a -b )(a -b ) D.()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A.47B.74C .-3D.277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( )A .-3B .3C .0D .18.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8二、填空题(每题3分,共24分)11.已知x n =4,则x 3n =________.12.计算:(2a )3·(-3a 2)=________.13.若x +y =5,x -y =1,则式子x 2-y 2的值是________.14.若(a 2-1)0=1,则a 的取值范围是________.15.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________.16.如果(3m +3n +2)(3m +3n -2)=77,那么m +n 的值为________.17.对实数a ,b 定义运算☆如下:a ☆b =⎩⎨⎧a b (a >b ,a ≠0),a -b (a ≤b ,a ≠0),如2☆3=2-3=18.计算[2☆(-4)]÷[(-4)☆2]=________.18.已知a +1a =5,则a 2+1a2的结果是________. 三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分)19.计算:(1)-23+13(2 018+3)0-⎝⎛⎭⎪⎫-13-2;(2)⎝⎛⎭⎪⎫52x3y3+4x2y2-3xy÷(-3xy);(3)(-2+x)(-2-x);(4)(a+b-c)(a-b+c).20.先化简,再求值:[(x2+y2)-(x+y)2+2x(x-y)]÷(4x),其中x-2y=2.21.(1)已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图②中阴影部分的面积.(3)观察图②你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据(3)题中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.(写出过程)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?答案一、1.C 2.D3.D 点拨:1 mg =10-3 g ,将0.000 037 mg 用科学记数法表示为3.7(10-5(10-3=3.7(10-8(g).故选D.4.A 点拨:A 中m 和-m 符号相反,n 和-n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b )=-4+4-2m =-2m .故选D .6.A 点拨:3x -2y =3x ÷32y =3x ÷9 y =47.故选A.7.A 点拨:(x +m )(x +3)=x 2 +(3+m )x +3m ,因为乘积中不含x 的一次项,所以m +3=0,所以m =-3.故选A.8.B9.A10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.因为216的末位数字是6,所以A 的末位数字是6.二、11.6412.-24a 513.514.a ≠±115.2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x (x 2-x )+x 2+2 018=-x +x 2+2 018=2 019.16.±317.118.23 点拨:由题意知⎝ ⎛⎭⎪⎫a +1a 2=25,即a 2+1a 2+2=25,所以a 2+1a 2=23. 三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=-56x 2y 2-43xy +1.(3)原式=(-2)2-x 2=4-x 2.(4)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc . 20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷(4x )=(2x 2-4xy )÷(4x )=12x -y .因为x -2y =2,所以12x -y =1.所以原式=1.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3(12=13.②(a -b )2=(a +b )2-4ab =72-4(12=1.点拨:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值.(2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260,所以b >c >a >d .22.解:(1)m -n .(2)方法一:(m -n )2;方法二:(m +n )2-4mn .(3)(m +n )2-4mn =(m -n )2,即(m +n )2-(m -n )24=mn . (4)由(3)可知(a -b )2=(a +b )2-4ab ,∵a +b =7,ab =5,∴(a -b )2=49-20=29.23.解:(x 2+px +8)(x 2-3x +q )=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q=x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q .因为展开式中不含x 2和x 3项,所以p -3=0,q -3p +8=0,解得p =3,q =1.24.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米).厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米.(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元).即王老师需要花23abx 元.第4章 测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝ ⎛⎭⎪⎫x +1x 2.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +93.下列因式分解中,正确的是( )A .x 2-4y 2=(x -4y )(x +4y )B.ax+ay+a=a(x+y) C.x2+2x-1=(x-1)2D.14x2+2x+4=⎝⎛⎭⎪⎫12x+224.因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1) D.x(x+1)25.多项式①16x2-x;②(x-1)2-4(x-1);③(x+1)2-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③6.若多项式x2+mx-28可因式分解为(x-4)(x+7),则m的值为( ) A.-3 B.11 C.-11 D.37.已知a+b=2,则a2-b2+4b的值是( )A.2 B.3 C.4 D.68.已知三角形ABC的三边长为a,b,c,且满足a2+b2+c2=ab+ac+bc,则三角形ABC的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形9.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值( ) A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数10.