湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(5)——二次函数(含解析)
2020届长沙市中考数学模拟试卷(五)(有答案)(加精)
湖南省长沙市中考数学模拟试卷(五)一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
共12小题,每小题3分,满分36分)1.﹣8的立方根是()A.B.2 C.﹣2 D.2.“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)3.已知点P(﹣2,1)关于y轴的对称点为Q(m,n),则m﹣n的值是()A.1 B.﹣1 C.3 D.﹣34.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4 B.C. D.55.如图所示是一个几何体的三视图,则这个几何体的名称是()A.圆柱B.圆锥C.长方体D.棱锥6.天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨7.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,58.已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.49.如图,在△ABC中,DE∥BC,=,四边形DECB的面积是10,则△ABC的面积为()A.4 B.8 C.18 D.910.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°11.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为()A.1 B.2 C.3 D.412.如图所示是二次函数y=ax2+bx+c(a≠0)的图象,现有下列说法:①a>0;②c>0;③4a﹣b+c<0;④当﹣1<x<3时,y>0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)13.分解因式:y5﹣x2y3=.14.已知A(﹣1,y1)、B(3,y2)为一次函数y=﹣2x+3图象上的两点,则y1与y2的大小关系是.15.如图,在▱ABCD中,DB=DC,∠A=67°,CE⊥BD于点E,则∠BCE=.16.某学生在解一元二次方程x2﹣2x=0时,只得出一个根是2,则被他漏掉的另一个根是x=.17.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.18.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为2,则扇形的半径为.三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.计算:()﹣1+tan60°﹣(﹣)0.20.解不等式组:并在数轴上表示解集.21.为了提高教师的综合素质,教育部门对全长沙市教师进行某项专业技能培训.为了解培训的效果,培训结束后随机抽取了部分参训老师进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了名参训教师进行技能测试;(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为;(3)若全市有4000名参加培训的教师,请你估算获得“优秀”的总人数是多少.22.在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.23.长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.25.在平面直角坐标系中,如果点P(x,y)的坐标满足x+y=xy,那么称P为和谐点.(1)若点A(a,2)是正比例函数y=kx(k≠0,k为常数)上的一个和谐点,求这个正比例函数的解析式;(2)试判断函数y=﹣2x+1的图象上是否存在和谐点?若存在,求出和谐点的坐标;若不存在,请说明理由;(3)直线l:y=kx+2经过和谐点P,且与反比例函数G:y=﹣交于M、N两点,若点P的纵坐标为3,求出直线l的解析式,并在x轴上找一点Q使得QM+QN最小.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,与y轴交于点C,与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),OB=OC=3OA.(1)求这个二次函数的解析式;(2)如图,若点G(2,m)是该抛物线上一点,E是直线AG下方抛物线上的一动点,当点E 运动到什么位置时,△AEG的面积最大?求此时点E的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆的半径.湖南省长沙市中考数学模拟试卷(五)参考答案与试题解析一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
2020届中考复习长沙市中考数学模拟试题(五)(有配套答案)
湖南省长沙市中考数学模拟试卷(五)一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
共12小题,每小题3分,满分36分)1.﹣8的立方根是()A.B.2 C.﹣2 D.2.“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)3.已知点P(﹣2,1)关于y轴的对称点为Q(m,n),则m﹣n的值是()A.1 B.﹣1 C.3 D.﹣34.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4 B.C.D.55.如图所示是一个几何体的三视图,则这个几何体的名称是()A.圆柱B.圆锥C.长方体D.棱锥6.天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨7.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,58.已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.49.如图,在△ABC中,DE∥BC, =,四边形DECB的面积是10,则△ABC的面积为()A.4 B.8 C.18 D.910.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°11.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为()A.1 B.2 C.3 D.412.如图所示是二次函数y=ax2+bx+c(a≠0)的图象,现有下列说法:①a>0;②c>0;③4a﹣b+c<0;④当﹣1<x<3时,y>0.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)13.分解因式:y5﹣x2y3= .14.已知A(﹣1,y1)、B(3,y2)为一次函数y=﹣2x+3图象上的两点,则y1与y2的大小关系是.15.如图,在▱ABCD中,DB=DC,∠A=67°,CE⊥BD于点E,则∠BCE= .16.某学生在解一元二次方程x2﹣2x=0时,只得出一个根是2,则被他漏掉的另一个根是x= .17.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.18.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为2,则扇形的半径为.三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.计算:()﹣1+tan60°﹣(﹣)0.20.解不等式组:并在数轴上表示解集.21.