平行线的性质1教案

合集下载

相交线与平行线教案

相交线与平行线教案

5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

3.情感态度与价值观:培养学生合作交流意识和探索精神。

二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。

浙教版数学七年级下册1.4《平行线的性质》教学设计1

浙教版数学七年级下册1.4《平行线的性质》教学设计1

浙教版数学七年级下册1.4《平行线的性质》教学设计1一. 教材分析《平行线的性质》是浙教版数学七年级下册1.4节的内容,主要包括平行线的传递性质、同位角、内错角和同旁内角的概念及它们之间的关系。

本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了平行线的概念,但对平行线的性质和角度关系还不够了解。

学生的空间想象力有所不同,逻辑思维能力也各有差异。

因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、操作、思考、交流和总结,逐步掌握平行线的性质。

三. 教学目标1.知识与技能:使学生掌握平行线的传递性质,理解同位角、内错角和同旁内角的概念及它们之间的关系。

2.过程与方法:培养学生观察、操作、思考、交流和总结的能力,提高空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.教学重点:平行线的传递性质,同位角、内错角和同旁内角的概念及它们之间的关系。

2.教学难点:平行线性质的灵活运用,角度关系的推导和证明。

五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现平行线的性质,激发学生的学习兴趣。

2.动手操作法:让学生通过折纸、拼图等动手操作活动,观察和体验平行线的性质,培养学生的空间想象能力。

3.合作交流法:鼓励学生分组讨论,共同探讨平行线的性质,提高学生的团队协作能力。

4.引导发现法:教师引导学生发现问题,引导学生通过思考和总结,得出平行线的性质,培养学生的逻辑思维能力。

六. 教学准备1.教学素材:准备相关的图片、图形和实例,制作PPT。

2.教学工具:准备黑板、粉笔、直尺、圆规等。

3.学生活动材料:准备折纸、拼图等动手操作材料。

七. 教学过程1.导入(5分钟)通过展示生活中常见的平行线现象,如楼梯、铁路等,引导学生回顾平行线的概念,激发学生的学习兴趣。

平行线的性质教案

平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。

五步法教你讲好平行线性质1,2,3的教案

五步法教你讲好平行线性质1,2,3的教案

五步法教你讲好平行线性质1,2,3的教案一、教学目标本教学内容旨在让学生了解和掌握平行线性质1、2、3的基本概念和性质,能够熟练应用基本定理解决问题,培养学生的数学思维和创造能力,同时提升学生的数学素养和学习兴趣。

二、教学重难点1. 平行线性质的概念和性质,如何运用基本定理解决问题。

2. 如何引导学生通过实际问题的解决过程,发现和掌握平行线性质。

三、课前准备1. 教师准备好相关的教材、教具和课件,编写好教学PPT。

2. 学生准备好相关的学习材料和习题,做好预习。

四、教学步骤1. 导入利用一些简单的生活例子,让学生感受到平行线性质的重要性和实用性。

例如:铁路的平行轨道、路边的电线塔、电线杆等。

2. 学习要点讲解讲解平行线的定义以及平行线性质1、2和3的概念和性质,引导学生感受到这些概念和性质的内涵和实际操作。

3. 知识巩固利用一些生活中实际问题,让学生通过绘制图形和分析问题,发现和应用平行线性质1、2、3的基本定理,巩固知识点。

例如:问题:如图,长方形ABCD中,AE=BF,DE=CD-5,求CD的长度。

解答:1. 作BF交DE于M;2. 连BM,连接MC;3. △BMC中,BC=BM;4. 四边形ACMD中,对角线AC和MD互相平分,AM=MC,CD=AM+MD;5. △AFB中,AE=BF,△AEM≌△BFM,AM=BM;6. 根据1和3,可以得到CD=MC+MD=BC+MD=BD=AD+AB=AE+BF+DC;7. 根据平行线性质1,AE∥BF,可以得到角ADE=角BDC,△ADE≌△BDC;8. 根据△ADE≌△BDC和2,可以得到DC=AE+DE=BF+CD-5,即CD=DC+5=AE+BF+CD。

