人教版初中数学平行线的性质教案

合集下载

七年级数学上册《平行线的性质》教案、教学设计

七年级数学上册《平行线的性质》教案、教学设计
4.教师引导学生总结平行线性质的应用规律,提高学生的几何推理能力。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。

人教版七年级下册5.3.1平行线的性质教学设计

人教版七年级下册5.3.1平行线的性质教学设计

人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。

本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。

二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。

通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。

2.演示法。

通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。

3.交互式教学法。

在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。

四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。

请用你的观察能力,试着解释一下。

2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。

2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。

2.教师引导学生观察直线和横线的相对位置。

学生回答“这两条直线可能会有什么关系?” 并予以深入探究。

3.教师呈现两条相交的直线的图形。

蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。

学生自主探索得到假设,教师引导得出定义。

5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。

3. 总结1.举例,让学生思考这些性质的应用场景和方法。

2.教师引导学生用不同的方法总结、概括平行性质。

4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。

五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。

教师班长进行作业的检查和评估,判定教学质量和效果。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标1. 知识与技能:(1)理解平行线的概念;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。

2. 过程与方法:(1)通过观察、实验、推理等方法,探索平行线的性质;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作意识和勇于探究的精神。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的任意一对对应角相等;(2)平行线之间的夹角相等;(3)平行线与横穿它们的直线所成的角相等。

三、教学重点与难点1. 教学重点:平行线的性质及其应用。

2. 教学难点:平行线性质的证明和运用。

四、教学方法1. 引导探究法:通过引导学生观察、实验、推理等方法,自主探索平行线的性质。

2. 案例分析法:通过分析实际问题,让学生学会运用平行线的性质解决问题。

3. 小组讨论法:鼓励学生分组讨论,培养团队合作意识和交流沟通能力。

五、教学过程1. 导入新课:通过展示实际问题,引导学生思考平行线的性质。

2. 自主探究:让学生观察、实验,发现平行线的性质。

3. 讲解与证明:引导学生推理证明平行线的性质。

4. 案例分析:分析实际问题,让学生运用平行线的性质解决问题。

5. 巩固练习:设计练习题,让学生巩固所学知识。

7. 课后作业:布置作业,让学生巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和合作精神。

2. 练习成果评价:对学生的练习题进行评分,评价学生对平行线性质的理解和运用能力。

3. 课后作业评价:对学生的课后作业进行评分,评价学生对课堂内容的巩固程度。

七、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、课堂纪律、教学方法的选择和运用,以及学生对平行线性质的掌握情况。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标1. 知识与技能:(1)能够识别同位角、内错角和同旁内角;(2)理解平行线的性质,包括同位角相等、内错角相等和同旁内角互补;(3)学会使用量角器测量角度。

2. 过程与方法:(1)通过观察实际情境,培养学生的观察能力和思维能力;(2)通过画图和实验,培养学生的动手操作能力;(3)通过小组讨论,培养学生的合作能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作、交流的良好习惯。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 同位角:两条平行线被第三条直线所截,截得的同侧内角叫做同位角。

3. 内错角:两条平行线被第三条直线所截,截得的同侧外角叫做内错角。

4. 同旁内角:两条平行线被第三条直线所截,截得的非同侧内角叫做同旁内角。

5. 平行线的性质:同位角相等、内错角相等、同旁内角互补。

三、教学重点与难点1. 教学重点:平行线的性质,包括同位角相等、内错角相等和同旁内角互补。

2. 教学难点:如何理解和证明同位角相等、内错角相等和同旁内角互补的性质。

四、教学方法1. 观察法:通过观察实际情境,引导学生发现平行线的性质。

2. 画图法:通过画图和实验,让学生直观地理解平行线的性质。

3. 小组讨论法:通过小组讨论,培养学生的合作能力和口头表达能力。

五、教学过程1. 导入新课:通过展示实际情境,引导学生发现平行线的性质。

2. 讲解与演示:讲解平行线的定义,并通过画图和实验演示同位角、内错角和同旁内角的含义。

3. 练习与巩固:让学生进行课堂练习,巩固所学知识。

4. 小组讨论:让学生分组讨论,探索平行线的性质。

5. 总结与拓展:总结本节课所学内容,并引导学生思考如何应用平行线的性质解决实际问题。

6. 布置作业:布置适量作业,让学生巩固所学知识。

六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、理解程度和回答问题的准确性。

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

人教版初中数学平行线的性质教案

人教版初中数学平行线的性质教案

人教版初中数学平行线的性质教案第一篇:人教版初中数学平行线的性质教案2.3 平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是‚空间与图形‛的重要组成部分。