为了提高教师的综合素质,教育部门对全长沙市教师进行某项专业技能培训.为了解培训的效果,培训结束后随机抽取了部分参训老师进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了名参训教师进行技能测试;(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为;(3)若全市有4000名参加培训的教师,请你估算获得“优秀”的总人数是多少.22.在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.23.长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.25.在平面直角坐标系中,如果点P(x,y)的坐标满足x+y=xy,那么称P为和谐点.(1)若点A(a,2)是正比例函数y=kx(k≠0,k为常数)上的一个和谐点,求这个正比例函数的解析式;(2)试判断函数y=﹣2x+1的图象上是否存在和谐点?若存在,求出和谐点的坐标;若不存在,请说明理由;(3)直线l:y=kx+2经过和谐点P,且与反比例函数G:y=﹣交于M、N两点,若点P的纵坐标为3,求出直线l的解析式,并在x轴上找一点Q使得QM+QN最小.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,与y轴交于点C,与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),OB=OC=3OA.(1)求这个二次函数的解析式;(2)如图,若点G(2,m)是该抛物线上一点,E是直线AG下方抛物线上的一动点,当点E 运动到什么位置时,△AEG的面积最大?求此时点E的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆的半径.湖南省长沙市中考数学模拟试卷(五)参考答案与试题解析一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
〖中考零距离-新课标〗2018年湖南省长沙市中考数学模拟试题及答案解析
2018年湖南省长沙市中考数学模拟试卷一、选择题(共12小题,每小题3分,共36分)1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣12.下列图形中是轴对称图形的是()A.B.C.D.3.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.4.下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④5.今年清明节期间,我市共接待游客48.6万人次,旅游收入218 000 000元.数据218 000 000用科学记数法表示为()A.2.18×108B.0.218×109C.2.2×108 D.2.2×1096.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+37.下列说法属于不可能事件的是()A.四边形的内角和为360°B.对角线相等的菱形是正方形C.内错角相等D.存在实数x满足x2+1=08.如图,A,B,C,D为⊙O上四点,若∠BOD=110°,则∠A的度数是()A.110°B.115°C.120°D.125°9.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)10.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形11.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.212.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共6个小题,每小题3分,共18分)13.因式分解2x2﹣8xy+8y2= .14.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.15.如图,四边形ABCD为矩形,添加一个条件:,可使它成为正方形.16.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是.17.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC距离为21米的B处,然后沿着射线CB退后到点E,这时恰好在镜子里看到山头A,利用皮尺测量BE=2.1米.若小宇的身高是1.7米,则假山AC的高度为.18.用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径是.三、解答题:(本大题2个小题,每小题6分,共12分)19.计算:.20.先化简,再求值:÷(x+1﹣),其中x=3.四、解答题:(本大题2个小题,每小题8分,共16分)21.为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.22.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.五、解答题:(本大题2个小题,每小题9分,共18分)23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?24.如图,在△ABC中,CA=CB,以BC为直径的圆⊙O交AC于点G,交AB于点D,过点D作⊙O的切线,交CB的延长线于点E,交AC于点F.(1)求证:DF⊥AC.(2)如果⊙O的半径为5,AB=12,求cos∠E.六、解答题:(本大题2个小题,每小题10分,共20分)25.定义:若函数y1与y2同时满足下列两个条件:①两个函数的自变量x,都满足a≤x≤b;②在自变量范围内对于任意的x1都存在x2,使得x1所对应的函数值y1与x2所对应的函数值y2相等.我们就称y1与y2这两个函数为“兄弟函数”.设函数y1=x2﹣2x﹣3,y2=kx﹣1(1)当k=﹣1时,求出所有使得y1=y2成立的x值;(2)当1≤x≤3时判断函数y1=与y2=﹣x+5是不是“兄弟函数”,并说明理由;(3)已知:当﹣1≤x≤2时函数y1=x2﹣2x﹣3与y2=kx﹣1是“兄弟函数”,试求实数k的取值范围?26.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D.2.下列图形中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,故正确;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选:A、B.3.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.4.下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.【解答】解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.5.今年清明节期间,我市共接待游客48.6万人次,旅游收入218 000 000元.数据218 000 000用科学记数法表示为()A.2.18×108B.0.218×109C.2.2×108 D.2.2×109【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:218 000 000用科学记数法表示为2.18×108,故选:A.6.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3【考点】二次函数图象与几何变换.【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2;由“上加下减”的原则可知,抛物线y=(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=(x﹣1)2+3.