第十五章 整式的乘除与因式分解复习测试

合集下载

完整版初二第15章整式的乘除与因式分解综合复习测试3及答案

完整版初二第15章整式的乘除与因式分解综合复习测试3及答案

第十五章 整式的乘除与因式分解综合复习测试一、选择题1、以下计算正确的选项是()A 、3x - 2x = 1B 、 3x+2x=5x 2C 、 3x ·2x=6xD 、 3x - 2x=x 2、如图,阴影部分的面积是()A 、 7xyB 、 9xyC 、 4xyD 、 2xy第2题图223、以下计算中正确的选项是()A 、2x+3y=5xyB 、 x ·x 4=x 4C 、 x 8÷x 2=x 4D 、(x 2y ) 3=x 6y 34、在以下的计算中正确的选项是()A 、2x + 3y = 5xy ;B 、( a + 2)(a - 2)= a 2+4;C 、 a 2?ab = a 3b ;D 、( x -3) 2= x 2+ 6x +9 5、以下运算中结果正确的选项是()A 、 x 3 ·x 3 x 6 ;B 、 3x 2 2x 2 5x 4 ;C 、 ( x 2 ) 3 x 5 ;D 、 (x y)2x 2 y 2 .6、以下说法中正确的选项是( )。

A 、 t不是整式; B 、3x 3 y 的次数是 4; C 、 4ab 与 4xy 是同类项; D 、1是单项式2y7、 ab 减去 a 2ab b 2 等于 ( )。

A 、a 22ab b 2 ;B 、 a 2 2ab b 2 ; C 、 a 2 2ab 8、以下各式中与 a -b - c 的值不相等的是( )A 、 a -( b+c )B 、 a -( b -c )C 、( a - b ) +(- c )9、已知 x 2+kxy+64y 2 是一个圆满式,则k 的值是( )A 、 8B 、 ±8C 、16D 、±16 10、以以以下列图( 1),边长为 a 的大正方形中一个边长为 b 的小正方形,小明将图( 1)的阴影部分拼成了一个矩形,如图( 2)。

这一过程能够考证( )A 、 a 2+b 2- 2ab=(a - b)2 ;B 、a 2+b 2 +2ab=(a+b)2 ;C 、 2a 2- 3ab+b 2=(2a - b)(a - b) ;D 、a 2-b 2=( a+b) (a - b) 二、填空题32;(2)计算: ( 3a 3 )211、(1)计算: ( x) ·x12、单项式 3x 2 y n 1z 是对于 x 、 y 、 z 的五次单项式,则 nb 2 ;D 、 a 2 2ab b 2D 、(- c )-( b - a )a abb图1图2(第 10题图)a 2.;13、若 x 24x 4 (x2)( x n) ,则 n_______14、当 2y –x=5 时, 5 x 2 y 23 x 2 y60 =;15、若 a 2+ b 2= 5,ab = 2,则 (a + b)2=。

数学八年级上人教新课标第十五章整式的乘除与因式分解单元测试题

数学八年级上人教新课标第十五章整式的乘除与因式分解单元测试题

第十五章 整式的乘除与因式分解 单元测试题一、选择题(每小题3分,共36分)1.下列各单项式中,与42x y 是同类项的为( ) (A) 42x . (B) 2xy . (C) 4x y . (D)232x y 2.()()22x a xax a -++的计算结果是( )(A) 3232x ax a +-.(B) 33x a -.(C) 3232x a x a +-.(D)222322x ax a a ++- 3.下面是某同学在一次测验中的计算摘录 ①325a b ab +=; ②33345m n mn m n -=-;③3253(2)6x x x -=-g; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )(A)1个. (B)2个. (C)3个. (D)4个.4.小亮从一列火车的第m 节车厢数起,一直数到第2m 节车厢,他数过的车厢节数是( ) (A)23m m m +=. (B)2m m m -=. (C)211m m m --=-.(D)211m m m -+=+. 5.下列分解因式正确的是( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-.6.如图:矩形花园ABCD 中,a AB =,b AD =,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。