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A.①②B.②③C.①③D.①②③二、填空题(每题3分,共24分)11.因式分解:a3-ab2=______________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为________.13.若m-n=-2,则m2+n22-mn的值是________.14.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成(x+1)(x+9);乙因看错了常数项而分解成(x-2)(x-4),则将原多项式因式分解后的正确结果应该是________.15.如果x2+kx+64是一个整式的平方,那么常数k的值是________.16.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y=________.17.如图是两邻边长分别为a,b的长方形,它的周长为14,面积为10,则a2b +ab2的值为________.18.如果对于大于1的整数w,存在两个正整数x,y,使得w=x2-y2,那么这个数w叫做智慧数.把所有的智慧数按从小到大排列,那么第2 016个智慧数是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.分解因式:(1)a2b-abc;(2)3a(x-y)+9(y-x);(3)(2a-b)2+8ab;(4)(m2-m)2+12(m2-m)+116.20.计算:(1)29×20.18+72×20.18+13×20.18-14×20.18;(2)1002-992+982-972+…+42-32+22-12.21.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.22.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.24.阅读下列材料,然后解答问题:分解因式:x3+3x2-4.解答:把x=1代入多项式x3+3x2-4,发现此多项式的值为0,由此确定多项式x3+3x2-4中有因式(x-1),于是可设x3+3x2-4=(x-1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多项式x3+3x2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2-16x-16.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C 点拨:a 2-b 2+4b =(a +b )(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4. 8.D 9.A10.D 点拨:图①中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.图②中,左阴影S =a 2-b 2,右阴影S =12(2b +2a )(a -b )=(a +b )(a -b ),故能验证.图③中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证. 二、11.a (a +b )(a -b )12.x +2 13.2 点拨:m 2+n 22-mn =(m -n )22=(-2)22=2.14.(x -3)2 15.±1616.2 点拨:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7.∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.70 点拨:由题意知,ab =10,a +b =142=7,故a 2b +ab 2=ab (a +b )=10×7=70.18.2 691 点拨:由计算可得智慧数按从小到大排列依次为3,5,7,8,9,11,12,13,15,16,17,19,20,…,∴以3个数为一组,从第2组开始每组第一个数都是4的倍数,∴2 016÷3=672,∴第2 016个智慧数是第672组的最后一个数,∴4×672+3=2 691.三、19.解:(1)原式=ab(a-c).(2)原式=(x-y)(3a-9)=3(x-y)(a-3).(3)原式=4a2-4ab+b2+8ab=4a2+4ab+b2=(2a+b)2.(4)原式=(m2-m)2+2·(m2-m)·14+⎝⎛⎭⎪⎫142=(m2-m+14)2=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫m-1222=(m-12 )4.20.解:(1)原式=(29+72+13-14)×20.18=100×20.18=2 018;(2)原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)=100+99+98+… +3+2+1=101×50=5 050.21.解:(1)原式=(x+7)(4a2-3).当a=-5,x=3时,(x+7)(4a2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x-3y)+(2x+3y)]·[(2x-3y)-(2x+3y)]=-24xy.当x=16,y=18时,-24xy=-24×16×18=-12.22.解:∵a2+b2+2a-4b+5=0,∴(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0.∴a+1=0且b-2=0.∴a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.23.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7; 当腰长为3时,则底边长为2,周长=3+3+2=8. 所以这个等腰三角形的周长为7或8.24.解:(1)原式=(x -1)(x 2+mx +n )=x 3+mx 2+nx -x 2-mx -n =x 3+(m -1)x 2+(n -m )x -n ,根据题意得⎩⎨⎧m -1=3,n -m =0,-n =-4,解得⎩⎨⎧m =4,n =4.(2)把x =-1代入,发现多项式的值为0,∴多项式x 3+x 2-16x -16中有因式(x+1),于是可设x 3+x 2-16x -16=(x +1)(x 2+m x +n ),可化为x 3+mx 2+nx +x 2+mx +n =x 3+(m +1)x 2+(m +n )x +n ,可得⎩⎨⎧m +1=1,m +n =-16,n =-16,解得⎩⎨⎧n =-16,m =0,∴x 3+x 2-16x -16=(x +1)(x 2-16)=(x +1)(x +4)(x -4). 第5章 测试卷一、选择题(每题3分,共30分) 1.下列式子是分式的是( )A.a -b 2B.5+yπC.x +3xD .1+x2.若分式3xx -1有意义,则x 应满足( )A .x =0B .x ≠0C .x =1D .x ≠13.若分式|x |-3x +3的值为0,则x 的值为( )A .3B .-3C .±3D .任意实数4.下列分式为最简分式的是( )A.2ac 3bcB.2a a 2+3aC.a +b a 2+b 2D.a +1a 2-15.下列各式中,正确的是( )A .--3x 5y =3x -5yB .-a +b c =-a +bcC.-a -b c =a -bcD .-ab -a =aa -b6.