二、教学目标:1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

三、教学重、难点:重点:平行线的性质难点:‚性质1‛的探究过程四、教学方法:‚引导发现法‛与‚动像探索法‛五、教具、学具:教具:多媒体课件学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。

内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。

①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。

(二)数形结合,探究性质 1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。

问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1 ∠5 角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。

人教版数学七年级下册:5.3.1平行线的性质-教案(2)

人教版数学七年级下册:5.3.1平行线的性质-教案(2)

《平行线的性质》教学设计方案一、教材分析1.《平行线的性质》是人教课标七年级下册第五章第三节的内容;教材选自于义务教育课程标准实验教科书,数学七年级下册,人民教育出版社;2.本节课所需课时为一课时,45分钟;3.平行线的性质是证明角相等、研究角的关系的重要依据,是研究几何图形线的位置关系与角的数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材.它不但是为三角形内角和的定理的证明提供了转化的方法,而且也是今后学习三角形、四边形、平移等知识的基础 .教学目标分析1.知识与技能(1)理解与掌握平行线的性质.(2)综合应用平行线的判定及性质并会进行简单的证明或计算2.过程与方法由平行线的判定引入对平行线的性质的研究,既渗透了图形的判定和性质的互逆关系,又体现了知识的连贯性.平行线的三条性质都是需要证明的,但是为了与学生思维发展水平的适应,性质1是通过操作确认的方式得出的.在性质1 的基础上经过进一步推理,得到性质2和性质3。

经历观察、操作、猜想、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.3.情感与态度性质2和性质3培养了学生推理能力,学生可以做到“说理”,但是推理过程从逻辑上叙述清楚存在困难.需要老师先做示范,然后进行模仿.推理过程的复杂化,对于刚刚接触平面图形的七年级学生而言,具有一定的难度.这一过程体现了由实验几何到论证几何的过渡,渗透了简单推理,体现了数学在培养良好思维品质方面的价值.O三、教学重点与难点1.重点:探索并掌握平行线的性质,并能用平行线的性质进行简单的推理与计算2.难点:能区分平行线的判定和性质,平行线的判定及性质的混合应用四、学情分析1.平行线在实际生活中大量存在,学生对它们已有一定的感性认识;2.学生已经学习了平行线的判定的基础上,利用平行线的判定的有关知识来得出性质2和性质3;3.学生形象性思维能力强,思维活跃,能进行简单的概括、推理,积极参加讨论,但逻辑表达能力方面需要进一步的加强.后五、教法与学法1.教法:本教学是按“投疑一一猜想一一验证一一应用” 的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣.本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,得出性质1;再把平行线的判定,作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力.并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则.并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂 .2.学法:根据教材和新课标对学生知识及能力层面的要求,以及充分考虑到学生的认知水平和接受能力,本节课学生将通过思考和探究,观察和发现,师生互动的学习方式,积极引导学生主动参与学习.学生主动探究,突出学生是学习的主体,他们在感知知识形成的过程中,无疑提高了探索 -发现-实践-总结的能力.葭六、教学资源准备1.教材、课件、黑板、粉笔盒、投影仪、横格纸、量角器、米尺;2.本节课采用多媒体课件教学过程(一)创设情境这是世界著名的意大利比萨斜塔师:教师用多媒体呈现问题,用数学语言概述:已知两条直线平行,/1=85。

人教版七年级数学下册第五单元平行线的性质教案4

人教版七年级数学下册第五单元平行线的性质教案4

5.3.1 平行线的性质(1)[学习目标]1.理解并掌握平行线的性质.2.会区别平行线的性质和判定.[学习过程]一、板书课题(一)讲述:同学们,今天我们来学习平行线的性质(师板书)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标1.理解并掌握平行线的性质.2.会区别平行线的性质和判定.三、自学指导(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P19-20的内容.○1按P19“探究”中的要求度量后填空,理解平行线的三个性质;○2填P20“思考”中的空白,并会仿照其格式写出由性质1或性质2推出性质3的过程;③注意例题的步骤和格式.如有疑问,可以小声问同学或举手问老师.6分钟后,比谁能又快又好的做出检测题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)检测1.过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.2.检测题:P21:练习1、2(求∠2、∠3,一位同学做,求∠4一位同学做,分别让两位同学上堂板演,其余同学在位上做.)3.学生练习,教师巡视.(收集错误进行二次备课)五、后教(一)更正:请同学仔细看一看这名同学的板演,发现错误的请举手.(指名更正)(二)讨论:2. 归纳、总结评1:(1)∠2求得对吗?为什么?引导学生回答:对顶角相等.(2)∠3求得对吗?为什么?引导学生回答:两直线平行,同旁内角互补(教师板书).(3)要求∠4,你有几种方法?引导学生回答有两种:○1∠3+∠4=180°,根据的是补角的定义.○2∠4=∠1=54°,根据的是平行线的性质:两直线平行,同位角相等.○3∠4=∠2=54°,根据的是平行线的性质:两直线平行,内错角相等。