若c RS LM ==,则花园中可绿化部分的面积为( )DQ P 铜陵第七中学 初二( )班 姓名: 编号:装 订 线(A)2bc ab ac b -++. (B)2a ab bc ac ++-. (C)2ab bc ac c --+. (D)22b bc a ab -+-.二、填空题(每小题4分,共28分)7.(1)当x 时,()04x -等于 .(2)()()2002200320042 1.513⎛⎫⨯÷-= ⎪⎝⎭8.分解因式:2212a b ab -+-=9.如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示,则打包带的长至少要 (单位:mm) (用含z 、y 、z 的代数式表示)(第9题)10.如果()()22122163a b a b +++-=,那么a b +的值为 .11.下表为杨辉三角系数表的一部分,它的作用是指导读者按规律写出形如()na b +(n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出()4a b +展开式中所缺的系数.()a b a b +=+()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++则()4432234a b a a b a b ab b +=++++ … … … …12.某些植物发芽有这样一种规律;当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 (精确到0.001)第×年 1 2 3 4 老芽数Za3a5a13.某体育馆用大小相同的长方形木板镶嵌地面,第1次铺2块,如图(1);第2次把第1次铺的完全围起来,如图(2);第3次把第2次铺的完全围起来,如图(3);….依此方法,第”次铺完后,用字母”表示第”次镶嵌所使用的木板数——(1)(2)(3)三、解答题14.(10分)计算:()22232()3x x y xy y x x y x y⎡⎤---÷⎣⎦15.(18分)已知:()222,2m n n m m n=+=+≠,求:332m mn n-+的值.16.(18分)某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理;第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理销售结果如下表:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利?测试题题答案l. C ;2.B ;3.B ;4.D ;5.B ;6.C ; 7.(1)≠4,1,(2)32.8.()()11a b a b ---+.9.(2x+4y+6z)mm . 10.士4.11.4.6.4.12.0.618.提示:由题意易知,后一年的老芽数是前一年老芽数和新芽数的和,后一年的新芽数是前一年的老芽数.所以第8年的老芽数为21a ,新芽数为13a ,总芽数为34a ,老芽数与总芽数的比值约为0·618. 13.()221242n n n n -=-.提示:第1次铺有2=1×2块; 第2次铺有12=3×4块; 第3次铺有30=5×6块; ……第n 次铺完后共有()()221242n n n n -=-块. 14.原式2233xy =- 15.解:∵332(2)2(2)2()m mn n m n mn n m m n -+=+-++=+ ∵22(2)(2)m n n m n m -=+-+=- 又∵22()()m n m n m n -=+- ∴()()m n m n n m +-=- ∵m n ≠∴1m n +=- 故原式=2(1)2⨯-=-.16.解(1)设原价为x ,则跳楼价为2.50.70.70.7x ⨯⨯⨯所以跳楼价占原价的百分比为32.50.785.75%x x ⨯÷=.(2)原价出售:销售金额100x =新价出售: 销售金额32.50.710 2.50.70.740 2.50.750x x x =⨯⨯+⨯⨯⨯+⨯⨯109.375x =∵109.375100x x >, ∴新方案销售更盈利.。

第15章 整式的乘除与因式分解期末复习卷(含答案)

第15章 整式的乘除与因式分解期末复习卷(含答案)

- 1 -第十五章 整式的乘除与因式分解期末复习卷一、选择题(每题5分,共30分)1.下列计算正确的是( )A.3412a a a ⋅=B.3362a a a +=C.330a a ÷=D.2353515x x x ⋅=2.一种计算机每秒可做8410⨯次运算,它工作3310⨯秒运算的次数为( ) A.241210⨯ B.121.210⨯ C.121210⨯D.81.210⨯ 3.22()()x a x ax a -++的计算结果是( )A.3232x ax a +-B.33x a -C.3232x a x a +-D.322322x ax a x a ++- 4.下列分解因式正确的是( )A.2246(46)a b ab ab a b +=+B.4222()()a a a a a a -=+-C.22925(53)(53)a b b a b a -+=+-D.22224(2)x xy y x y ++=+5.若2216x mx ++是完全平方式,则m 的值等于( )A.2或-2B.2C.4D.4或-46.已知多项式2x ax b ++与223x x --的乘积中不含32x x 与的项,则a 、b 的值为( )A.2,7a b ==B.2,7a b =-=-C.2,7a b =-=D.2,7a b ==-二、填空题(每题5分,共30分)7.已知3,4a b c d -=+=,则()()b c a d +--= .8.计算42m n ÷= .(结果用含m ,n 的式子表示)9.在实数范围内因式分解:4244a a -+= .10.已知代数式242a b +-的值为3,则代数式2285a b +-的值是 .11.观察下列各式:222222151(11)1005252(21)1005353(31)1005=⨯+⨯+=⨯+⨯+=⨯+⨯+⋅⋅⋅⋅⋅⋅依此规律,第n 个等式(n 为正整数)为 .12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),那么通过计算两个阴影部分的面积,可以验证成立的公式是 .三、解答题(共40分)13.(12分)计算:(1)32232(2)()12a b a b ⋅÷(2)24()(2)(2)a b a b a b +-+-- 2 - 14.(8分)(07温州)给出三个多项式:2221111,31,222x x x x x x +-++-,请你选择其中两个进行加法运算,并把结果进行因式分解.15.(10分)一条水渠其横断面为梯形,如图所示,根据图中的长度,用含a b 、的多项式表示横断面面积S ,并计算当 2.1,0.9a b ==时面积S 的值.16.(10分)某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第一次降价30%,标出“亏本价”,第二次再降价(1) (2) 该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利?。

第15章《整式的乘除与因式分解》单元水平测试(含答案)

第15章《整式的乘除与因式分解》单元水平测试(含答案)