故选D.7.下列说法属于不可能事件的是()A.四边形的内角和为360°B.对角线相等的菱形是正方形C.内错角相等D.存在实数x满足x2+1=0【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:四边形的内角和为360°是必然事件,A错误;对角线相等的菱形是正方形是必然事件,B错误;内错角相等是随机事件,C错误;存在实数x满足x2+1=0是不可能事件,故选:D.8.如图,A,B,C,D为⊙O上四点,若∠BOD=110°,则∠A的度数是()A.110°B.115°C.120°D.125°【考点】圆周角定理;圆内接四边形的性质.【分析】由A,B,C,D为⊙O上四点,若∠BOD=110°,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,即可求得∠C的度数,又由圆的内接四边形的性质定理,即可求得答案.【解答】解:∵A,B,C,D为⊙O上四点,∠BOD=110°,∴∠C=∠BOD=55°,∴∠A=180°﹣∠C=125°.故选D.9.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)【考点】二次函数的性质.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.10.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形【考点】中点四边形.【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.11.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【考点】正多边形和圆;勾股定理.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.12.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A .B .C .D .【考点】动点问题的函数图象.【分析】判断出△AEF 和△ABC 相似,根据相似三角形对应边成比例列式求出EF ,再根据三角形的面积列式表示出S 与x 的关系式,然后得到大致图象选择即可.【解答】解:∵EF ∥BC ,∴△AEF ∽△ABC ,∴=,∴EF=•10=10﹣2x ,∴S=(10﹣2x )•x=﹣x 2+5x=﹣(x ﹣)2+,∴S 与x 的关系式为S=﹣(x ﹣)2+(0<x <5),纵观各选项,只有D 选项图象符合.故选:D .二、填空题(共6个小题,每小题3分,共18分)13.因式分解2x 2﹣8xy+8y 2= 2(x ﹣2y )2 .【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用完全平方公式分解因式即可.【解答】解:2x 2﹣8xy+8y 2=2(x 2﹣4xy+4y 2)=2(x ﹣2y )2.故答案为:2(x ﹣2y )2.14.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:15.如图,四边形ABCD为矩形,添加一个条件:AB=AD ,可使它成为正方形.【考点】正方形的判定.【分析】由四边形ABCD是矩形,根据邻边相等的矩形是正方形或对角线互相垂直的矩形是正方形,即可求得答案.【解答】解:∵四边形ABCD是矩形,∴当AB=AD或AC⊥BD时,矩形ABCD是正方形.故答案为:AB=AD.16.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0 .【考点】根的判别式.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根,∴△=b2﹣4ac≥0,即:4﹣4k≥0,解得:k≤1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故答案为:k ≤1且k ≠0.17.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量BE=2.1米.若小宇的身高是1.7米,则假山AC 的高度为 17米 .【考点】相似三角形的应用. 【分析】因为入射光线和反射光线与镜面的夹角相等且人和树均垂直于地面,所以构成两个相似三角形,利用相似比可求出假山AC 的高度. 【解答】解:∵DE ⊥EC ,AC ⊥EC , ∴∠DEB=∠ACB=90°, ∵∠DBE=∠ABC ∴△DEB ∽△ACB , ∴DE :AC=BE :BC ,又∵DE=1.7米,BE=2.1米,BC=21米, ∴1.7:AC=2.1:21, ∴AC=17米, 故答案为:17米.18.用半径为2cm 的半圆围成一个圆锥的侧面,这个圆锥的底面半径是 1cm . 【考点】圆锥的计算.【分析】首先求得扇形的弧长,即圆锥的底面周长,然后根据圆的周长公式即可求得半径. 【解答】解:圆锥的底面周长是:2πcm , 设圆锥的底面半径是r ,则2πr=2π, 解得:r=1.故答案是:1cm .三、解答题:(本大题2个小题,每小题6分,共12分)19.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=×+4+﹣1﹣4=.20.先化简,再求值:÷(x+1﹣),其中x=3.【考点】分式的化简求值.【分析】先把括号内通分,再把分子分解因式,接着把除法运算化为乘法运算,然后约分后得到原式=,再把x=3代入计算即可.【解答】解:原式=÷=•=,当x=3时,原式==.四、解答题:(本大题2个小题,每小题8分,共16分)21.为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 40 ;(2)图1中∠α的度数是 54° ,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 7000 .(4)测试老师想从4位同学(分别记为E 、F 、G 、H ,其中E 为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图. 【分析】(1)由统计图可得:B 级学生12人,占30%,即可求得本次抽样测试的学生人数; (2)由A 级6人,可求得A 级占的百分数,继而求得∠α的度数;然后由C 级占35%,可求得C 级的人数,继而补全统计图;(3)首先求得D 级的百分比,继而估算出不及格的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:=40(人);故答案为:40;(2)根据题意得:∠α=360°×=54°,C级的人数是:40﹣6﹣12﹣8=14(人),如图:(3)根据题意得:35000×=7000(人),答:不及格的人数为7000人.故答案为:7000;(4)画树状图得:∵共有12种情况,选中小明的有6种,∴P(选中小明)==.22.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【考点】菱形的判定与性质;勾股定理.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.五、解答题:(本大题2个小题,每小题9分,共18分)23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.24.如图,在△ABC中,CA=CB,以BC为直径的圆⊙O交AC于点G,交AB于点D,过点D作⊙O的切线,交CB的延长线于点E,交AC于点F.(1)求证:DF⊥AC.(2)如果⊙O的半径为5,AB=12,求cos∠E.【考点】切线的性质.