4. 创新拓展利用一些拓展问题,让学生深入理解平行线性质的应用和意义,并发展他们的创造力和探究性思维。

例如:以四边形ABCD为底面,侧面为倾斜角为45°的棱锥,利用平行线性质解决棱锥的面积和体积问题。

5.3.1平行线的性质(1)(新版人教版) 4

5.3.1平行线的性质(1)(新版人教版) 4
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
10. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
E F
A C
G
B D
4.巩固新知,深化理解
方法一
E
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
A C G
F
1
B D
4.巩固新知,深化理解
方法二
解:∵AB∥CD,
∴ ∠C=∠2. ∵ AE∥CF,
A G
E F
∴ ∠A=∠2. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
C
2
B D
小结
两直线平行
线的关系
性质 判定
系 法平 的行 线 的 性 区质 同位角相等 和 内错角相等 平 别 行 同旁内角互补 线 与的 角的关系 判 定 联方
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
8. 如图,平行线AB,CD被直线AE所截. (2)从∠1=110º 可以知道∠3是多少度吗?为什么? 答:∠3 =110º .因为AB∥CD ,∠1和∠3是同位角, 根据两直线平行,同位角相等,得到∠1=∠3.因为 ∠1=110º ,所以∠3 =110º . C
1.梳理旧知,引出新课
平行线的判定
结论
判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
1 线 平 行
结论

1.梳理旧知,引出新课
条件
两条平行线 被第三条直 线所截

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

人教版七年级数学下册第五章《平行线的性质1

人教版七年级数学下册第五章《平行线的性质1
……
2、问题探索 问当下题直图2线)A,B前与面C所D不发平现行的时式(子如都
不成立。这说明只有AB∥CD 时,前面的式子才能成立.
如果改变AB和CD的 位置关系,即直线AB 与CD不平行,那么你 刚才发现的结论
还成立吗?请同学们 动手画出图形,并用 量角器量一量各角的 大小,验证一下你的 A 结论.
教学内容
平行线的性质
教学目标
1、知识目标:使学生理解平行线的性质,能初步运用平行 线的性质进行有关计算.
2、能力目标:通过本节课的教学,培养学生的概括能力和 “观察-猜想-证明”的科学探索方法,培养学生的辩证思 维能力和逻辑思维能力.
3、情感目标:培养学生的主体意识,向学生渗透讨论的数 学思想,培养学生思维的灵活性和广阔性.
还有一些说不出名字的角, 如 ∠1与 ∠6等,书上没有 定义.
E
A
41 32
B
C
8ห้องสมุดไป่ตู้ 76
D
F
∠1= ∠5, ∠ 2=∠6, ∠ 3=∠7, ∠4= ∠8;
∠2= ∠8, ∠3=∠5, ∠ 1=∠7, ∠4=∠6;
∠2+ ∠5=180°, ∠3+ ∠8=180°, ∠1+ ∠6=180°, ∠4+ ∠7=180°;
问题4
(1)具有相等关系的两个 角,有的是同位角,有的 是内错角,如∠1与 ∠5等
(都1是)同具位有角相; 等∠2关与系∠的8等 两都角是内有错怎角样。的还位有置一些关说 系回不∠呢答出7,名?)∠字(4的与请角∠甲,6组等如.同∠学1与 ((22))互具有补互的补两关角系又的有两个 怎角样,的有位的是置同关旁系内呢角?,如 (∠请2与乙∠组5同等都学是回同答旁)内角;

第七章第3节《平行线的性质》第1课时教学设计-2021-2022学年鲁教版(五四制)六年级数学下册

第七章第3节《平行线的性质》第1课时教学设计-2021-2022学年鲁教版(五四制)六年级数学下册

五、实践应用 巩固深化
若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
En
C
D
当有n个拐点时: ∠A+∠ E1 + ∠ E2 +…+∠ En +∠C = 180°(n+1)
五、实践应用 巩固深化
变式3:如图,若AB∥CD, 则:
A
B
A
BA
B
E
F
C
DC
E
F1
DC
E1 E2 D
当左边有两个角,右边有一个角时: ∠A+∠C= ∠E
六、归纳小结
平行线的性质与判定的区别:
已知
结论
同位角相等 内错角相等 同旁内角互补
判定 性质
两直线平行
结论
已知
六、归纳小结
平行线的性质
同a
位 角
b
图形 1
2
c
已知 a//b
结果 ∠1=∠2
依据
两直线平行 同位角相等
内a
错 角
b
3
2 c
两直线平行 a//b ∠3=∠2 内错角相等

旁a
内 角
b
4 2
变式1: 如图,AB//CD,探索∠B、∠D与∠DEB的大小关系 .
解:过点E 作EF//AB. ∴∠B+∠BEF=180°. ∵AB//CD. ∴EF//CD. ∴∠D +∠DEF=180°. ∴∠B+∠D+∠DEB =∠B+∠D+∠BEF+∠DEF =360°. 即∠B+∠D+∠DEB=360°.
A. 20° B. 25° C. 30° D. 35°
选做:

5.3平行线的性质(第1课时)-教学设计

5.3平行线的性质(第1课时)-教学设计
3
学习发现的平行线第一个性质
通过自主学习,合作学习,培养学生分析问题、解决问题的能力。
4
演绎推理,发现平行线的其它性质
把问题交给学生,培养学生观察、分析、想象、推理的能力,体现学生的主体地位。
5
巩固新知深化理解
检验新知的掌握情况,帮助学生巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础。
5.3平行线的性质教学设计
第1课时
一、教学任务分析
教学目标
知识技能
理解平行线的性质和判定的区别,并能够正确掌握平行线的三个性质,并能运用它们作简单的推理。
数学思考
在生动的情境中让学生获得平行线性质的初步经验;培养学生观察、分析、想象、推理的能力;经历探索直线平行的性质过程,从中感受转化的数学思想。
解决问题
布置作业:
1.教科书练习题1、2题
2.预习5.3.2命题、定理、证明
教师布置作业。
学生记录作业。
对学生可能会提出一些疑问。教师应给出有针对性的、具体的指导与帮助。
巩固所学
首先,学生动笔操作、回答计算结果。
然后,分组讨论、交流。
教师板书
充分调动学生的主动性和积极性,让学生独立思考,同时,通过实例,培养学生分析问题的能力,让学生从具体的实例中发现数学问题,使学生懂得数学来源于现实,服务于现实生活。
6
问题
1.平行线判定与性质的区别与联系
(1)性质:根据两条直线平行,去证角的相等或互补。
问题3
1.你能结合图形ห้องสมุดไป่ตู้表达你得到的结论吗?
如果 ,那么∠1=∠2。
2.你能用文字语言表达这个结论吗?
两条平行直线被第三条直线所截,同位角相等。(性质1)