分式方程3x =4x +1的解是( )A .x =-1B .x =1C .x =2D .x =37.当a =2时,计算a 2-2a +1a 2÷⎝ ⎛⎭⎪⎫1a -1的结果是( )A.32B .-32D .-128.对于非零的两个实数a ,b ,规定a *b =3b -2a,若5*(3x -1)=2,则x 的值为( ) A.56 B.34C.23D .-169.若分式方程x x -1-1=m(x -1)(x +2)有增根,则m 的值为( ) A .0或3 B .1C .1或-2D .310.某中学为响应“足球进校园”的号召,决定在某商场购进A ,B 两种品牌的足球,购买A 品牌足球花费2 400元,购买B 品牌足球花费3 600元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A品牌足球多花30元,设购买一个A品牌足球花x元,根据题意,下面所列方程正确的是( )A.2 400x=3 600x+30B.2 400x=3 600x+30×2C.3 600x+30=2 400x×2D.2 400x+30=3 600x×2二、填空题(每题3分,共24分)11.23x2(x-y),12x-2y,34xy的公分母是______________.12.若x=1是分式方程a-2x-=0的根,则a=________.13.若代数式1x-2和32x+1的值相等,则x=________.14.若关于x的分式方程mx-1+31-x=1的解为正数,则m的取值范围是______________.15.若关于x的方程2x-2+x+m2-x=2有增根,则m的值是________.16.将梯形面积公式S=12(a+b)h变形成已知S,a,b,求h的形式,则h=________.17.已知点A,B在数轴上,它们所对应的数分别是-2,x-73x-1,且点A,B到原点的距离相等,则x的值为________.18.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.计算:(1)2a a 2-9-1a -3; (2)⎝ ⎛⎭⎪⎫1a -1b ÷a 2-b 2ab .20.解分式方程:(1)2x =3x +2; (2)x +1x -1+4x 2-1=1.21.已知y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3,试说明:当x 取任何有意义的值时,y 值均不变.22.先阅读下列解题过程,再回答问题:计算:4x2-4+12-x.解:原式=4(x+2)(x-2)-1x-2①=4(x+2)(x-2)-x+2(x+2)(x-2)②=4-(x+2) ③=2-x④(1)以上解答有错误,错误步骤的序号是________,错误做法是________;(2)请你给出正确的解答过程.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A方法,其余用B方法.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,求做出的三棱柱盒子的个数.24.阅读下面材料,解答后面的问题.解方程:x-1x-4xx-1=0.解:设y=x-1x,则原方程可化为y-4y=0,方程两边同时乘y,得y2-4=0,解得y1=2,y2=-2.经检验,y1=2,y2=-2都是方程y-4y=0的解.当y=2时,x-1x=2,解得x=-1;当y=-2时,x-1x=-2,解得x=13.经检验,x1=-1,x2=13都是原分式方程的解.所以原分式方程的解为x1=-1,x2=1 3 .上述这种解分式方程的方法称为换元法.问题:(1)若在方程x-14x-xx-1=0中,设y=x-1x,则原方程可化为________________;(2)若在方程x-1x+1-4x+4x-1=0中,设y=x-1x+1,则原方程可化为________________;(3)模仿上述换元法解方程:x-1x+2-3x-1-1=0.答案一、1.C 2.D 3.A 4.C 5.D 6.D 7.D8.B 点拨:根据题意得33x-1-25=2,解得x=34.经检验x=34是所列分式方程的解.故选B. 9.A 10.B二、11.12x3y-12x2y212.1 点拨:∵x=1是分式方程a-2x-1x-2=0的根,∴a-21-11-2=0.解得a=1.13.714.m>2且m≠315.0 点拨:知道产生增根的原因是解决问题的关键.16.2Sa+b 17.-118.15 点拨:由题意可知15-1x=13-15,解得x=15,经检验,x=15是所列分式方程的解.三、19.解:(1)原式=2a(a+3)(a-3)-a+3(a+3)(a-3)=a-3(a+3)(a-3)=1a+3.(2)原式=b-aab·ab(a+b)(a-b)=-a-bab·ab(a+b)(a-b)=-1a+b.20.解:(1)方程两边都乘x(x+2),得2(x+2)=3x,解得x=4.检验:当x=4时,x(x+2)≠0,所以原分式方程的解为x=4.(2)方程两边都乘(x+1)(x-1),得(x+1)2+4=(x+1)(x-1),解得x=-3. 检验:当x=-3时,(x+1)(x-1)≠0,所以原分式方程的解为x=-3.21.解:y =x 2+6x +9x 2-9÷x +3x 2-3x -x +3=(x +3)2(x +3)(x -3)·x (x -3)x +3-x +3=x -x +3=3.故当x 取任何有意义的值时,y 值均不变.22.解:(1)③;去分母(2)正确解法:原式=4(x +2)(x -2)-1x -2=4(x +2)(x -2)-x +2(x +2)(x -2)=4-(x +2)(x +2)(x -2)=-x -2(x +2)(x -2)=-1x +2. 23.解:(1)裁剪时x 张用A 方法,则(19-x )张用B 方法.所以侧面的个数为6x +4(19-x )=(2x +76)个,底面的个数为5(19-x )=(95-5x )个.(2)由题意,得2x +7695-5x =32,解得x =7.经检验,x =7是所列分式方程的解,且符合题意.因为2x +763=2×7+763=30, 所以做出的三棱柱盒子的个数是30个. 24.解:(1)y 4-1y=0 (2)y -4y=0 (3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y=0. 方程两边同时乘y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y=0的解.当y=1时,x-1x+2=1,该方程无解;当y=-1时,x-1x+2=-1,解得x=-1 2 .经检验,x=-12是原分式方程的解.所以原分式方程的解为x=-1 2 .第6章测试卷一、选择题(每题3分,共30分)1.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.调查七年级(1)班学生的某次数学考试成绩C.调查某班学生的身高D.了解全市中小学生每天的零花钱2.如图是某班学生参加课外兴趣小组的人数占总人数百分比的统计图,则参加人数最多的课外兴趣小组是( )A.棋类组B.演唱组C.书法组D.美术组(第2题) (第5题)3.要调查你校学生学业负担是否过重,选用下列哪种方法最恰当( ) A.查阅文献资料B.对学生无记名问卷调查C.上网查询D.对校领导问卷调查4.为了表示某种食品中钙、维生素、糖等物质的含量的百分比,应选用( ) A.条形统计图B.折线统计图C.扇形统计图D.直方图5.在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学的捐款情况绘制成如图所示的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是( )A.20元B.15元C.12元D.10元。