【分析】(1)首先连接OD,由CA=CB,OB=OD,易证得OD∥AC,又由DF是⊙O的切线,即可证得结论;(2)首先连接BG,CD,可求得CD的长,然后由AB•CD=2S△ABC=AC•BG,求得BG的长,易证得BG∥EF,即可得cos∠E=cos∠CBG=.【解答】(1)证明:连接OD,∵CA=CB,OB=OD,∴∠A=∠ABC,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF是⊙O的切线,∴OD⊥DF,∴DF⊥AC.(2)解:连接BG,CD.∵BC是直径,∴∠BDC=90°,∵CA=CB=10,∴AD=BD=AB=×12=6,∴CD==8.∵AB•CD=2S△ABC=AC•BG,∴BG==.∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴cos∠E=cos∠CBG==.六、解答题:(本大题2个小题,每小题10分,共20分)25.定义:若函数y1与y2同时满足下列两个条件:①两个函数的自变量x,都满足a≤x≤b;②在自变量范围内对于任意的x1都存在x2,使得x1所对应的函数值y1与x2所对应的函数值y2相等.我们就称y1与y2这两个函数为“兄弟函数”.设函数y1=x2﹣2x﹣3,y2=kx﹣1(1)当k=﹣1时,求出所有使得y1=y2成立的x值;(2)当1≤x≤3时判断函数y1=与y2=﹣x+5是不是“兄弟函数”,并说明理由;(3)已知:当﹣1≤x≤2时函数y1=x2﹣2x﹣3与y2=kx﹣1是“兄弟函数”,试求实数k的取值范围?【考点】一次函数综合题.【分析】(1)将k=﹣1代入一次函数,与二次函数联立方程组,求出方程组的解即为x的值;(2)假设两个函数是兄弟函数,联立方程组,求出x的值,判断x值是否符合相应取值范围,经过判断,两个函数不是兄弟函数;(3)利用兄弟函数的定义,联立函数解析式,求出x的值,然后将x的值带入x的取值范围,得到一个不等式组,解不等式组即可.【解答】解:(1)当k=﹣1时,y2=﹣x﹣1,根据题意得:x2﹣2x﹣3=﹣x﹣1,解得:x=2或x=﹣1;∴x的值为2或﹣1.(2)不是若=﹣x+5,则x2﹣5x+3=0,解得:x=,∵3<<4∴4<<,<<1,两根均不在1≤x≤3,∴函数y1=与y2=﹣x+5不是“兄弟函数”.(3)∵函数y1=x2﹣2x﹣3与y2=kx﹣1是“兄弟函数”,∴x2﹣2x﹣3=kx﹣1,整理得:x2﹣(2+k)x﹣2=0,解得:x=,∵﹣1≤x≤2时函数y1=x2﹣2x﹣3与y2=kx﹣1是“兄弟函数”,∴﹣1≤≤2,解得:k≤﹣3,或1≤≤2,解得:k≥﹣1.∴实数k的取值范围:k≤﹣3或k≥﹣1.26.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.【考点】二次函数综合题.【分析】(1)连接AE,由已知得:AE=CE=5,OE=3,利用勾股定理求出OA的长,结合垂径定理求出OC的长,从而得到C点坐标,进而得到抛物线的解析式;(2)求出点D的坐标为(﹣,0),根据△AOE∽△DOA,求出∠DAE=90°,判断出直线l与⊙E相切与A.(3)过点P作直线l的垂线段PQ,垂足为Q,过点P作直线PM垂直于x轴,交直线l于点M.设M(m,m+4),P(m,﹣m2+m﹣4),得到PM=m+4﹣(﹣m2+m﹣4)=m2﹣m+8=(m﹣2)2+,根据△PQM的三个内角固定不变,得到PQ最小=PM最小•sin∠QMP=PM最小•sin∠AEO=×=,从而得到最小距离.【解答】解:(1)如图1,连接AE,由已知得:AE=CE=5,OE=3,在Rt△AOE中,由勾股定理得,OA===4,∵OC⊥AB,∴由垂径定理得,OB=OA=4,OC=OE+CE=3+5=8,∴A(0,4),B(0,﹣4),C(8,0),∵抛物线的顶点为C,∴设抛物线的解析式为y=a(x﹣8)2,将点B的坐标代入上解析的式,得64a=﹣4,故a=﹣,∴y=﹣(x﹣8)2,∴y=﹣x2+x﹣4为所求抛物线的解析式,(2)在直线l的解析式y=x+4中,令y=0,得x+4=0,解得x=﹣,∴点D的坐标为(﹣,0),当x=0时,y=4,∴点A在直线l上,在Rt△AOE和Rt△DOA中,∵=,=,∴=,∵∠AOE=∠DOA=90°,∴△AOE∽△DOA,∴∠AEO=∠DAO,∵∠AEO+∠EAO=90°,∴∠DAO+∠EAO=90°,即∠DAE=90°,因此,直线l与⊙E相切与A.(3)如图2,过点P作直线l的垂线段PQ,垂足为Q,过点P作直线PM垂直于x轴,交直线l于点M.设M(m,m+4),P(m,﹣m2+m﹣4),则PM=m+4﹣(﹣m2+m﹣4)=m2﹣m+8=(m﹣2)2+,当m=2时,PM取得最小值,此时,P(2,﹣),对于△PQM,∵PM⊥x轴,∴∠QMP=∠DAO=∠AEO,又∠PQM=90°,∴△PQM的三个内角固定不变,∴在动点P运动的过程中,△PQM的三边的比例关系不变,∴当PM取得最小值时,PQ也取得最小值,PQ最小=PM最小•sin∠QMP=PM最小•sin∠AEO=×=,∴当抛物线上的动点P的坐标为(2,﹣)时,点P到直线l的距离最小,其最小距离为.2016年6月14日。
初中数学 湖南省长沙市中考模拟数学考试卷考试题及答案word解析版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-3相反数是()A. B.-3 C. - D.3试题2:下列平面图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.试题3:甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定试题4:一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()评卷人得分A. B. C.D.试题5:下列四边形中,对角线一定不相等的是()A.正方形 B.矩形 C.等腰梯形 D.直角梯形试题6:下列四个角中,最有可能与70°角互补的是()试题7:小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()试题8:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于E,AD=6cm,则OE的长为()A、6cmB、4cmC、3cmD、2cm试题9:某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图像,则用电阻R表示电流I的函数解析式为()A.I=B. I=C. I=D. I=-试题10:现有3㎝,4㎝,7㎝,9㎝长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A. 1个B. 2个C. 3个D.4个试题11:已知函数关系式:y=则自变量x的取值范围是__________试题12:如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= 度.试题13:若实数a,b满足:,则= .试题14:如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是试题15:任意抛掷一枚硬币,则“正面朝上”是事件试题16:在半径为1cm的圆中,圆心角为120°的扇形的弧长是 cm;试题17:如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= 度;试题18:如图,等腰梯形ABCD中,AD//BC,AB=AD=2,∠B=60°,则BC的长为;试题19:计算:试题20:先化简,再求值:,其中=-2,b=1;试题21:某班数学科代表小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:根据上述信息,完成下列问题:(1) 频数、频率统计表中,a=;b= ;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~1.5合计频数2 a2164 5频率0.4.16.4.32b 1试题22:如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD;试题23:以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。