柯玉磊5.3.1-平行线的性质(第1课时)教学设计

柯玉磊5.3.1-平行线的性质(第1课时)教学设计

5.3.1 平行线的性质(第1课时)土门中学柯玉磊一、教学内容解析本节课的教学内容是平行线的性质. 平行线的性质是平面几何的一个重要内容,它是研究几何图形位置关系与数量关系的基础也是学习简单的逻辑推理的素材,是证明角相等、研究角的关系的重要依据.平行线的性质不但为三角形内角和定理的证明提供了转化的方法,也为今后学习三角形、四边形、平移等知识奠定基础.图形的性质是研究图形构成要素之间的关系,它和图形的判定是几何中研究的两个重要方面.平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用.教科书由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性.平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的(在九年级《圆》这一章中再作证明),然后在性质1的基础上经过进一步推理得到性质2和性质3,体现了由实验几何到论证几何的过渡,渗透了简单推理的思想方法,从而逐步构建起学习几何的“基本套路”,实现对逻辑思维的培养,体现数学在培养良好思维品质方面的价值.因此可以确定本节课的重点为:平行线的三条性质.二、学生学情分析东直门中学是北京市示范性中学,我的授课班级数学基础较好,学生个性活泼,思维活跃,积极性高.但是,学生初次接触图形的性质,对于平行线的性质的研究过程和研究方法都是陌生的,所以,本节课学生需要在老师的引导下来构建平行线性质的研究过程.作为培养学生推理能力章节,对于性质2和性质3的论证,学生可以做到“说理”,但把推理过程从逻辑上叙述清楚存在困难,需要老师做示范,学生进行模仿.对于证明过程的严密化,对于刚刚接触平面几何的初一学生而言,具有一定的难度,为此,在推理过程符合逻辑的前提下,对于学生在证明过程中使用文字语言或符号语言来进行表述的方式不作限制,更多关注学生对证明本身的理解.本课的教学难点是:平行线性质推理过程的严谨表达.三、教学目标设置1.目标(1)理解平行线的性质;(2)经历平行线性质的探究过程,体会研究平行线性质的方法,感受数学活动中的探索性和创造.2.目标解析达成目标(1)的标志是:学生知道平行线三条性质的条件和结论并能初步运用平行线性质进行简单推理.达成目标(2)的标志是:学生知道三条性质的关系,能独立完成由性质1推导性质2、性质3.四、教学策略分析(1)在学习课标、研读教材的基础上,把平行线的性质这部分内容划分为两课时,第a bc1 2一课时即本节课得到平行线的性质,第二课时了解平行线性质和判定的区别并综合运用平行线性质和判定解决问题.(2)本节课采取教师启发引导与学生实验探究相结合的方式,使学生亲身体验平行线性质的探索和验证全过程.(3)在学生思维最近发展区提出问题,引导学生逐步构建平行线性质的研究思路.(4)课前要求学生准备了三角板、直尺、量角器、剪刀、图形计算器等学习用品,使学生能够根据自身需要,选择不同方法来验证性质1成为可能,在推理性质2和性质3的过程中,从说理到说清理再到书写推理过程,为学生搭建“台阶”,提供展示的机会.(5)依据学生课上实际表现、课后完成作业及目标检测的情况,进行学生学习效果评价.五、教学过程1.梳理旧知,引出新课问题1上节课,学习了哪些平行线的判定方法?(1)你认为这三个判定方法中条件和结论分别是什么?(2)在这三种条件下,都可以得到两条直线平行的结论,反过来,在两条直线平行的条件下,同位角、内错角、同旁内角又各有什么关系呢?师生活动:学生代表回答,如出现错误或不完整,请其他学生修正或补充.教师点评.设计意图:复习上节课所学的平行线的三种判定方法并引入探究课题,有意识让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程做好铺垫.2.动手操作,归纳性质1类比研究平行线判定的思路,首先来研究两条直线平行时,同位角的数量关系.问题2 两条平行线被第三条直线截得的同位角会具有怎样的数量关系?师生活动:学生首先对结论进行猜想,然后在老师的引导下独立探究,学生代表演示、说明.(1)猜想:在两条平行线被第三条直线所截的条件下,同位角有什么关系?(相等)(2)你能验证你的猜想吗?说明:在此过程中教师要关注:学生能否准确标记角;能否准确找出同位角,能否正确使用工具比较角的大小.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探究活动.(3)你能与同学交流一下你的验证方法吗?师生活动:给学生提供充分的展示机会,如果出现操作或表达不规范的地方教师给与指正. 学生可能想到的方法:(1)度量法:用量角器进行测量或使用图形计算器进行验证. (2)叠合法:通过剪纸、拼图进行比较.(4)如果改变截线的位置,你发现的结论还成立吗?说明:学生小组合作,制定方案,进行说明. 学生可能作出多个图形,分别通过度量验证,也可能使用图形计算器的相关功能让截线运动起来,发现同位角不变的数量关系.(5)你能结合图形,表达你得到的结论吗?如果ba//,那么∠1= ∠2 .(6)你能用文字语言表达这个结论吗?(性质1 两直线平行,同位角相等.)G F E DC B A a b c 123a b c 1234E DC B A 1234设计意图:让学生充分经历动手操作—独立思考—合作交流—验证猜想的探究过程得到性质1,并且在这一过程中,锻炼学生由图形语言转化为文字语言,文字语言转化为符号语言的归纳能力和表达能力.为下一步推理性质2、性质3及今后进一步学习推理打下基础.3.简单推理,得出性质2和性质3问题3在两条平行线被第三条直线所截的条件下,你会采取什么样的方法来说明内错角或同旁内角的关系呢?(1)你能用性质1和其他相关知识说明理由吗?师生活动:学生口述推理过程(学生可能使用邻补角或对顶角的关系推导内错角的关系) 学生之间进行点评,指出问题或互相作补充.教师给予鼓励和肯定.(2)你能写出推理过程吗?师生活动:学生代表做板演. 根据板演情况,师生共同做修改或补充.在此更多关注推 理过程是否符合逻辑,不过多强调格式,多给学生鼓励.(3)类比性质1,你能用文字语言表达出上述结论吗?(性质2 两直线平行,内错角相等.)(4)你能用符号语言表达性质2吗?如果 b a //,那么 32∠=∠.设计意图:在教师引导下逐步构建研究思路,循序渐进地引导学生思考,从“说点儿理”向“说清理”过渡.问题4在两条直线平行的条件下,我们研究了同位角和内错角,那么同旁内角之间又有什么关系呢?你能由性质1推出同旁内角之间的关系吗?文字语言:性质3 两直线平行,同旁内角互补.符号语言:如果 b a //, 那么 ︒=∠+∠18043.师生活动:学生独立完成,学生代表使用实物投影进行展示和说明.设计意图:逐步培养学生的推理能力.使学生初步养成言之有据的习惯,从而能进行简单的推理.4.巩固新知,深化理解例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么?(2) 从︒=∠1101可以知道3∠是多少度吗?为什么?(3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么?F E D C B A 3214321ba 师生活动:学生独立思考回答,教师组织学生互相补充,并演示准确形式.设计意图:帮助学生巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.5.归纳小结,布置作业教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)本节课通过简单推理得到性质2和性质3,在推理过程中需要注意哪些问题?设计意图:通过小结,帮助学生梳理本节课所学内容,掌握本节课的核心——平行线的性质, 引领学生回顾探究平行线性质的过程,体会研究平行线性质的方法.布置作业 : 教科书习题5.3第2,4,6题.六、目标检测设计1. (教科书练习第1题)如图,直线b a //,︒=∠541,那么2∠,3∠,4∠各是多少度?设计意图:检测学生对平行线的性质的掌握.2.如图,填空:①∵ AC ED //(已知),∴C ∠=∠1 ( ) .②∵ DF AB //(已知),∴ ∠=∠3 ( ).③∵ ED AC //(已知),∴ ∠ =∠ (两直线平行,内错角相等).设计意图:检测学生对三线八角图的识别和平行线性质的直接应用.。