第十五章 整式的乘除与因式分解单元测试(时间:100分钟 满分:100分)度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每小题2分,共20分) 1.下列判断中正确的是( ).A .bc a 23与2bca -不是同类项 B .52n m 不是整式C .单项式23y x -的系数是1- D .2253xy y x +-是二次三项式2.下列计算正确的是( ).A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷ 3.已知()()2222816-=+-x m x x ,则m 的值为( ). A .8 B .16 C .32 D .64 4.下列因式分解中,结果正确的是( ).A .()23222824m n n n m n -=- B .()()2422x x x -=+-C .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭D .2299(33)(33)a b a b a b -=+- 5.计算11(13)(31)9()()33x x x x +-+-+的结果是( ). A .2182-xB .2182x -C .0D .28x6.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( ). A .()1+x B .()1+-x C .x D .()2+-x 7.两个三次多项式相加,结果一定是( )A 、三次多项式B 、六次多项式C 、零次多项式D 、不超过三次的多项式8.若a -b =8,a 2+b 2=82,则3ab 的值为( )A 、9B 、-9C 、27D 、-279.对于任何整数..n ,多项式22)3()7(--+n n 的值都能( ). A .被24n +整除 B .被2n +整除 C .被20整除 D .被10整除和被24n +整除 10.(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A.p=0,q=0B.p=3,q=1C.p=–3,–9D.p=–3,q=1 二、填空题(每小题3分,共30分) 11.单项式213a ba b xy +--与43x y 是同类项,则2a b +的值为 .12.在括号中填入适当的数或式子:87()()( )x y y x --=-=7()( )x y -. 13.与21a -和为2741a a -+的多项式是___________________. 14.(1)19______3n n+÷=,(2)20072008120.4_________2⎛⎫-⨯= ⎪⎝⎭.15.用完全平方公式填空:2)(9)(124y x y x -+--=2____)(_________.16.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是510;摩托车发出的声音是110分贝,它表示声音的强度是1110,那么摩托车的声音强度是说话声音强度的_______倍。

初中数学九年级下册-数学:第15章整式的乘除与因式分解整章测试

初中数学九年级下册-数学:第15章整式的乘除与因式分解整章测试

第十五章 整式的乘除与因式分解测试一、填空题(每题2分,共32分)1.2221(2)2xy x y = . 2.3(2)a a b c --+= . 3.(2)(2)m b b m -+= .4.2007200831()(1)43⨯-= .5.++xy x 1292 =(3x + )26._________________,,6,4822===+=-y x y x y x 则. 7.已知:________1,5122=+=+aa a a . 8.(________)749147ab aby abx ab -=+--.9.多项式5545y y x x n +-是五次三项式,则正整数n 可以取值为 .10.分解因式:a a 43-= ,222221y xy x +-= .11.如果=-+=-k a a k a 则),21)(21(312 .12.若===+-+-b a b b a a ________,,02910422则 .13.正方形面积为)0,0(2212122>>++b a y xy x 则这个正方形的周长是 .14.写一个二项式,使它可以先提公因式,•再运用公式来分解,•你写的二项式是_________,因式分解的结果是___ ___.15.已知8,6x y x y +=-=,求代数式2222x y x y ---= .16.如图1在边长为a 的正方形中,挖掉一个边长为b 的小正方形(a>b ),把余下的部分拼成一个矩形,如图2,通过计算两个图形(阴影部分)的面积,•可以验证一个等式,则这个等式是___ __.二、解答题(共68分)17.(4分)计算:2(1)(23)a a a +-+.18.(4分)计算:25(2)(31)2(1)(5)y y y y y --+-+-.19.(4分)因式分解:222510m mn n -+.20.(4分)因式分解:212()4()a b x y ab y x ---.21.(5分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=.22.(5分)已知:2226100x x y y ++-+=,求,x y 的值.第16题图1 第16题图223.(5分)已知x (x -1)-(x 2-y )=-2.求222x y xy +-的值.24.(6分)已知2410a a --=,求(1)1a a -;(2)21()a a+.25.(6分)一个长80cm ,宽60cm 的铁皮,将四个角各裁去边长为bcm 的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.26.(6分)某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)27.(7分)本市出租车的收费标准为:3千米以内(含3千米)收费5元,超过3千米的部分每千米收费1.20元(不足1千米按1千米计算),另加收0.60元的返空费. 用x 表示出应收费y 元的代数式; (1)设行驶路程为千米(x ≥3且取整数),(2)当收费为10.40元时,该车行驶路程不超过多少千米?路程数在哪个范围内?x28.(12分)由多项式的乘法法则知:若2()()x a x b x px q ++=++,则,p a b q a b =+=;反过来2()().x px q x a x b ++=++要将多项式2x px q ++进行分解,关键是找到两个数a 、b ,使,,a b p a b q +==如对多项式232x x -+,有3, 2.1,2,p q a b =-==-=-此时(1)(2)3,(1)(2)2,-+-=---=所以232x x -+可分解为(1)(2),x x --即232(1)(2)x x x x -+=--.(1)根据以上分填写下表:(2)根据填表,还可得出如下结论:当q 是正数时,应分解成两个因数a 、b 号,a 、b 的符号与 相同;当q 是负数时,应分解成的两个因数a 、b 号,a 、b 中绝对值较大的因数的符号与 相同.(3)分解因式.212x x --= ;276x x -+= .。