最新浙教版七年级数学下册单元测试题全套带答案

最新浙教版七年级数学下册单元测试题全套带答案

最新浙教版七年级数学下册单元测试题全套带答案七年级数学下册单元测试题全套带答案第⼀章平⾏线单元综合测试题(时间45分钟满分100分)⼀、选择题(共6⼩题,每题5分,共30分)1.已知:如T-1,AB ∥CD ,∠DCE =80°,则∠BEF 的度数为( )A. 120°B. 110°C. 100°D. 80°EDCB AT-1 T-2 2. 如,2,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成⽴的是()(A )∠C=60°(B )∠DAB=60° (C )∠EAC=60°(D )∠BAC=60°3、如图T-3,已知AB ∥CD ,那么()A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠4+∠2=1804、下列运动中:①⼈乘电梯,从⼀楼上到⼆楼的运动;②被投掷出去的铅球运动;③温度计中,液⾯的升降运动;④在笔直的铁轨上,⽕车的运动,属于平移运动的有()A 、1种B 、2种C 、3种D 、4种5、下列说法正确的是()A 、不相交的两条直线互相平⾏B 、同旁内⾓相等,两直线平⾏C 、在同⼀平⾯内,不平⾏的两条直线会相交D 、同位⾓相等 6、如图T-6,下列条件中能判断直线AD ∥BC 的是()A 、∠A=∠ABCB 、∠ADB=∠CBDC 、∠A+∠ADC=180 oD 、∠A=∠C 7、如图7,有⼀块含有45°⾓的直⾓三⾓板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A .30°B.25°C .20°D.15° 图78、如图8,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于( )C D1243T-3T-6A 2121A.100°B.60° C .40° D.20° 9、如图9,有⼀直的宽纸袋,按如图折叠,则∠a 的度数等于()A 、500B 、600C 、750D 、85010. 如图10,是5级台阶侧⾯的⽰意图(每个台阶的宽度和⾼度可能不同),若要在台阶上铺地毯,则⾄少要测量( )A.1次B.2次C.3次D.4次图9 图10⼆、填空题(共7⼩题,每题5分,共35分)11、如图T-8,∠1的同位⾓是,∠1的内错⾓是,∠2与∠3是图12 图13图1412.如图13所⽰,直线a 、b 被c 、d 所截,且?=∠⊥⊥701,,b c a c ,则=∠213. 如图10,梯⼦的各条横档互相平⾏,若∠1=70o,则∠2的度数是 014..如图15,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2=度.15.已知三条不同的直线a ,b ,c 在同⼀平⾯内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c .其中真命题的是.(填写所有真命题的序号)AT-81243516.如图16,C 岛在A 岛的北偏东50o ⽅向,C 岛在B 岛的北偏西40o⽅向,则从C 岛看A ,B 两岛的视⾓∠ACB 等于.图16三、解答题(本题有7⼩题,共44分)17.在如图所⽰,将⽅格中的图形向右平移3格,再向上平移4格,画出平移后的图形18、(本题6分)如图∠1=1000,∠2=1000,∠3=1200解∵∠1=∠2=1000()∴m//n ()∴∠_____=∠______()∵∠3=1200(已知)∴∠4=___________19、(本题6分)已知,如图∠1=∠2,CF ⊥AB, DE ⊥AB,说明FG//BC 解∵CF ⊥AB, DE ⊥AB,()∴∠BED=900, ∠BFC=900,()∴∠BED=∠BFC∴ED//FC( ) ∴∠1=___________( )∵∠1=∠2(已知)∴∠2=∠BCF∴FG//BC ()4231nmGF E14、如图:已知;AB ∥CD ,AD ∥BC ,∠B 与∠D 相等吗?试说明理由.15、如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF .(1)AE 与FC 会平⾏吗?说明理由.(2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么.F 21DCBA16、如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,在C 、D 之间有⼀点P ,如果P 点在C 、D之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发⽣变化.若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系⼜是如何?参考答案⼀、选择题(共6⼩题,每题5分,共30分)1.已知:如图1,AB ∥CD ,∠DCE =80°,则∠BEF 的度数为l 1l CB DPl 2AD CBAB.120° B. 110°C. 100°D. 80°【答案】CAED图1 图2 图32.如,2,直线DE经过点A,DE∥BC,,∠B=60°,下列结论成⽴的是()(A)∠C=60°(B)∠DAB=60°(C)∠EAC=60°(D)∠BAC=60°【答案】B3.如图3,直线AB、CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT=()A.30°B.45°C. 60°D. 120°【答案】C4、如图4,有⼀块含有45°⾓的直⾓三⾓板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°【答案】B21图4 图5 图65、某商品的商标可以抽象为如图5所⽰的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( ) A.30? B.45? C.60? D.75?【答案】B6、如图6,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于A.100°B.60° C.40° D.20°【答案】A⼆、填空题(共7⼩题,每题5分,共35分)7.如图7,直线DE交∠ABC的边BA于点D,若DE∥BC,∠B=70°,图10 21则∠ADE 的度数是.【答案】70°12345A B CDE图7 图8 图9 8.如图8,直线AB 、CD 被直线EF 所截,则∠3的同旁内⾓是(). A .∠1 B .∠2 C .∠4 D .∠5 【答案】B 9.如图9所⽰,直线a 、b 被c 、d 所截,且?=∠⊥⊥701,,b c a c ,则=∠2 0【答案】7010.如图10,梯⼦的各条横档互相平⾏,若∠1=70o,则∠2的度数是A .80oB .110oC .120oD .140o图11 图12 【答案】B 11.已知三条不同的直线a ,b ,c 在同⼀平⾯内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c .其中真命题的是.(填写所有真命题的序号)【答案】①②④12. 如图11,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2=度.【答案】6013.如图12,C 岛在A 岛的北偏东50o⽅向,C 岛在B 岛的北偏西40o⽅向,则从C 岛看A ,B 两岛的视⾓∠ACB 等于.【答案】90oCAE D B三、解答题(共25分)14、如图:已知;AB ∥CD ,AD ∥BC ,∠B 与∠D 相等吗?试说明理由.【答案】相等。