湖南省2020年中考数学全真模拟试卷含解析
湖南省2020年中考数学全真模拟试卷一、选择题(本题共12个小题,每题3分,共36分)1.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>22.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.3.(3分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.4.(3分)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB =3,DE=4,则BC等于()A.5B.6C.7D.85.(3分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC 于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:96.(3分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()2002504005001000近视眼镜的度数y(度)0.500.400.250.200.10镜片焦距x(米)A.y =B.y =C.y =D.y =7.(3分)如图,平行于x轴的直线与函数y =(k1>0,x>0),y =(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC 的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣48.(3分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺9.(3分)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.210.(3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.11.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣812.(3分)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.二、填空题(本大题共6各小题,每小题3分,共18分)13.(3分)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=.14.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.15.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.16.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.17.(3分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.三、解答题(本题共8个小题,共66分)18.(6分)计算题:(1)tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.(2)4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.19.(6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.20.(7分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.21.(8分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD =2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.22.(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732)23.(10分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,请求出DE的长度.24.(10分)如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=的图象相切于点C.(1)切点C的坐标是;(2)若点M为线段BC的中点,将一次函数y=﹣2x+8的图象向左平移m(m>0)个单位后,点C和点M平移后的对应点同时落在另一个反比例函数y=的图象上时,求k的值.25.(12分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.参考答案与试题解析一、选择题(本题共12个小题,每题3分,共36分)1.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2【分析】反比例函数y=图象在一、三象限,可得k>0.【解答】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a﹣2>0,∴a>2.故选:D.2.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.3.(3分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a、b的符号确定一次函数图象所经过的象限.【解答】解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.故选项A正确;故选:A.4.(3分)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB =3,DE=4,则BC等于()A.5B.6C.7D.8【分析】由平行线得出△ADE∽△ABC,得出对应边成比例=,即可得出结果.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BC=6,故选:B.5.(3分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC 于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:9【分析】先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF =BC =x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.6.(3分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()2002504005001000近视眼镜的度数y(度)镜片焦距x0.500.400.250.200.10(米)A.y=B.y=C.y=D.y=【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.7.(3分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC 的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh =k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.8.(3分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.9.