新人教版八年级上第十五章整式的乘除与因式分解综合测评题

新人教版八年级上第十五章整式的乘除与因式分解综合测评题

第15章 整式的乘除与因式分解 综合测评题一、耐心选一选,你会开心(每题3分,共30分)1、下列各式:x 2·x 4,(x 2)4,x 4+x 4,(-x 4)2,与x 8相等的有( )A 、1个B 、2个C 、3个D 、 4个2、计算200420032002)1(5.132-⨯⨯⎪⎭⎫ ⎝⎛的结果为( ) A 、32 B 、-32 C 、23 D 、-23 3、若n 为正整数,且a 2n =7,(3a 3n )2-4(a 2)2n 的值为( ) A 、837 B 、2891 C 、3283D 、1225 4、下列各式:①2a 3(3a 2-2ab 2),②-(2a 3)2(b 2-3a ),③3a (2a 4-a 2b 4),④-a 4(4b 2-6a )中相等的两个是( )A 、①与②B 、②与③C 、③与④D 、④与①5、下列各式可以用平方差公式计算的是( )A 、(x +y )(x -y )B 、(2x -3y )(3x +2y )C 、(-x -y )(x +y )D 、(-a 21+b )(a 21-b ) 6、下列计算结果正确的是( )A 、(x +2)(x -4)=x 2-8B 、(3xy -1)(3xy +1)=3x 2y 2-1C 、(-3x +y )(3x +y )=9x 2-y 2D 、-(x -4)(x +4)=16-x 2 7、如果a =2000x +2001,b =2000x +2002,c =2000x +2003,那么a 2+b 2+c 2-ab -bc -ac 的值为( )A 、0B 、1C 、2D 、38、已知x 2+y 2-2x -6y =-10,则x 2005y 2的值为( )A 、91B 、9C 、1D 、999、若x 2-ax -1可以分解为(x -2)(x +b ),则a +b 的值为( )A 、-1B 、1C 、-2D 、210、若a 、b 、c 为一个三角形的三边,则代数式(a -c )2-b 2的值为( )A 、一定为正数B 、一定为负数C 、可能为正数,也可能为负数D 、可能为零二、精心填一填,你会轻松(每题4分,共32分)11、若a +3b -2=0,则3a ·27b = .12、已知x n =5,y n =3,则(xy )2n = .13、已知(x 2+nx +3)(x 2-3x +m )的展开式中不含x 2和x 3项,则m = ,n = .14、(-a -b )(a -b )=-[( )(a -b )]=-[( )2-( )2]= .15、若|a -n |+(b -m )2=0,则a 2m -b 2n = .16、若(m +n )2-6(m +n )+9=0,则m +n = .17、观察下列各式:(x -1)(x +1)=x 2-1.(x -1)(x 2+x +1)=x 3-1.(x -1)(x 3+x 2+x +1)=x 4-1.依据上面的各式的规律可得:(x -1)(x n +x n -1+……+x +1)= .18、(1-)611)(511)(411)(311)(2122222----……(1-)1011)(9122-= ..三、细心做一做,你会成功(共60分)19、分解因式:(1)8(a -b )2-12(b -a ).(2)(a +2b )2-a 2-2ab .(3)-2(m -n )2+32(4)x (x -5)2+x (x -5)(x +5)20、计算: (1)20062005200520032005220052323-+-⨯- (2)212122+-+323222+-+……+100991009922+-21、先化简,再求值已知x(x-1)-(x2-y)=-2,求222yx-xy的值.22、如图,边长为a的正方形内有一个边长为b的小正方形.(1)请计算图1中阴影部分的面积;(2)小明把阴影部分拼成了一个长方形,如图2,这个长方形的长和宽分别是多少?面积又是多少?23、观察下列各式,你会发现什么规律?3×5=15,而15=42-1.5×7=35,而35=62-1.……11×13=143,而143=122-1.请你将猜想到的规律用只含有一个字母的式子表示出来,并直接写出99×101的结果?24、已知△ABC三边长分别为a、b、c,且a、b、c满足等式3(a2+b2+c2)=(a+b+c)2,试判断△ABC的形状.25、阅读材料,回答下列问题:我们知道对于二次三项式222x ax a ++这样的完全平方式,可以用公式将它分解成2()x a +的形式,但是,对于二次三项式2223x ax a +-就不能直接用完全平方公式,可以采用如下方法:2222222323x ax a x ax a a a +-=++--=22()(2)x a a +-=(3)()x a x a +-.(1)像上面这样把二次三项式分解因式的数学方法是__________________.(2)这种方法的关键是______________________________.(3)用上述方法把2815a a -+分解因式.26、如图,2009个正方形由小到大套在一起,从外向里相间画上阴影,最外面一层画阴影,最里面一层画阴影,最外面的正方形的边长为2009cm ,向里依次为2008cm ,2007cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?参考答案:一、1.B 2.C 3.B 4.D 5.A 6.D 7.D 8.B 9.A 10.B二、11.3a +3b =32=9 12.225 13.m =6,n =314.依次填:a +b ,a 、b ,b 2-a 2 15.mn (n -m ) 16.2或4 17.x n +1-1 18.2011 三、19、解:(1)8(a -b )2-12(b -a )=4(a -b )[2(a -b )+3]=4(a -b )(2a -2b +3).(2)(a +2b )2-a 2-2ab =(a +2b )2-a (a +2b )=(a +2b )[(a +2b )-a ]=2b (a +2b ).(3)-2(m -n )2+32=-2[(m -n )2-16]=-2(m -n +4)(m -n -4).(4)x (x -5)2+x (x -5)(x +5)= x (x -5)[(x -5)+(x +5)]=2x 2(x -5).20、 解:(1) ()20062003)12005(2006)12005(20032006200620052003200320052006)12005(20052003220052005222222=--=-⨯-⨯=-+--. (2)212122+-+323222+-+…+100991009922+- =()+++-+++-32)32)(32(21)21)(21…+10099)10099)(10099(++- =(1-2)+(2-3)+……+(99-100)=1-100=-99.21、解:222y x +-xy =2)(22222y x xy y x -=-+,将x (x -1)-(x 2-y )=-2去括号整理得:y -x =-2,即x -y =2,将其代入2)(2y x -得该式等于2.即当x (x -1)-(x 2-y )=-2时,222y x +-xy 的值为2. 22、(1)由图中的数据可得:图中阴影部分的面积为:a 2-b 2.(2)由图可得:该长方形的长为:a +b ,又因其面积为a 2-b 2.且a 2-b 2=(a +b )(a -b ),由此可得:该矩形的宽为:a -b .23、观察所给的等式不难发现:上面各式的左边的两个数为连续奇数,而等号的右边的第一个数的底恰好比左边的第一个数大1,由此得出上面各式的规律为:n (n +2)=(n +1)2-1.24、解:因3(a 2+b 2+c 2)=(a +b +c )2展开后可变为:2(a 2+b 2+c 2)=2(ab +bc +ac ),即2(a 2+b 2+c 2)-2(ab +bc +ac )=0,所以该式进一步可变为:(a -b )2+(b -c )2+(a -c )2=0,由此可得:a =b =c ,所以该三角形为等边三角形.25、(1)配方法;(2)凑成完全平方式;(3)2815a a -+=28161a a -+-=22(4)1a --=(3)(5)a a --。