浙教版七年级数学下册期末综合素质评价(含答案)

浙教版七年级数学下册期末综合素质评价(含答案)

期末综合素质评价第Ⅰ卷 (选择题)一、单选题(本题有10小题,每小题3分,共30分) 1.下列式子是二元一次方程的是( )A.x-2y B.x-y2=1 C.x+y3=x D.x-2y+z=02.神舟十四号飞船于2022年6月5日发射成功,飞船搭载的一种高控制芯片探针面积为0.000 016 2 cm2,0.000 016 2用科学记数法表示为( )A.1.62×10-6B.1.62×10-5C.1.62×10-4D.0.162×10-63.【2022·西宁】下列运算正确的是( )A.a2+a4=a6B.(a-b)2=a2-b2C.(a2b)3=a6b3D.a6÷a6=a4.如果把2y2x-3y中的x和y都扩大到原来的6倍,那么分式的值( )A.扩大到原来的6倍B.不变C.缩小到原来的16D.扩大到原来的36倍5.为了解金华市七年级学生的视力情况,从中随机调查了500名学生的视力,下列说法正确的是( )A.金华市七年级学生是总体B.每一名七年级学生是个体C.500名七年级学生是总体的一个样本D.样本容量是5006.如图,下列条件不能判定AB∥CD的是( ) A.∠1=∠2 B.∠BAD+∠ADC=180° C.∠ABC=∠3 D.∠ADC=∠37.下列各选项中,因式分解正确的是( ) A.x2-1=(x-1)2B.x(x-y)+y(y-x)=(x-y)2C.-2y2+4y=-2y(y+2)D.x2+xy+x=x(x+y)8.已知关于x的分式方程xx-1-2=kx-1的解为正数,则k的取值范围为( )A.k<2且k≠1B.k>-2且k≠-1C.k>-2 D.-2<k<09.如图,直线a∥b,点A在直线a上,点C,D在直线b上,且AB⊥BC,BD平分∠ABC,若∠1=32°,则∠2的度数是( ) A.13° B.15° C.23° D.16°10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图①,图②.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图①所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x+2y=19,x+4y=23,在图②所示的算筹图中有一个图形被墨水覆盖了,如果图②所表示的方程组中x的值为3,那么被墨水所覆盖的图形为( ) A.| B.|| C.||| D.||||第Ⅱ卷 (非选择题)二、填空题(本题有6小题,每小题4分,共24分)11.使分式12x-3有意义的x的取值范围是____________.12.分解因式:4x2-16=____________________.13.若x-2是多项式2x2+ax-2的一个因式,则a=________.14.已知∠β的一边与∠α的一边平行,∠β的另一边与∠α的另一边垂直.若∠α=53°,则∠β=____________.15.若方程组{2x+y=1-3k,x+2y=2的解满足x+y=0,则k的值为________.16.图①是一盏可折叠台灯,图②为其平面示意图,底座AO⊥OE 于点O,支架AB,BC为固定支撑杆,∠A是∠B的两倍,灯体CD可绕点C旋转调节.现把灯体CD从水平位置旋转到CD′位置(图②中虚线所示),此时,CD′所在的直线恰好垂直于支架AB,且∠BCD -∠DCD′=120°,则∠DCD′=____________.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)(-1)2 023+(-4)-1+(π-0.1)0;(2)(2a+3)(3-2a).18.(6分)(1)解分式方程:xx-3-4=3x-3;(2)先化简:a-1a2-4÷(1-3a+2),再从-2,-1,0,1,2中选择一个合适的数代入求值.19.(6分)如图,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.(1)求∠BCF的度数.(2)如果DE是∠ADC的平分线,那么DE与AB平行吗?请说明理由.20.(8分)为有效防控新冠肺炎疫情,小明的妈妈让他到药店购买口罩和酒精湿巾,已知购买3包口罩和2包酒精湿巾共需21元,购买5包口罩和1包酒精湿巾共需28元.(1)求口罩和酒精湿巾的单价;(2)妈妈给了小明60元全部用于购买口罩和酒精湿巾(都要购买),请问小明有哪几种购买方案?21.(8分)某校5月组织了学生参加“学习强国”知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A,B,C,D,E,绘制如下扇形统计图,请你根据统计图提供的信息,解答下列问题:(1)频数直方图中,A组的频数为________,并补全频数直方图;(2)扇形统计图中,D组所占的圆心角n=________度;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?22.(10分)某铁路货运集装箱物流园区启动了二期扩建工程,一项地基基础加固处理工程由A,B两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.在A工程公司单独建设45天后,B工程公司参与建设,两工程公司又共同建设54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天;(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程分成两部分,要求两工程公司同时开工建设,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<50,n<90,求A,B两个工程公司各建设了多少天.23.(10分)浙教版数学课本七下第四章《因式分解》4.3“用乘法公式分解因式”中这样写到:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.例如:分解因式:x2+2x-3=(x2+2x+1)-4=(x+1)2-22=(x +1+2)(x+1-2)=(x+3)(x-1);求代数式2x2+4x-6的最小值:2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,可知当x=-1时,2x2+4x-6有最小值,最小值是-8.