(3分)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.2【分析】设CD=5x,BD=7x,则BC=2x,由AC=12即可求x,进而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.10.(3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD 为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【解答】解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.11.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.12.(3分)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.【分析】点A,B落在函数y=﹣(x<0),y=(x>0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.【解答】解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵点A在反比例函数y=﹣(x<0)上,点B在y=(x>0)上,∴S△AOD=,S△BOE=2,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴()2=,∴设OA=m,则OB=2m,AB=,在RtAOB中,sin∠ABO=故选:D.二、填空题(本大题共6各小题,每小题3分,共18分)13.(3分)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=6.【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数y=的图象上,即可得出k=2n=3(n﹣1),解得即可.【解答】解:∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=6,故答案为:6.14.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是2<x<4.【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当2<x<4时,y1>y2.故答案为2<x<4.15.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC<.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.16.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【解答】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1617.(3分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于10+6.【分析】设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出D x,由•x•x=1,可得x=2(负根已经舍弃),即可解决问题.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴D x,∵•x•x=1,∴x=2(负根已经舍弃),∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3)=10+6.故答案为10+6三、解答题(本题共8个小题,共66分)18.(6分)计算题:(1)tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.(2)4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【解答】解:(1)原式=1+1﹣4+2﹣=﹣;(2)原式=4×+1﹣2+2=4﹣1.19.(6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y =的图象的两个交点,可以求得m的值,进而求得n的值,即可解答本题;(2)根据函数图象和(1)中一次函数的解析式可以求得点C的坐标,从而根据S△AOB =S△AOC+S△BOC可以求得△AOB的面积.【解答】解:(1)∵A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点,∴4=,得m=﹣4,∴y=﹣,∴﹣2=﹣,得n=2,∴点A(2,﹣2),∴,解得,∴一函数解析式为y=﹣2x+2,即反比例函数解析式为y=﹣,一函数解析式为y=﹣2x+2;(2)设直线与y轴的交点为C,当x=0时,y=﹣2×0+2=2,∴点C的坐标是(0,2),∵点A(2,﹣2),点B(﹣1,4),∴S△AOB=S△AOC+S△BOC=×2×2+×2×1=3.20.(7分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD 和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=21.(8分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD =2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【分析】根据题意得到△GDC∽△EOC和△FBA∽△EOA,利用相似三角形的对应边的比相等列式计算即可.【解答】解:令OE=a,AO=b,CB=x,则由△GDC∽△EOC得,即,整理得:3.2+1.6b=2.1a﹣ax①,由△FBA∽△EOA得,即,整理得:1.6b=2a﹣ax②,将②代入①得:3.2+2a﹣ax=2.1a﹣ax,∴a=32,即OE=32,答:楼的高度OE为32米.22.(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732)【分析】由三角函数得出AM==h,BM=h,由AM+BM=AB=10,得出方程h+h=10,解方程即可.【解答】解:由题意得,∠P AB=60°,∠PBA=45°,AB=10km,在Rt△APM和Rt△BPM中,tan∠P AB==,tan∠PBA==1,∴AM==h,BM=h,∵AM+BM=AB=10,∴h+h=10,解得:h=15﹣5≈6;答:h约为6km.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,请求出DE的长度.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,可得出CD=BC=6,再证明△AEB ∽△CED,得出比例线段可求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴,∴==3.∴==.24.(10分)如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=的图象相切于点C.(1)切点C的坐标是(2,4);(2)若点M为线段BC的中点,将一次函数y=﹣2x+8的图象向左平移m(m>0)个单位后,点C和点M平移后的对应点同时落在另一个反比例函数y=的图象上时,求k的值.【分析】(1)将一次函数解析式与反比例函数解析式组成方程组,求解即可;(2)先求出点M坐标,再求出点C和点M平移后的对应点的坐标,列出方程可求m和k的值.【解答】解:(1)∵一次函数y=﹣2x+8的图象与反比例函数y=的图象相切于点C ∴﹣2x+8=∴x=2,∴点C坐标为(2,4)故答案为:(2,4);(2)∵一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,∴点B(4,0)∵点M为线段BC的中点,∴点M(3,2)∴点C和点M平移后的对应点坐标分别为(2﹣m,4),(3﹣m,2)∴k=4(2﹣m)=2(3﹣m)∴m=1∴k=425.(12分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣。