第15章《整式的乘除与因式分解》单元测试题(含答案)[

第15章《整式的乘除与因式分解》单元测试题(含答案)[

《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。

A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。

第15章 整式的乘除与因式分解测试卷(含答案)

第15章 整式的乘除与因式分解测试卷(含答案)

第15章 整式的乘除与因式分解 测试卷注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.若32144mnx y x y x ÷=,则m 、n 满足条件的取值为 ( ). A .m =6,n =1 B .m =5,n =1 C .m =5,n =0 D .m =6,n =0 2.下列各式可以用平方差公式的是( ).A .(4)(4)a c a c -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D . 11()()22x y x y --+ 3.下列各式中是完全平方公式的是( ).A .224a x + B .2244x ax a +-- C .2444x x ++ D . 2412x x ++-4.在(1)623[()]a a -⋅-;(2)34)(a a -⋅;(3)2332)()(a a ⋅-;(4)43()a --中,计算结果为12a -的有( ).A .(1)和(3)B .(1)和(2)C .(2)和(3)D .(3)和(4)5.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( ).A .()()a c b a c b +--+⎡⎤⎡⎤⎣⎦⎣⎦B .()()a b c a b c -++-⎡⎤⎡⎤⎣⎦⎣⎦C .()()b c a b c a +--+⎡⎤⎡⎤⎣⎦⎣⎦D .()()a b c a b c --+-⎡⎤⎡⎤⎣⎦⎣⎦ 6.下列多项式相乘的结果为1242--x x 的是( ).A .)4)(3(-+x xB .)6)(2(-+x xC .)4)(3(+-x xD .)2)(6(-+x x 7.计算24(1)(1)(1)(1)x x x x -++-+的结果是( ).A .0B .2C .-2D .-5 8. 下列多项式中,含有因式)1(+y 的多项式是( ). A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y9.如图:(如图①)在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ).图 ① 图 ② A . a 2-b 2 =(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )= a 2+ab -2b 210.观察下列等式:170=,771=,4972=,34373=,240174=,…,由此可判断1007的个位数字是( ).A .3B .7C .1D .9二、填空题(本题共4小题,每小题5分,满分20分)11.不等式22(21)(21)x x --+≤2(3)x -的解集是_______________.12.已知2ma =,16nb =,则382m n+=____________.13.已知)3)(8(22q x x px x +-++的展开式中不含2x 项和3x 项,则q p +的值=______.14.如图,从直径是2x y +的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是_______________. 三、(本题共2小题,每小题8分,满分16分) 15.化简:(1)82()()mn mn ÷ (2) )9()15()3(24322y x xy y x -⋅-÷16.用乘法公式计算:(1)49.850.2⨯; (2)2298.四、(本题共2小题,每小题8分,共16分)17.已知x 是有理数,y 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:2()(2)x y y x y -+-.18.利用简便方法计算:222111(1)(1)(1)234--- (22)11(1)(1)910--五、(本大题共2小题,每小题10分,满分20分) 19.因式分解:(1)x x x 2718323+- (2)()222164x x -+20.先化简,再求值:22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦;其中3,2a b 4==-3.13-,, 121.223,,, 1.50-,六、(本题满分12分)21.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求原来正方形的面积. 七、(本题满分12分)22.如图,图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。