5.3.1平行线的性质教案

5.3.1平行线的性质教案

5.3.1平行线的性质教案课题课时:第五章§5.3.1平行线的性质授课人:许昌县实验中学刘冬冬课型:新授课教学目标:1.经历观察、操作、推理、交流等学习活动,进一步发展空间观念、推理能力和有条理表达的能力.2. 经历探索平行线性质的过程,掌握平行线的性质,并能解决一些问题.教学重点与难点:重点:掌握平行线的性质。

难点:运用平行线的性质进行有条理的分析、表达教法及学法指导:教法:采用尝试指导、引导发现法,充分利用学生手中的资源,发挥学生的主体作用,引导学生经历操作、探究、验证、应用性质的数学活动过程,帮助学生在探究学习的过程中理解、掌握新知识,提高他们的讨论能力和解决实际问题的能力.学法:在教师的指导下积极动手操作、对比及归纳猜想,参与性质的探究,从学习中感受乐趣,并学会用性质进行简单推理和解决问题.课前准备:教师准备多媒体课件.学生准备条格纸、量角器。

教学过程:一、前置诊断,复习旧知师:前面我们探索了两条直线平行的条件,学习了哪些判断两条直线平行的条件?生:(齐答)1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.师:观察图形,回答下面问题:(多媒体展示)(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠ (已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠ =1800 (已知)所以a∥b()生:口头填空,并回答理由。

【设计意图】平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,并为新课的学习做准备。

活动注意事项:因为学生在应用平行线的性质与条件推理时非常容易混淆,因此在学生回答判定直线平行的三个条件后,又给学生结合图形直观地进行直线平行的条件的推理,加深学生的印象,节约学生复习的时间,提高复习的效果。

二、创设情境引入新课师:想一想:反过来,若改变已知与结论的位置。

即:已知两条平行线被第三条直线所截,那么所形成的同位角、内错角、同旁内角,有什么关系呢?这就是本节课要学习的平行线的性质。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。

2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。

3. 提高学生对几何图形的认识和空间想象力。

二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线在实际问题中的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及其在实际问题中的应用。

2. 教学难点:平行线的判定方法,以及如何在实际问题中灵活运用平行线的性质。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。

2. 利用几何画板软件,直观展示平行线的性质和判定过程。

3. 结合实际例子,让学生学会用平行线的性质和判定方法解决问题。

4. 采用小组讨论法,培养学生的合作意识和团队精神。

五、教学步骤1. 导入新课:通过复习相关知识点,引入平行线的概念。

2. 探究平行线的性质:引导学生利用几何画板软件,自主探究平行线的性质。

3. 讲解平行线的判定方法:引导学生通过观察、分析、归纳,掌握平行线的判定方法。

4. 应用练习:结合实际例子,让学生运用平行线的性质和判定方法解决问题。

5. 课堂小结:回顾本节课所学内容,总结平行线的性质和判定方法。

6. 作业布置:布置相关练习题,巩固所学知识。

7. 课后反思:对本节课的教学进行总结,查找不足,改进教学方法。

六、教学拓展1. 引导学生思考:平行线在现实生活中有哪些应用?2. 举例说明:平行线在建筑设计、道路规划、印刷排版等方面的应用。

3. 引导学生探讨:如何利用平行线的性质解决实际问题?七、课堂互动1. 提问环节:请学生回答平行线的性质和判定方法。

2. 小组讨论:让学生分组讨论如何运用平行线的性质解决实际问题。

3. 分享环节:每组选一名代表分享讨论成果。

八、课后作业1. 完成练习册相关习题。

2. 结合生活实际,寻找平行线的应用实例,下节课分享。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。