2020年长沙市教科院中考数学模拟试卷(五) (含答案解析)
2020年长沙市教科院中考数学模拟试卷(五)一、选择题(本大题共12小题,共36.0分)1.−3的绝对值是()A. 13B. −3 C. 3 D. −132.函数y=xx+3中,自变量x的取值范围是()A. x>−3B. x≠0C. x>−3且x≠0D. x≠−33.太阳中心的温度达到了19200000℃,用科学记数法表示数据19200000,正确的是A. 1.92×108B. 19.2×107C. 192×105D. 1.92×1074.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个图案构成一个轴对称图形的方法有()A. 4B. 5C. 6D. 75. 2.如果n边形的内角和是它外角和的3倍,则n等于()A. 6B. 7C. 8D. 96.下列运算正确的是()A. a2⋅a3=a6B. 5a−2a=3a2C. (a3)4=a12D. (x+y)2=x2+y27.在平面直角坐标系中,点P(2,−3)在第()象限A. 一B. 二C. 三D. 四8.已知m,n是方程x2−2x−2016=0的两个实数根,则n2+2m的值为()A. 1010B. 2012C. 2016D. 20209.下列四个命题中,正确的有()①若a<b,则a+1<b+1;②若a<b,则a−1<b−1;③若a<b,则−2a>−2b;④若a<b,则2a>2b.A. 1个B. 2个C. 3个D. 4个10.如图,BD是⊙O的直径,点A,C在⊙O上,AB⏜=AD⏜,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A. 99°B. 108°C. 110°D. 117°11.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A. ∠B=∠FB. ∠B=∠BCFC. AC=CFD. AD=CF12.已知两点A(−5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y1>y2≥y0,则x0的取值范围是()A. x0>−5B. x0>−1C. −5<x0<−1D. −2<x0<3二、填空题(本大题共6小题,共18.0分)13.若a2−3a+1=0,则3a2−9a+2021=______.14.在一个不透明的口袋中,装有除了颜色不同,其它都相同的4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是______ .15.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的数y=kx),则点D的坐标是________.点E(n,2316.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为______cm.17.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是.18.如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是______.三、解答题(本大题共8小题,共66.0分))−219.计算:3tan30°+|√3−2|+(−1320.如图,△ABC各顶点的坐标分别是A(−2,−4),B(0,−4),C(1,−1).(1)在图中画出△ABC关于原点对称的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求点A运动到A2路径长.21.某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生听写结果,图1,图2是根据抽查结果绘制的统计图的一部分.组别听写正确的个数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)本次共随机抽查了多少名学生,求出m,n的值并补全图2的条形统计图;(2)求出图1中∠α的度数;(3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.22.如图,在7×7的方格纸中,点A,B,C都在格点上,请按要求找出D点,使得D点在格点上.(1)在图甲中画一个∠ADC,使得∠ABC=∠ADC.(2)在图乙中画一个三角形ADC,使得△ADC的面积等于△ABC面积的2倍.23.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价.据测算,该服装每降价1元,每天可多售出2件.如果要使每天销售该服装获利2052元,每件应降价多少元?24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若BC=6,tanB=1,求⊙O的半径.225.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(−1,0),B(3,0)两点,与y轴交于点C(0,−3).(1)求该抛物线的解析式及顶点M的坐标;(2)求△BCM的面积;(3)若P是x轴上一个动点,过P作射线PQ//AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形?若存在请求出Q点的坐标;若不存在,请说明理由.【答案与解析】1.答案:C解析:解:|−3|=3,故选:C.根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则−3的绝对值就是表示−3的点与原点的距离.此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.答案:D解析:解:由题意得,x+3≠0,解得x≠−3.故选D.根据分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.答案:D解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将19200000用科学记数法表示为:1.92×107.故选D.4.答案:B解析:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选B.5.答案:C解析:利用多边形的外角和是360度,一个n边形的内角和等于它外角和的3倍,则内角和是3×360°,而n边形的内角和是(n−2)⋅180°,则可得到方程,解之即可.【详解】根据题意列方程,得:(n−2)180°=3×360°,解得:n=8,即边数n等于8,故选C.本题考查了多边形的内角和的计算公式以及多边形的外角和定理,熟练掌握是解题的关键.6.答案:C解析:解:A.a2⋅a3=a5,故此选项错误;B.5a−2a=3a,故此选项错误;C.(a3)4=a12,正确;D.(x+y)2=x2+y2+2xy,故此选项错误.故选:C.分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.7.答案:D解析:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征解答.解:点P(2,−3)在第四象限.故选D.8.答案:D解析:本题考查了根与系数的关系及一元二次方程的解,通过方程解的定义及根与系数的关系代入化简即可得出结论.解:∵n是方程x2−2x−2016=0的实数根,∴n2−2n−2016=0,∴n2=2n+2016,∵m+n=2,∴n2+2m=2n+2016+2m=2(m+n)+2016=2×2+2016=2020.