整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)小编为大家整理了整式的乘除与因式分解测试题(有答案),希望能对大家的学习带来帮助!要想掌握每一个阶段的内容,重要的是回归课本,将基础知识和定义记牢,再进行解题,不要急于跳入题海,如果一下子就碰到了自己不会的题目就会失去信心。

乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题。

因式分解是解析式的一种恒等变形,因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识。

因式分解的方法一般包括提公因式法、公式法、分组分解法、十字相乘法、待定系数法等第十五章整式的乘除与因式分解阶段测试(有答案)整式的乘法测试题(总分:100 分时间:60 分钟)班级姓名学号得分一、填空题(每小题2 分,共28 分)1.计算(直接写出结果)①a•a3=.③(b3)4=.④(2ab)3=.⑤3x2y• =.2.计算:=.3.计算:=.4.( ) =__________.5. ,求=.6.若,求=.7.若x2n=4,则x6n=___.8.若,,则=.9.-12 =-6ab•().10.计算:(2 乘以)乘以(-4 乘以)=.11.计算:=.12.①2a2(3a2-5b)=.②(5x+2y)(3x-2y)=.13.计算:=.14.若小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3 千米以内的收费6 元;3 千米到10 千米部分每千米加收1.3 元;10 千米以上的部分每千米加收1.9 元。