过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。

情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。

二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。

2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。

学生可以分组讨论,分享自己的发现。

3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。

学生可以分组讨论,共同完成证明过程。

4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。

学生可以独立思考,也可以分组讨论。

5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。

6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。

7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。

平行线之间的距离相等。

平行线上的对应角相等。

平行线上的内错角相等。

平行线上的同位角相等。

六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。

教师可以根据学生的作业完成情况和课堂表现来进行评估。

七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。

教师可以通过考试、作业、课堂表现等方式来进行评价。

教师需要给予学生及时的反馈,帮助学生提高。

八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。

这些题目可以包括证明题、应用题等,难度可以适当增加。

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

3.5.1 平行线的性质 (一)

3.5.1 平行线的性质 (一)

3.5.1 平行线的性质 (一)学习目标: 1. 掌握平行线的三条性质。

2. 能运用平行线的性质进行简单的推理和计算.3. 培养推理能力和有条理表达能力。

重点:探索并掌握平行线的性质.难点: 能用平行线性质进行简单的推理和计算.学习过程一、知识链接我们前面学习了:①两条直线被第三条直线所截,如果同位角相等,那么内错角_____,同旁内角_______.②两条直线被第三条直线所截,如果内错角相等,那么同位角_____,同旁内角_______.③两条直线被第三条直线所截,如果同旁内角互补,那么同位角_____,内错角_______.二、观察与探究1.阅读教材P61“做一做”:①图3-58中∠α与∠β、图3-59中∠1与∠2在位置上是什么关系的角?试用量角器量出它们的度数,比较你的度量结果,你能得到什么结果?3-59②运用几何画板探究:当EF绕点M转动时,∠EMB与∠END 的大小发生变化吗?③综合上述①与②的操作,你能得出什么结论?④试用平移的知识解释你的结论。

⑤思考:两条直线平行线被第三条直线所截,构成的内错角有什么关系?同旁内角呢?试用几何画板验证你的猜想。

归纳结论:平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等。

简称为:两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等。

简称为:两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补。

简称为:两直线平行, 同旁内角互补.若直线a∥b,结合右图,用符号语言表达平行线的这三条性质:①∵ a∥b(已知)∴∠1=∠2 (两直线平行,同位角相等)②∵ a∥b(已知)∴∠2=∠3 (两直线平行,内错角相等)③∵ a∥b(已知)∴∠3+∠4=180°(两直线平行,同旁内角互补)说明:平行线的性质是根据两条直线平行的位置关系得出角的数量关系(指同位角相等,内错角相等,同旁内角互补).即:在平行线的性质中,两直线平行是条件,角的数量关系(同位角相等、内错角相等、同旁内角互补)是结论. 三、知识运用 平行线性质应用.例:如图是一块梯形铁片的线全部分,量得∠A=65°,∠B=80°, 梯形另外两个角分别是多少度? 思考:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么?三、巩固练习1.课本P62“做一做”.2.补充:如图,B 、C 、D 三点在同一条直线,且AB//CE,∠2=75°,∠1=53°,求∠A 、∠B 的度数.四、作业1.课本P63.练习1,2. 2.补充作业: 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互D CBABDAC相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠____=∠____,∠____=∠____, ∠ABC+∠____=180°; 若DC ∥AB,则∠____=∠___, ∠____=∠____,∠ABC+∠____=180°.87654321DCBAFEDC B A(1) (2) (3)2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.3.因为AB ∥CD,EF ∥CD,所以______∥______,理由是________.4.如图(3),AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下: ∵ ∠ECD=∠E,∴ CD ∥EF( ) 又 AB ∥EF,∴ CD ∥AB( ). 三、选择题.1.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( )A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( ) A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85° C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95° 四、解答题1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.4321DCBA2.如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.E21DCB。

平行线的性质学案

平行线的性质学案

2.3.1平行线的性质平远县石正中学 石桂梅一、教 学目标 1、知识与技能目标使学生理解平行线的性质,能知道平行线的性质与判定的区别,并会用平行线的性质解决实际问题。