(教师板书)评2:(1)问∠ADE和∠B是什么关系?它们是哪两条直线被哪一条直线所截?引导学生回答:是直线DE和直线BC被直线AB(或直线DB)所截,所以DE∥BC,利用的是平行线的判定:同位角相等,两直线平行.(2)∠C=∠AED=40°,对吗?为什么?利用的是什么?引导学生回答:利用的是平行线的性质:两直线平行,同位角相等.平行线的判定和性质的区别是什么?引导学生回答:同位角相等平行线的判定:因为内错角相等,所以∥.同旁内角互补同位角相等平行线的性质:因为∥,所以内错角相等3 41 2bcd同旁内角互补.六、课堂作业(一)讲述:同学们,能运用新知识做对作业吗?好,要注意解题格式,书写工整.(二)出示作业题:必做题:P23:3选做题:P21:2补充题:已知∠1=∠2=70°,∠3=88°,求∠4的度数。

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。

教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。

教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。

但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。

三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:如何引导学生观察、思考、总结平行线的性质。

五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。

2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。

3.通过实例讲解,使学生能将所学知识应用于实际问题中。

六. 教学准备1.准备相关课件,展示平行线的性质。

2.准备实例,让学生观察、思考、总结平行线的性质。

3.准备练习题,巩固所学知识。

七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。

呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。

操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。

教师巡回指导,解答学生疑问。

巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。

3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。

二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线互相平行。

(2)平行线与横穿它们的直线相交,交角相等。

(3)平行线之间的距离相等。

三、教学重点与难点1. 教学重点:平行线的概念及性质。

2. 教学难点:平行线性质的理解和应用。

四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。

2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。

3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。

五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。

2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。

(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。

3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。

(2)设置练习题,让学生运用平行线的性质解决问题。

4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。

(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。

5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。

六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。

2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。

3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。

七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。

2. 针对学生的学习情况,调整教学策略,提高教学效果。

3. 关注学生的学习需求,不断优化教学内容,提升教学质量。

八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。

人教版七年级数学下册教案:5.3.1 平行线的性质

人教版七年级数学下册教案:5.3.1 平行线的性质

《平行线的性质》(第一课时教学设计)教学分析:(一)教学内容:平行线的性质是空间与图形领域的基础知识。

在以后的学习中经常要用到,这部分内容也是后续内容学习的基础,不但为三角形内角和定理的证明提供了转化的方法,而且为今后学习三角形全等、三角形相似等知识内容奠定了理论基础。

同时本节课学习之前,学生已经了解了平行线的概念以及平行线的判定方法,本节内容则是在原有知识的基础上进行进一步的探究,去发现两条平行线被第三条直线所截,截得的同位角、内错角、同旁内角之间存在着怎样的联系。

综合来看,平行线的性质在教学内容中起着承上启下的基础作用。

(二)教学目标:根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:1、理解平行线的性质,掌握他们的图形语言、文字语言、符号语言,并灵活的进行实际应用。

2、经历观察、实验、猜想、验证等数学活动,培养他们分析问题和解决问题的能力。

3、体会几何知识来源于实践并反作用于实践,认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。

(三)教学重、难点分析:平行线的性质是后续知识内容学习的基础,让学生通过数学活动来发现结论,经历知识的“再发现”过程,可以增强学生对平行线性质的认识和理解,培养学生多发面的能力。

因此我将本节课的重点确定为:理解并应用平行线的性质。

由于学生刚刚接触平面图形的相关知识,对于数学活动的方法及思路还不够清晰,在探究时容易出现思维混乱,主题不明。

因此我将本节课的难点确定为:探究平行线的性质。

(四)教学辅助手段利用多媒体(几何画板、实物投影)、学案进行辅助教学第二部分:教学设计:下面各小题填空:第三部分:教学评价:本节课通过回忆已学知识,从而引入新课,衔接得当。