根据阅读材料,用配方法解决下列问题:(1)分解因式:m2-4m-5=______________;(2)求代数式-a2+8a+1的最大值;(3)当a,b为何值时,多项式a2-4ab+5b2+2a-2b+114有最小值,并求出这个最小值.24.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图①所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM∶∠BAN=2∶1.(1)填空:∠BAN=________°.(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,灯A转动几秒,两灯的光束互相平行?(3)如图②,若两灯同时转动,在灯A射线到达AN之前,若两灯射出的光束交于点C,以C为顶点作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC 和∠BCD的数量关系是否发生变化.若不变,请求出其数量关系;若改变,请说明理由.答案一、1.C 2.B 3.C 4.B 5.D 6.D7.B8.A 点拨:去分母得x -2(x -1)=k ,解得x =2-k ,由分式方程的解为正数,得到2-k >0,且2-k ≠1,解得k <2且k ≠1,故选A.9.A 10.C二、11.x ≠3212.4(x +2)(x -2)13.-3 点拨:设多项式的另一个因式为2x+b,则(x-2)(2x+b)=2x2+(b-4)x-2b=2x2+ax-2.所以-2b=-2,解得b=1.所以a=b-4=1-4=-3.14.143°或37°15.116.40° 点拨:如图,设延长OA交CD于T,交CD′于N,延长D′C交AB于M,∵CD∥OE,AO⊥OE,∴∠NTD=∠O=90°,∴∠CTN=∠CTA=90°.∴∠DCD′+∠CNT=180°-∠CTN=90°.∵CD′⊥AB,∴∠2=90°,∴∠CNT+∠1=90°,∴∠1=∠DCD′.∵∠BAO=2∠B,∴180°-∠1=2∠B,∴180°-∠1=2(360°-90°-∠1-∠BCD),∴2∠BCD+∠1=360°,∴2∠BCD+∠DCD′=360°.又∵∠BCD-∠DCD′=120°,三、17.解:(1)原式=-1-14+1=-14.(2)原式=9-4a 2.18.解:(1)方程的两边同乘(x -3),得x -4(x -3)=3,化简,得3x =9,解得x =3,经检验,x =3是增根,原分式方程无解.(2)原式=a -1(a +2)(a -2)÷a +2-3a +2=a -1(a +2)(a -2)·a +2a -1=1a -2.∵{a +2≠0,a -2≠0,a -1≠0,∴a ≠-2,a ≠2,a ≠1.当a =0时,原式=10-2=-12.(或当a =-1时,原式=1-1-2=-13)19.解:(1)∵AD ∥BC ,又∵∠1=∠2,∴∠2=60°.∵FC ⊥CD ,∴∠DCF =90°.∴∠BCF =90°-60°=30°.(2)DE ∥AB .理由:∵AD ∥BC ,∴∠ADC +∠2=180°.∵∠2=60°,∴∠ADC =120°.∵DE 是∠ADC 的平分线,∴∠ADE =12∠ADC =12×120°=60°.又∵∠1=60°,∴∠1=∠ADE ,∴DE ∥AB .20.解:(1)设口罩的单价为x 元,酒精湿巾的单价为y 元,依题意得{3x +2y =21,5x +y =28,解得{x =5,y =3.∴口罩的单价为5元,酒精湿巾的单价为3元.(2)设小明购买口罩m 包,酒精湿巾n 包,则5m +3n =60,∴m=12-35 n,∵m,n都取正整数,∴{m=9,n=5或{m=6,n=10或{m=3,n=15.∴小明有3种购买方案:①购买口罩9包,酒精湿巾5包;②购买口罩6包,酒精湿巾10包;③购买口罩3包,酒精湿巾15包.21.解:(1)16频数直方图补充如下:(2)126(3)1-25%-20%-8%=47%,2 000×47%=940(名).答:估计成绩优秀的学生有940名.22.解:(1)设B工程公司单独建设完成此项工程需要x天,根据题意,得45180+54180+54x=1,解得x=120.经检验,x=120是所列方程的根,且满足题意.答:B工程公司单独建设完成此项工程需要120天.(2)由题意,得m180+n120=1,化简,得2m+3n=360,∴n=120-2 3 m.∵m<50,n<90,且m,n均为正整数,∴m=48,此时n=120-23×48=88.答:A,B两个工程公司各建设了48天和88天.23.解:(1)(m+1)(m-5)点拨:m2-4m-5=m2-4m+4-9=(m-2)2-32=(m+1)(m-5).(2)∵-a2+8a+1=-(a2-8a+16-16)+1=-(a-4)2+17≤17,∴当a=4时,-a2+8a+1的值最大,最大值是17.(3)a2-4ab+5b2+2a-2b+114=(a-2b)2+2(a-2b)+1+b2+2b+74=(a-2b+1)2+(b+1)2+34≥34.取等号时,有{a-2b+1=0,b+1=0,解得{a=-3,b=-1.所以当a=-3,b=-1时,多项式有最小值,这个最小值为3 4 .24.解:(1)60(2)设灯A转动t秒,两灯的光束互相平行.①当0<t<90时,如图①,灯A射出的光束交PQ于C,灯B射出的光束交MN于D.∵PQ∥MN,∴∠PBD=∠BDA.∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD.∴2t=1·(30+t),解得t=30.②当t=90时,易得两灯的光束不平行.③当90<t<150时,如图②,灯A射出的光束交PQ于C,灯B射出的光束交MN于D.∵PQ∥MN,∴∠PBD+∠BDA=180°.∵AC∥BD,∴∠CAN=∠BDA.∴∠PBD+∠CAN=180°.∴1·(30+t)+(2t-180)=180,解得t=110.综上所述,当灯A转动30秒或110秒时,两灯的光束互相平行.(3)∠BAC和∠BCD的数量关系不会变化.设灯A射线转动时间为m秒,∵∠CAN=(180-2m)°,∴∠BAC=60°-(180-2m)°=(2m-120)°.由题易得∠ABP=120°,∴∠ABC=(120-m)°,∴∠BCA=180°-∠ABC-∠BAC=(180-m)°,∵∠ACD=120°,∴∠BCD=120°-∠BCA=120°-(180-m)°=(m-60)°,∴∠BAC=2∠BCD.。