2、过程与方法目标经历观察、操作、想象、推理等活动,培养学生推理能力,有条理地表达能力,创新能力和发散思维意识。

3、情感与态度目标学会多角度探索问题的方法,学会运用类比等数学方法,让学生在学习中体验数学充满探索和创造。

二、教学重点难点1、教学重点:探索平行线的性质,并进行简单的推理和计算。

2、教学难点:平行线的判定和性质的区别和综合运用。

三、教学过程(一)复习:两直线平行的条件如图,(1)∵ ∠1__∠2 (已知)∴ a ∥ b ( ) (2)∵ ∠2____∠3 (已知)∴ a ∥ b ( ) (3)∵ ∠2+∠4=____ (已知)∴ a ∥ b ( )(二)平行线的性质性质1:如图,直线a ∥b ,(1)测量同位角∠1和∠5的大小,它们有什么关系? 图中还有其它同位角吗?它们的大小有什么关系? 角 ∠1 ∠2 ∠3 ∠4度数 角 ∠5 ∠6 ∠7 ∠8 度数两直线平行,同位角 。

a bA BCD α45°cab 21345678性质2:(2)直线a ∥b ,图中有几对内错角?它们的大小有什么关系?为什么?性质3:(3)直线a ∥b ,图中有几对同旁内角?它们的大小有什么关系?为什么?思考:如果a 与b 不平行,这一规律还成立吗?说明什么问题?结论:平行线的性质: 注意:只有在两直线平行的条件下,才有:同位角相等,内错角相等,同旁内角互补。

两直线不平行,同位角、内错角不相等,同旁内角不互补。

练习:1、如图,直线a ∥b, ∠1=54°,∠3是多少度?解:∵ ∠2=∠1 ( )∴ ∠2=∠1 = , ∵ a ∥b(已知)∴∠2+∠3=180°∴ ∠3= 180°- ∠2= .2.如图 AB ∥CD ,∠α=45°,∠D=∠C那么∠ D= , ∠C= , ∠ B= 。

2.3平行线的性质(1)

2.3平行线的性质(1)

课时课题:第二章第三节平行线的性质(一)课型:新授课授课人:姜屯中学王翠华授课日期:2013年4月1日星期一第3节课教学目标:(1)经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.(重点)(2)经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.(难点) (3)在自己独立思考的基础上,积极参与小组活动。

在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。

通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.(情感目标)教法及学法指导:平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际生活中也有着广泛的应用。

平行线的性质为三角形内角和定理的证明中转化的方法提供了支撑,,也为今后学习三角形全等、三角形相似等知识奠定了理论基础,因此学好这部分内容至关重要.课前准备:制作课件,让学生收集生活中常见到的有平行线的图片,进一步认识数学来源于生活.教学过程:第一环节:复习回顾,逆向猜想活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。

(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠(已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠=1800 (已知)所以a∥b()活动目的:平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,因此,复习判定直线平行的条件为后面学习性质做好准备。

活动的注意事项:利用平行线的性质与判定直线平行的条件的互逆关系自然引入新课,学生不觉得突兀,极易猜想出结论。

但因为学生在应用时非常容易混淆,因此在学生回答判定直线平行的三个条件时,可将其合理板书,以便直观地进行判定直线平行的条件与平行线的性质的对比分析,加深学生的印象。

5.3.1平行线的性质(第1课时)教学设计

5.3.1平行线的性质(第1课时)教学设计

5.3.1平行线的性质(第1课时)教学设计一、教材分析1、教材分析:平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用。

平行线的性质是证明角相等、研究角关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何图形的一个重要内容个学习简单逻辑推理的素材,它不但为三角形的证明提供了转化的方法,而且也是今后学习三角形、四边形、平移等知识的基础。

教科书有平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性。

平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的,在性质1的基础上经过进一步的推理,得到性质2和性质3。

这一过程体现了由实验几何到论证几何的过渡,渗透了简单的推理,体现了数学在培养良好思维品质方面的价值。

2、教学目标:知识与技能:掌握平行线的三条性质,并能用它们进行简单的推理和计算;过程与方法:经历探究直线平行的性质的过程,领悟归纳和转化的数学思想方法。

情感、态度与价值观:经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。

3、教学重、难点:教学重点:平行线的性质的研究与发现过程教学难点:平行线的性质定理的推导及平行线的性质定理的应用。

教学方法:引导观察、动手测量、猜想、合作交流探究。

二、教学准备:白纸、直尺、三角板、量角器、计算器、剪刀等。

三、教学过程板书设计:5.3.1 平行线的性质已知结论判定同位角相等两直线平行内错角相等同旁内角互补性质两直线平行同位角相等内错角相等。

平行线的性质教学设计

平行线的性质教学设计

初中数学教学案例——平行线的性质一、案例主题分析与设计本节课是河北教育出版社七年级数学(下册)第七章第5节内容——平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。

本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

二、教学目标1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、解决问题:通过探究平行线的性质,形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