再通过在各环节设置一系列问题,让学生能围绕重、难点展开思考、讨论,进行学习。

在设计上,强调自主学习、注重合作交流,让学生与学生间的交流活动在实践探索过程中进行,使他们通过动手实践、观察分析、合理猜想、合作交流解决问题体验并感悟平行线的性质,使他们在探索过程中感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。

人教版七年级数学下第5章5.3平行线的性质教案

人教版七年级数学下第5章5.3平行线的性质教案

平行线的性质一、教与学目标:1.通过实际操作探索“两条平行线被第三条直线所截,同位角相等”的性质,并通过说理,认识“两条平行线条直线所截,内错角相等”和“同旁内角互补”的性质。

2.会运用平行线的性质,解决与“三线八角”有关的计算问题。

3.经历观察、推理、交流等活动,发展空间观念、有条理的思考和语言表达能力。

二、教与学重点难点:会利用平行线的性质解决一些实际问题。

三、教与学方法自主探究、合作交流。

四、教与学过程: (一)情境导入: 老师:我在黑板上画两条直线被第三条直线所截,你能找到哪些角,哪些是同位角、内错角、同旁内角?有没有相等的角呢?老师:如果是两条平行线呢?(二)探究新知:1.学生活动学生画图活动:两条平行线a ∥b,再画一条截线c 与直线a 、b 相交,标出所形成的八角ab2.学生测量这些角的度数,把结果填入表内.引入课题如右图,世界著名的意大利比萨斜塔,建于公元1173年,为8层圆柱形建筑,全部用白色大理石砌成塔高54.5米.目前,它与地面所成的较小的角为85º,它与地面所成的较大的角是多少度?由此得出本节课题:平行线的性质如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?探究新知:1.看课本第32页图10-11猜一猜∠1和∠5相等吗?还有别的方法吗?2.合作交流学生测量这些角的度数,把结果填入表内.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?4.生成新知能否将我们发现的结论给予较为准确的文字表述?平行线具有性质:性质1性质2性质35. 我们能否使用平行线的性质1说出性质2、3成立的道理呢?因为a∥b,所以∠1=∠4( );又∠2= (对顶角相等)所以∠2=∠4.()。

(三)学以致用:1、判断题(1).两条直线被第三条直线所截,则同旁内角互补.( )(2).两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )(3).两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( )2、∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2的大小关系是( )A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定3.已知:如图1,AB∥CD.求证: ∠D+∠E+∠B=360°.(四)达标测评:1.:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数. 是不是任意一条直线去截平行线a、b所得的同位角都相等呢?ECA图1[结论]:_______________________ 简单说成:_______________________ 符号语言:_______________________2.如图:已知a//b,那么∠2与∠ 3相等吗?为什么?[结论]:_______________________ 简单说成:_______________________符号语言:_______________________3.如图,已知a//b , 那么 ∠2与∠4有什么关系呢?[结论]:_______________________ 简单说成:_______________________符号语言:_______________________2.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.3. 如图,直线a //b ,点B 在直线b 上,且AB ⊥BC ,∠1 = 55º ,则∠2 的度数为 ( ) D .A . 35 ºB . 45 ºC . 55 ºD . 125º4.一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是( )A 、先右转80o ,再左转100 oB 、先左转80 o ,再右转80 oC 、先左转80 o ,再左转100o D 、先右转80 o,再右转805.如图是一块梯形铁片的线全部分,量得∠A=100°, ∠B=115°, 梯形另外两个角分别是多少度?三、例题E21DCBA4321DCBA例1.如图,已知直线a ∥b,∠1 = 500,求∠2的度数.变式1.已知条件不变,求∠3,∠4的度数?变式2.如图,已知∠3 =∠4, ∠1=47°, 求∠2的度数?五、课堂小结:通过本节课的学习,你有哪些收获?还有哪些疑惑? 平行线具有的性质:两条平行线线被第三条直线所截, 相等 相等 相等。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。