最新浙教版七年级数学下册期末测试题及答案

最新浙教版七年级数学下册期末测试题及答案

CBA 最新浙教版七年级数学下册期末测试题及答案班级___________ 姓名___________ 成绩_______一、选一选(每小题有4个选项,其中有且只有一个正确,请把正确选项的编码填入答题卷的相应空格内,每小题3分,共30分)1.下列各组数不可能组成一个三角形的是………………………………………()(A)3,4,5 (B)7,6,6 (C)7,6,13 (D)175,176,177 2.已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是()(A)3.5×104米(B)3.5×104-米(C)3.5×105-米(D)3.5×106-米3.如图,由ABC∆平移得到的三角形有几个……()(A)3 (B)5(C)7 (D)154.小马虎在下面的计算中只做对了一道题,他做对的题目是…………………………………………………()(A)7613a a a+=(B)4267aaa=⋅(C)4267)(aa=(D)6767=÷aa5.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是………………………………………()(A)第一张(B)第二张(C)第三张(D)第四张6.从1、2、3、4四个数中任意取两个求和,其结果最有可能是…………………()(A)3 (B)4 (C)5 (D)67.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了……………………………………………………()(A)①(B)②(C)③(D)④8.方程组⎩⎨⎧=+=-13432yxyx的解是………………………………………………………()(A)⎩⎨⎧-==11yx(B)⎩⎨⎧-=-=11yx(C)⎩⎨⎧==12yx(D)⎩⎨⎧-=-=72yx9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七下作业检测数学试题卷2014.3.20
温馨提示:
1. 本试卷分试题卷和答题卷两部分. 满分120分, 考试时间90分钟.
2. 答题时, 应该在答题卷指定位置填写学号、姓名。

3. 所有答案都必须做在答题卷标定的位置上, 请务必注意试题序号和答题序号相对应. 一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)
1.观察如右图所示的长方体,与棱AB 平行的棱有( ) A 、1条 B 、2条 C 、3条 D 、4条 2.下列方程中是二元一次方程的是( ) A .x=
1y +1 B .xy+2=0 C .2
x
+y=1 D .x+2y=z 3. 已知1
1
x y =⎧⎨=-⎩是二元一次方程23x ay -=的一个解,那么a 的值为( )
A 、3
B 、1
C 、-3
D 、-1
4.如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )
5.如图所示,在下列四组条件中,能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠ABD=∠BDC C.∠3=∠4 D.∠BAD+∠ABC=180° 6. 二元一次方程72=+y x 的正整数解有( ) A 、1组 B 、2组 C 、3组 D 、4组
7、已知方程组53255451x y x y ax y x by +=-=⎧⎧⎨⎨
+=+=⎩⎩
与 有相同的解,则a ,b 的值为( ) A .14614
(2622)
a a a a B C D
b b b b ==-=-=⎧⎧⎧⎧⎨

⎨⎨
==-==⎩⎩⎩⎩ 8.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )
A .20°
B .25°
C .30°
D .35° 9.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A 500
B 600
C 750
D 850
10.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )
A.5
B.4
C.3
D.2 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)
11.请写出一个解为21x y =⎧⎨=-⎩
的二元一次方程组: .
12.已知二元一次方程2x+y=1,则用x 的代数式表示y =____________________
13.如图,△OAB 的一边OB 在直线l 上,把△OAB 沿直线l 向右平移2 cm 得到△CDE ,如果CB =1cm ,那么
OE = ▲ cm
14.如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个