章复习 第15章 整式的乘除与因式分解

章复习  第15章  整式的乘除与因式分解

章复习 第十五章 整式的乘除与因式分解一、整式的乘法1、幂的运算法则⑴同底数幂的乘法.同底数幂相乘,底数______,指数______.即____________(m ,n 都是正整数). 注:三个或三个以上同底数幂相乘时也具有这一性质,如p n m a a a ⋅⋅=______(m ,n ,p 都是正整数).⑵幂的乘方.幂的乘方,底数______,指数______.即____________(m ,n 都是正整数).⑶积的乘方.积的乘方,等于把积的每一个因式____________,再把所得的幂______.即()n ab =______(n 为正整数).幂的运算法则的异同:2⑴单项式与单项式的乘法法则单项式与单项式相乘,把它们的______、____________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注:①此法则可利用乘法交换律、结合律及同底数幂的运算性质推导;②几个单项式的积仍是一个______,其次数等于原来各个单项式的次数之______.⑵单项式与多项式的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的______,再把所得的积______.注:①此法则是由乘法分配律推导的,即m (a +b +c )= ma + mb + mc .②单项式乘多项式,如果单项式不为0,那么结果仍是多项式,积的项数与原多项式的项数相同.⑶多项式与多项式的乘法法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.注:①此法则实质上是将多项式乘多项式转化为单项式与多项式相乘.即:++=++)())((n m a n m b a bn bm an am n m b +++=+)(②使用法则时,应按一定的顺序相乘,避免重项、漏项,要注意“三数及整理”,“三数”即项数、次数、系数;“整理”即合并同类项.3、乘法公式⑴平方差公式两个数的______与这两个数的______的______,等于这两个数的平方差.即:________________________注:平方差公式的特征:①必须是两个二项式相乘;②两因式中的一对数相同,另一对数互为相反数.⑵完全平方公式两数和(或差)的______,等于它们的______,加上(或减去)它们的____________.即: ________________________或________________________注:a 与b 可以是数,也可以是整式.运用乘法公式计算,有时要在式子中添加括号,去括号法则即:()a b c ++=____________,()-+a b c =____________,()--a b c =____________.反过来可得添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号.即:(后两项添括号)a b c ++=____________,a b c --=____________,a b c -+=____________.二、整式的除法1、同底数幂的除法同底数幂相除,底数不变,指数相减.即:____________,n m a ,,0=/都是正整数,并且n m >.注:应用法则时,不要忽略幂的指数为“1”的情况.如a a a =÷2,而不是a a ÷2=)0(202=/=-a a a . 2、零指数幂任何不等于0的数的0次幂都等于______.即:____________.注:①零次幂的底数不能为0,0的零次幂无意义;②a 0不能理解成0个a 相乘,)0(0=/a a 是一种规定,这种规定的合理性可由同底数幂的除法说明:∵m m a a ÷0a a m m ==-,又m m a a ÷=1,∴)0(10=/=a a .3、整式的除法⑴单项式除以单项式.单项式相除,把______与____________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.注:单项式相除的步骤:①将单项式除法“转化”为有理数的除法或同底数幂的除法;②进行有理数或同底数幂的除法运算.⑵多项式除以单项式,多项式除以单项式,先把这个多项式的______除以____________,再把所得的商______.注:此法则是将多项式除以单项式问题转化为单项式除以单项式问题,即:÷+=+am+÷+++÷=÷bmcmba(c).mmammbmcmm三、因式分解1、因式分解⑴概念:把一个多项式化成几个______的______的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注:①因式分解专指多项式的恒等变形;②因式分解的结果必须是几个整式的积的形式.⑵因式分解与整式乘法的关系.因式分解与整式乘法是______方向的变形,它们互为______.2、提公因式法⑴公因式.多项式各项都含有的公共的因式叫做这个多项式各项的公因式.⑵提公因式法.一般地,如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.注:①提公因式法关键是确定公因式,确定公因式的步骤是:(a)取各项系数的______作为公因式的系数,(b)取相同字母____________的积;②公因式可以是单项式,也可以是多项式.3、公式法⑴公式法的概念把乘法公式反过来运用,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做公式法.⑵平方差公式两个数的平方差,等于这两个数的______与这两个数的______的______.即:__________________注:公式中所说的“两个数”是a,b,而不是a2、b2,其中a,b既可以是单项式,也可以是多项式.⑶完全平方公式.两个数的______加上(或减去)这两个数的______的2倍,等于这两个数的______(或______)的______.即__________________注:符合以下特点的多项式才能运用完全平方公式分解因式:是三项式,其中首末两项分别是两个式子(可以是单项式,也可以是多项式)的平方,且这两项的符号相同,中间一项是这两个式子的积的2倍,符号正负均可.*四、公式2()()()++=+++x p x q x p q x pq 、十字相乘法五、典型例题例1 下列数中能整除20062005(8)(8)-+-的是( )A.3B.5C.7D.9例2 若2312a b c ++=,且222a b c ab bc ca ++=++,求23a b c ++的值.例3 分解因式: ⑴214x x -+ ⑵2221a ab b -+-例4 在实数范围内分解因式:44x -.例5 计算:++-+-+- 22222295969798991002212-.注:逆用平方差公式,常常可以简化运算.*例6 如图,D 、E 分别是△ABC 的边BC 和AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等,设BC=a ,AC=b ,AB=c .(1)求AE 和BD 的长;(2)若∠BAC=90°,△ABC 的面积为S .求证:S=AE·BD.第十五章 整式的乘除与因式分解 测试题一、选择题(每小题3分,共24分)1.下列计算中正确的是( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=- 2. ()()22a ax x a x ++-的计算结果是( )A .3232a ax x -+B .33a x -C .3232a x a x -+D .322322a a ax x -++3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷- A .1个 B .2个 C .3个 D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( )A .x 2+3x -1B .x 2+2xC .x 2-1D .x 2-3x+15.是完全平方式的是( )A .412+-x x B .21x + C .1++xy x D .122-+x x 6.把多项式)2()2(2a m a m -+-分解因式等于( )A .))(2(2m m a +-B .))(2(2m m a --C .m (a -2)(m -1)D .m (a -2)(m +1)7.如()m x +与()3+x 的乘积中不含x 的一次项,则m 的值为( )A. –3B. 3C. 0D. 18.若153=x ,53=y ,则y x -3等于( )A .5B .3C .15D .10二、填空题(每空3分,共21分)9.=--+-)32)(32(n n n m ___________. 10.=--2)2332(y x ______________. 11.当x ___________时,()04-x 等于__________.12.若=,,则b a b b a ==+-+-01222. 13.已知31=+a a ,则221aa +的值是 . 三、解答题(共55分)14.计算题(每小题5分,共15分)(1) 22)1)2)(2(xx x x x +-+--((2) ()()[]xy y x y x 222÷--+(3)用简便方法计算:1198992++15.因式分解:(每小题5分,共20分)(1)3123x x - (2)a a a 1812223-+-(3)()()x y b y x a -+-2249; (4)()()122++++y x y x16.先化简,再求值. (10分)2)3)(3()2)(3(2-=-+-+-a a a x x 其中,x =117.(本题10分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.。