过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。

情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。

二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。

2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。

学生可以分组讨论,分享自己的发现。

3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。

学生可以分组讨论,共同完成证明过程。

4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。

学生可以独立思考,也可以分组讨论。

5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。

6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。

7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。

平行线之间的距离相等。

平行线上的对应角相等。

平行线上的内错角相等。

平行线上的同位角相等。

六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。

教师可以根据学生的作业完成情况和课堂表现来进行评估。

七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。

教师可以通过考试、作业、课堂表现等方式来进行评价。

教师需要给予学生及时的反馈,帮助学生提高。

八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。

这些题目可以包括证明题、应用题等,难度可以适当增加。

人教版七年级数学教案:5.3.1平行线的性质

人教版七年级数学教案:5.3.1平行线的性质
3.能够运用平行线的性质判断图形中其他线段的平行关系。
4.熟练掌握平行线的性质定理,并能运用这些定理进行相关证明。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索平行线的性质,使学生能够理解和掌握几何图形之间的关系,提高推理及论证能力。
2.培养学生的空间观念,让学生在实际图形中观察、发现平行线的性质,形成对空间关系的直观认识和理解。
3.培养学生的数据分析能力,使学生能够运用平行线的性质解决实际问题,并对问题进行合理的数据分析,形成解决问题的策略。
4.培养学生的数学抽象能力,让学生从具体的图形中抽象出平行线的性质,理解几何概念的本质,提高数学思维能力。
5.培养学生的团队合作意识,通过小组讨论、合作探究平行线性质的过程,提高学生的交流协作能力。
-难点四:理解平行线性质与其他几何知识的联系。学生在学习过程中容易将不同知识点孤立起来,无法形成完整的知识体系。
例:在学习平行线性质的同时,教师需要引导学生联系之前学过的垂直、角度等知识,使学生明白不同知识点之间的联系与作用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如马路上两条平行的车道)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的性质。
2.教学难点
-难点一:理解并掌握平行线性质的证明过程。学生对几何证明的逻辑推理能力较弱,需要通过具体的实例和引导,帮助学生理解证明过程中的关键步骤。
例:证明两直线平行,同位角相等。学生需要理解同位角的概念,并掌握如何通过已知条件推导出同位角相等这一性质。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标:1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生运用平行线的性质解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的任意一对对应角相等。

(2)平行线之间的任意一对内错角相等。

(3)平行线之间的任意一对同位角相等。

(4)如果两条直线都与第三条直线平行,这两条直线也互相平行。

三、教学重点与难点:重点:平行线的性质。

难点:平行线性质的证明和应用。

四、教学方法:1. 采用问题驱动法,引导学生探索平行线的性质。

2. 使用多媒体辅助教学,展示平行线的性质和应用。

3. 组织学生进行小组讨论,培养团队合作能力。

4. 进行课堂练习,及时巩固所学知识。

五、教学过程:1. 导入:通过生活实例引入平行线的概念,引导学生思考平行线的特点。

2. 新课讲解:讲解平行线的性质,结合图形进行演示,让学生直观理解。

3. 案例分析:分析实际问题,运用平行线的性质解决问题。

4. 小组讨论:让学生分组讨论,探索平行线性质的证明方法。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结与拓展:总结本节课所学内容,提出拓展问题,激发学生思考。

7. 课后作业:布置作业,让学生进一步巩固平行线的性质。

六、教学评估:1. 课堂问答:通过提问方式检查学生对平行线概念的理解和对平行线性质的掌握。

2. 练习题:布置课堂练习,评估学生对平行线性质的应用能力。

3. 小组讨论:评估学生在小组讨论中的参与程度和逻辑思维能力。

七、教学反思:1. 教师反思:回顾课堂教学,评估教学方法的有效性,思考如何改进教学策略以提高学生学习效果。

2. 学生反馈:收集学生对课堂学习的反馈,了解学生的学习需求和困惑。

八、教学延伸:1. 拓展活动:组织学生进行平行线相关的拓展活动,如制作平行线的手工制品或进行平行线的户外观察。

人教版七年级下5.3平行线的性质教学设计(3课时)

人教版七年级下5.3平行线的性质教学设计(3课时)

第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?BCA DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略. 问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB . 变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.FBDCEAEDCB A小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