三、教学重、难点1、重点:对平行线性质的掌握与应用2、难点:对平行线性质1的探究四、教学用具1、教具:多媒体平台及多媒体课件2、学具:三角尺、量角器、剪刀五、案例教学过程(一)创设情境,设疑激思1、播放一组幻灯片。

内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。

2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)(二)数形结合,探究性质1、画图探究,归纳猜想教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c与这两条平行线相交,标出8个角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生展示:
l2 l1
l3
.
板书: 平行线的性质 1 两直线平行,同位角相等 数学语言:∵a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等)
例 2: 解:∵ ∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行)
∴ ∠3=∠4
∵b⊥m(已知)
∴ ∠4=900( 垂直的定义 )
∴ ∠3=900
∴a⊥m
三、课堂测试
1、已知 a,b,c,d 四条直线如图。
(1)图中哪些直线互相平行? 哪些直线相交?
(2)说出∠α的度数。
2、已知:如图∠ADE=60°,∠B=60°,∠C=80°。
问∠ AED 等于多少度?为什么?
解:∵ ∠ADE=∠B=60° (已知)
∴ DE//BC(

∴ ∠AED=∠C=80° (
)
b
76o 77o
a
76o c
α
d
c
12 34 56 78
a D bB
A E C
3. 如 图 AB ∥ CD , ∠ α
C 那么∠ D=
,∠C=

∠ B=

=45°,∠D=∠
4.如图 AB∥CD, CD ∥EF,∠1 = ∠2=60 ° ,那么 ∠A=
D
C
A
,∠E=

B

B
45
°
C 1 60
2
6°0 E°
D F
5、如图,已知 AE//CF,AB//CD,∠A=40,求∠C 的度数。
E
A C
F 1 G
B D
四、课后提升 如图,把一张长方形纸片 ABCD 沿 EF 折叠,使折叠后夹角∠1=58°,求∠2 的度数。
A
E
D
2
G B1
M
FC N
1、你发现了什么?与其他同学的发现相同吗?
2、在结论的探究过程中,你用了什么方法? 学生归纳总结
归纳性质:如果两条平行直线被第三条直线所截,同位角相等,简记为:两直线平行,同位
角相等
数学语言:∵a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等)
c
(二)理解平行线的性质 1
1、辩一辩:
学生思考并回答
的平性行质线 只需 a//b
解:∵ ∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行)
∴ ∠3=∠4
∵b⊥m(已知)
∴ ∠4=900( 垂直的定义 ) ∴ ∠3=900
∴a⊥m
练:如图, l1 ⊥ l3 把直线 l1 沿直线 l2 的任一方向平移,得直线 l3 ,则 l2 ⊥ l3 。请说明理由。
学生小组展示:
12 34 56 78
a
b
1 l3
l1 2 l2
(2)自主学习 P15 页例 2, Ⅰ、思路点拨:①综合法:
∠1=∠2(已知)
的平判行定 线
( ) a⊥m
②分析法:
的平性行质 线 ∠3=∠4= 90
要求 a⊥m
垂定直义的


∠1=∠2(已知)
Ⅱ、过程整理:
只需∠3=∠4= 90
(1) 凡是同位角相等这句话对吗?
(2) 两直线被第三条直线所截,同位角相等吗?
(3) 两条直线在什么情况下, 同位角会相等呢?
2、比一比:
学生思考并回答
平行线的性质和判定有什么不同?
3、学一学:
学生思考并回答
(1)自主学习 P15 页例 1,思考∠3=∠1 的理由;
练:如图:已知直线 l2 ∥ l3 ,∠1= 40 ,求∠2 的度数。
1.4 平行线的性质(1)教案
知识目标:通过作图探究、归纳并理解平行线性质 1;
能力目标:会运用平行线性质进行角度的计算
情感目标:通过对平行线的性质的探究,使学生认识到数学与现实生活的密切联系,促使学
生在学习活动中培养良好的情感、合作交流、主动参与的意识
学教学重点:掌握平行线性质 1
教学难点:理解例 2 的推理过程
学习过程:
一、知识回顾:
学生独立思考并回答:如何判断两直线平行?
二、知识探究:
(一)得出平行线的性质 1 小组探究交流
活动 1、任意画两条不平行的直线,再任意画一条直线与这两条直线相交。测量同位角的度 Nhomakorabea数;
活动 2、任意画两条互相平行的直线,再任意画一条直线与这两条平行线相交。测量同位角
的度数;
在小组活动 1 和活动 2 中
相关文档
最新文档