八年级数学 第十五章 整式乘除与因式分解测试题 试题

八年级数学 第十五章 整式乘除与因式分解测试题 试题

卜人入州八九几市潮王学校内蒙古达十一中八年级数学第十五章整式乘除与因式分解测试题一、相信你的选择〔每一小题3分,一共24分〕1.以下各单项式中,与y x42是同类项的为〔〕 A.42x B.42xy C.4yx D.yz x 42 2.))((22a ax xa x ++-的计算结果是〔〕 A.3232a ax x -+ B.33a x - C.3232a x a x -+ D.322222a a ax x -++3.下面是某同学在一次作业中的计算摘录:①ab ba 523=+;②n m mn n m 33354-=-;③5236)2(4x x x -=-⋅; ④ab a b a 2)2(423-=-÷;⑤523)(a a =;⑥23)()(a a a -=-÷-其中正确的个数有〔〕A.1个B.2个C.3个D.4个4.以下分解因式正确的选项是〔〕A.)1(23-=-x x x xB.)2)(3(62-+=-+m m m mC.16)4)(4(2-=-+a a aD.))((22y x y x y x -+=+5.假设a 为整数,那么a a+2一定能被〔〕整除 A .2B .3C .4D .56.如图:矩形花园中,,,b AD a AB ABCD ==花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .假设c RS LM ==,那么花园中可绿化局部的面积为〔〕A.2b ac ab bc ++-B.ac bc ab a-++2 C.2c ac bc ab +-- D.ab a bc b -+-227.从边长为a 的正方形中去掉一个边长为b 的小正方形,如图,然后将剩余局部剪后拼成一个矩形,上述操作所能验证的等式是〔〕A .))((22b a b a b a -+=-B .2222)(b ab a b a +-=-C .222()2a b a ab b +=++D .2() a ab a a b +=+8.小亮从一列火车的第m 节车厢数起,一直数到第2m 节车厢,他数过的车厢节数是………………〔〕A.m +2m =3mB.2m -m =mC.2m -m -1=m -1D.2m -m +1=m +1二、试试你的身手〔每一小题4分,一共24分〕9.=-0)4(π;()()=-÷-35a a 10.多项式291x +加上一个单项式后,能成为一个完全平方式,那么加上的单项式可能是.11.分解因式:2294b a -=________________.12.假设〔2a +2b +1〕(2a +2b -1)=63,那么a +b 的值是.13.=-÷⨯200920082007)1()5.1()32(_______. 14.如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下列图,那么打包带的长至少要.〔用含x 、y 、z 的代数式表示〕.三、挑战你的技能〔一共52分〕15.(17分)计算: (题7分;,③题每一小题5分;要用因式法计算) ①y x y x x y xy y xx 232223)]()([÷---②219921100⨯ ③:2,3==n m x x ,求n m x 23+的值16.分解因式(①,②每一小题6分,③题分8分)①2216ay ax -②a a a 1812223-+-③(8分)1222-+-b ab a17.(7分)把20cm 长的一根铁丝分成两段,将每一段围成一个正方形,假设这两个正方形的面积之差是5cm 2,求这两段铁丝的长.18.〔8分〕探究: ...... ①试求122222223456++++++的值 ②判断1222222200620072008++++++ 的值的个位数是几?。

第十五章整式乘除与因式分解全章测试题

第十五章整式乘除与因式分解全章测试题
1 4
4.若a2+(m-3)a+4是一个完全平方式,则m的值应是( C ) C.7或-1 5.下列各分解因式中,错误的是(C )
A.1-9x2=(1+3x)(1-3x)
C.-mx+my=-m(x+y)
B.a2-a+
1 2 ) 2 2b+5ab-b=b(a2+5a-1) D.a
=(a-
6.下列运算正确的是( A.x3+x3=2x6 A.(a-b)2=a2-b2
?
(时间90分钟 满分100分)
一、选择题(本大题有10个小题,每小题3分,共30分) 1.下列说法正确的是( D) A.52a2b的次数是5次; B.x y 3x 3
不是整式;
C.4xy3+3x2y的次数是7次; D.x也是单项式
?
2.下列计算正确的是( D) A. x3 )2 x5 ( B. 6 x3 x 2 C. x3 x3 4 x6 3 x D. x2 )3 x6 ( 3.下列各式:①(a-2b)(3a+b)=3a2-5ab-2b2;②(2x+1)(2x-1)= 4x2-x-1;③(x-y)(x+y)=x2-y2;④(x+2)(3x+6)=3x2+6x+12.其 中正确的有(C ) A.4个 B.3个 A.1或5 B.1 C.2个 D.1个 D.-1
-xy
x(2 x 5) 2 x 2 3x 4 3.解不等式组: ( x 1)( x 3) 8 x ( x 5)( x 5) 2
2 5
25
5 x2 2
4.已知x+y=4,xy=2,求x2+y2+3xy的值

第15章 整式的乘除与因式分解综合复习测试(二)及答案

第15章 整式的乘除与因式分解综合复习测试(二)及答案

第十五章 整式的乘除与因式分解综合复习测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每题3分,共30分)1、44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 2、下列计算正确的是( )A 、22))((y x x y y x -=-+ B 、22244)2(y xy x y x +-=+- C 、222414)212(y xy x y x +-=-D 、2224129)23(y xy x y x +-=-- 3、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+ (4)ab ab ab a b b a =-=--23)2)(3(中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个4、下列各式中,能用平方差公式计算的是( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+-D 、))((b a b a -+- 5、如果:=-==+-222)32,5,0168y x x y xy x 则(且( )A 、425 B 、16625 C 、163025 D 、16225 6、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601 7、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、64 8、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=1 9、对于任何整数m ,多项式9)54(2-+m 都能( )A 、被8整除B 、被m 整除C 、被m -1整除D 、被(2m -1)整除10.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为( )A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、22253z y x +-二、填空题(每题3分,共30分) 11、++xy x 1292=(3x + )212、2012= , 48×52= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档