长方形的面积为____________
15.已知关于x ,y 的方程组343x y a
x y a +=-⎧⎨-=⎩

其中
-3≤a ≤1,给出下列结论:①5
1x y =⎧⎨=-⎩

方程组的解;②当a =﹣2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程
4x y a +=-的解. 其中正确的是
16.一副三角板按右图所示叠放在一起,若固定△AOB ,将△ACD 绕着公共顶点A ,按顺时针方向旋转α度(0180α<<),当△ACD 的一边与△AOB 的某一边平行时,相应的旋转角α的值是 ▲ . 三. 全面答一答 (本题有8个小题, 共66分)
解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.
17.(本题6分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠1=∠2,
∠3=∠4,则∠A =∠F ,请说明理由. 解:∵∠1=∠2(已知)
∠2=∠DGF ( ▲ ) ∴∠1=∠DGF ∴BD ∥CE ( ▲ )
∴∠3+∠C =180º( ▲ ) 又∵∠3=∠4(已知) ∴∠4+∠C =180º
∴ ▲ ∥ ▲ (同旁内角互补,两直线平行) ∴∠A =∠F ( ▲ )
18. (本题8分) 用适当方法解下列方程组 (1)124x y y x +=⎧⎨
=+⎩ (2)435,
22x y x y -=⎧⎨-=⎩
19.(本题8分)解方程组:
(1)1323
328
x y x y +⎧+=⎪⎨⎪-=⎩ (2) ⎩⎪⎨⎪⎧x +y +z =26, ①x -y =1, ②2x -y +z =18. ③ 20.(本题6分)如图,D 、E 分别是AC 、AB 上的点,∠ADE=40°,∠
C=40°,
∠A=60°
(1) DE 与BC 平行吗?请说明理由; (2) 求∠B 的度数。

21.(本题8分)在解关于x ,y 的方程组278ax by cx y +=⎧⎨
-=⎩
时,老师告诉同学们
正确的解是32x y =⎧⎨=-⎩,小明由于看错了系数c ,因而得到的解为2
2
x y =-⎧⎨=⎩,试求a+b+c 的值.
22.(本8分)如图,A 、B 、C 三点在同一直线上,∠1=∠2, ∠3=∠D ,试判断BD 与CF 的位置关系,并说明理由.
23. (本题10分)如图,AB ∥CD,分别探讨下面四个图形中∠APC 与∠PAB,∠PCD 的关系,然后从所得的关系中任意选取一个加以说明.
(1)
P
D
C
B
A (2)
P
D C B
A
(3)
P C B
A
(4)
P
D
C B
A
24、(本题12分)某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进
行试生产。

他们购得规格是170cm ×40cm 的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材。

如图1所示,(单位:cm ) (1)列出方程(组),求出图甲中a 与b 的值。

(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,做成图乙的竖式与横式两种无盖..
礼品盒。

①两种裁法共产生A 型板材 张,B 型板材 张; ②设做成的竖式无盖..礼品盒x 个,横式无盖
礼品盒的y 个,根据题意完成表格:
C
③做成的竖式和横式两种无盖礼品盒总数
..无盖礼品盒可以做
..最多是个;此时,横式
个。

(在横线上直接写出答案,无需书写过程)
七下作业检测数学答题卷2014.3.20
一、选择题(本题有10小题,每小题3分,共30分.)
二、填空题(本题有6小题,每小题4分,共24分)
11. 12. y= 13.
14. 15. 16.
三、解答题(本题有8小题,共66分)
19.(1)
1
3
23
328
x y
x y
+

+=


⎪-=

(2)
⎩⎪

⎪⎧
x+y+z=26,①
x-y=1,②
2x-y+z=18. ③
20.(1)(2)
21、
22、
七下作业检测数学答案2014/03/20
一、选择题(本题有10小题,每小题3分,共30分.)
二、填空题(本题有6小题,每小题4分,共24分) 11. 略(答案不唯一) 12. y =
2
1
5-x 13. 5 14. 4002cm 15. ②③ 16. . 30°,45°,75°,135°或165° 三、解答题(本题有8小题,共66分) 17.(6分,每空一分) (对顶角相等)、(同位角相等,两直线平行)、(两直线平行,同旁内角互补)、DF ∥AC (两直线平行,内错角相等)
18.(8分,每题4分)(1)12x y =-⎧⎨=⎩ (2)1,21
x y ⎧
=⎪
⎨⎪=-⎩
19. (8分,每题4分) (1) 4
2x y =⎧⎨=⎩ (2) ⎩⎪⎨⎪⎧x =10,y =9,z =7.
20. (6分)解:(1)DE ∥BC (1分)理由如下:
∵∠ADE=40°,∠C=40°∴∠ADE=∠C (1分)
∴DE ∥BC (1分) (2)∠B=80°(3分) 21.
(8分) -2
22.(8分) BD ∥CF 理由如下:
∵∠1=∠2,∴AD ∥BF ,∴∠D =∠DBF . ∵∠3=∠D ,∴∠DBF =∠3,∴BD ∥CF . 23、(10分)略 24、(本题12分)
210170230170...........................(2)6040..................................(1)a b a b a b a ++=⎧⎨
++=⎩=⎧⎨
=⎩∴(1)解:由题意得:
分解得:分的值为60,b 的值为40。

.....(1分)
C
(2)① 64 , 38…………………………(2分)
② 2y…………………………………………(1分)
③ 20 ……………………………(1分)
16或17或18………………(4分)
初中数学试卷。

相关文档
最新文档