七年级数学《平行线的性质》教案

七年级数学《平行线的性质》教案

七年级数学《平行线的性质》教案一、教学目标:知识与技能:1. 理解平行线的性质,能熟练运用平行线的性质解决实际问题。

2. 掌握平行线的判定方法,能判断一条直线是否平行于另一条直线。

过程与方法:1. 通过观察、操作、交流等活动,培养学生直观思维和动手能力。

2. 学会用平行线的性质解释生活中的现象,提高学生解决实际问题的能力。

情感态度与价值观:1. 培养学生的团队协作精神,增强对数学学习的兴趣。

2. 体会数学与生活的密切联系,提高学生运用数学知识解决实际问题的能力。

二、教学重点与难点:重点:平行线的性质及其判定方法。

难点:如何运用平行线的性质解决实际问题。

三、教学准备:教师准备:1. 教学课件或黑板。

2. 平行线性质的图片或实物。

3. 判定平行线的工具(如直尺、三角板等)。

学生准备:1. 笔记本、笔。

2. 提前预习平行线的相关知识。

四、教学过程:环节一:导入新课1. 利用图片或实物展示平行线的现象,引导学生观察、思考。

2. 提问:什么是平行线?平行线有哪些性质和判定方法?环节二:探究平行线的性质3. 师生共同得出平行线的性质:不相交、同方向、距离相等。

环节三:学习平行线的判定方法1. 教师演示判定两条直线平行的方法。

2. 学生动手实践,判断给出的直线是否平行。

3. 教师点评学生判断结果,讲解判定方法。

环节四:运用平行线的性质解决实际问题1. 出示例题,引导学生运用平行线的性质解决问题。

2. 学生独立解答,教师巡回指导。

环节五:课堂小结1. 教师引导学生回顾本节课所学内容。

五、课后作业:1. 完成课后练习题,巩固所学知识。

2. 观察生活中平行线的现象,下节课分享。

注意:教师在教学过程中要关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分的锻炼和提高。

六、教学反思:本节课结束后,教师应认真反思教学效果,思考学生在学习过程中遇到的困难和问题,以及自己的教学方法是否适合学生,是否需要改进。

要关注学生的学习兴趣和参与度,确保下一节课的教学能够更好地满足学生的学习需求。

5.3.1 平行线的性质(教案)人教版数学七年级下册

5.3.1 平行线的性质(教案)人教版数学七年级下册

5.3.1 平行线的性质教学目标知识技能:1.探索并掌握平行线的性质。

2.能用平行线的性质定理进行简单的计算、证明。

3.知道对平行线的性质和判定进行的区别。

数学思考:1.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用他们进行简单的推理和计算。

2.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和条理表达能力。

情感态度:1.通过对平行线性质的探究,使学生初步认识数学于现实生活的密切联系。

2.在平行线的性质的探究中,体会数学知识的生成过程,获得勇于实践、敢于探索的创新精神,形成数学结合的数学思,培养良好的情感、合作交流、主动参与的意识。

教学重难点重点:探究和掌握平行线的三条性质。

难点:平行线的性质定理与判定定理的区别及综合运用。

教学过程一、创设情境,引入新知1.播放一组幻灯片。

内容①岳麓山大门;②梅溪湖夜景;③周南梅溪湖校门。

师:日常生活中我们经常会遇到平行线,你能说出隐藏在图片中的平行线吗?学生回答。

2.播放一张幻灯片。

内容:周南梅溪湖中学校牌,并标出其中形成的角的度数。

师:数学具有严谨性,光眼镜观察还不够,老师还去测量了,请问你能判定图中的两直线平行吗?理由是?你还知道平行线的其他判定吗?生:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

问题:反过来,如果两直线平行,同位角、内错角、同旁内角各有什么关系呢?板书课题:平行线的性质。

设计意图:利用情境导入,进行复习回顾,引出问题,让学生感受到数学问题来源于生活,应用于生活,激发学生学习数学的兴趣。

二、数学结合,探究性质1.画图探究,归纳猜想任意画两条平行新先(a//b),画一条截线c与这两条平行线相交,度量所形成的八个角的度数。

把结果填入下表:问题1:指出哪些是同位角,并观察每一组同位角,你发现他们之间有什么数量关系吗?学生活动:画图--度量--填表--猜想结论:两直线平行,同位角相等设计意图:通过学生自主画图,观察,猜想,激发学生的动手探究能力和观察能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

二、教学目标:
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。

内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答。

①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。

(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。

问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立。

2.教师用《几何画板》课件验证猜想
3.性质1. 两条直线被第三条直线所截,同位角相等。

(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示。

教师活动:评价,引导学生说理。

因为a‖b 因为a‖b
所以∠1=∠2 所以∠1=∠2
又∠1=∠3 又∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
语言叙述:
性质2 两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °。

理由:。

②若∠1 = 110°,则∠3 = °。

理由:。

③若∠1 = 110°,则∠4 = °。

理由:。

(2)如图,由AB‖CD,可得()
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如图,AB‖CD‖EF,那么∠BAC+∠ACE+∠CEF=()(A)180°(B)270°(C)360°(D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2= .
学生提问,并找出回答问题的同学。

2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求梯
形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题。

(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。

在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

②学的转变:学生的角色从学会转变为会学。

本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

相关文档
最新文档