故选D.9.答案:C解析:本题考查了命题与定理的知识,解题的关键是了解不等式的基本性质.利用不等式的基本性质分别判断后即可确定正确的选项.解:①若a<b,则a+1<b+1,正确;②若a<b,则a−1<b−1,正确;③若a<b,则−2a>−2b,正确;④若a<b,则2a<2b,则④错误,故选C.10.答案:B解析:解:∵BD是⊙O的直径,∴∠BAD=90°,∵AB⏜=AD⏜,∴∠B=∠D=45°,∵∠DAC=12∠COD=12×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.根据圆周角定理得到∠BAD=90°,∠DAC=12∠COD=63°,再由AB⏜=AD⏜得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.答案:B解析:解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE//AC.A、根据∠B=∠F不能判定AC//DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF//AB,即CF//AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF,FD//AC,不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD//AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE//AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.12.答案:B解析:本题考查了二次函数图象上点坐标特征,主要利用了二次函数的性质与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.先判断出抛物线开口方向上,进而求出对称轴的范围即可求解.解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a−5b+c>9a+3b+c,<1,∴b2a>−1,∴−b2a∴x0>−1,∴x0的取值范围是x0>−1.故选B.13.答案:2018解析:解:∵a2−3a+1=0,∴a2−3a=−1,则原式=3(a2−3a)+2021=3×(−1)+2021=−3+2021=2018,故答案为:2018.由a2−3a+1=0知a2−3a=−1,整体代入原式=3(a2−3a)+2021,计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.14.答案:12解析:解:∵共有4+1+5=10个球,∴搅匀后随机从袋中摸出1个球是黄色球的概率是:510=12;故答案为:12.根据概率的求法,找准两点:①全部情况的总数n;②符合条件的情况数目m;二者的比值mn就是其发生的概率.使用树状图分析时,一定要做到不重不漏.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.答案:(3,2)解析:本题考查了反比例函图象的性质和正方形的性质.根据平行于坐标轴的直线上点的坐标的特征,以及反比例函数的性质,即可解答.解:∵AD//BC∴D的纵坐标为2,AB=2∴C(m+2,2 3 )∴23(m+2)=2m∴m=1∴OC=3∴D的横坐标为3∴D(3,2).故答案为(3,2).16.答案:2解析:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的底面圆半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的,然后解方程即可.弧长等于圆锥底面的周长和弧长公式得到2πr=120⋅π⋅6180解:设圆锥的底面圆半径为r,,根据题意得2πr=120⋅π⋅6180解得r=2,即圆锥的底面圆半径为2cm.故答案为2.17.答案:185解析:本题主要考查了翻折变换,解决问题的关键是利用矩形的性质和轴对称的性质、勾股定理、全等三角形的判定和性质进行求解.解题时注意:翻折前后的对应边相等,对应角相等.解:由题意知,AF=FC,AB=CD=AG=4,BC=AD=8,在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8−AF)2=AF2,解得AF=5,∵∠BAF+∠FAE=∠FAE+∠EAG=90°,∴∠BAF=∠EAG,在△BAF和△GAE中,∴△BAF≌△GAE(ASA),∴AE=AF=5,ED=GE=3过G作GH⊥AD,垂足为H∵S△GAE=12AG⋅GE=12AE⋅GH∴4×3=5×GH ∴GH=125,∴S△GED=12ED⋅GH=12×3×125=185.故答案为185.18.答案:8+4√3解析:解:如图,连接AD,设AC与BD交于点O,解:如图,连接AD,由题意得:CA=CD,∠ACD=60°∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°;∵∠ABC=90°,AB=BC=2,∴AC=CD=2√2,∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=1AC=√2,OD=CD⋅sin60°=√6,2∴BD=√2+√6∴BD2=(√2+√6)2=8+4√3,故答案为8+4√3连接AD,由旋转的性质可得CA=CD,∠ACD=60°,得到△ACD为等边三角形,由AB=BC,CD=AD,AC=√2,OD=CD⋅sin60°=√6,可得BD=BO+OD,得出BD垂直平分AC,于是求出BO=12即可求解.本题考查了图形的变换−旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.19.答案:解:原式=3×√3+2−√3+93=√3+2−√3+9=11.解析:直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.答案:解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA=√22+42=2√5,=√5π.点A运动到A2路径长=90⋅π⋅2√5180解析:本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长的计算.(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)根据网格特点和旋转的性质画出A、B、C对称点A2、B2、C2,从而得到△A2B2C2;(3)根据弧长公式,进行计算即可求出点A运动到A2路径长.21.答案:解:(1)15÷15%=100(名);m=30%×100=30;n=20%×100=20.条形图如图所示:×360=90°.(2)∠α=25100=1500(名)(3)解:3000×10+15+25100答:估计这所学校本次比赛听写不合格的学生人数有1500(名).解析:(1)用B组的人数除以百分比即可得出参加比赛的总人数;总人数×30%=D组人数,总人数×20%=E组人数;(2)C组的圆心角度数=25%×360°;×100%;(3)不合格人数为3000×10+15+25100本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.答案:解:(1)如图甲所示:∠ABC=∠ADC;(2)如图乙所示:△ADC的面积等于△ABC面积的2倍.解析:此题主要考查了应用设计与作图,正确借助网格分析是解题关键.(1)利用网格即可得出符合∠ABC=∠ADC的答案;(2)利用三角形面积求法得出答案.23.答案:解:设每件服装应降价x元,依题意得:(80−40−x)(50+2x)=2052,解得:x1=2,x2=13,为了减少库存,取x=13.答:每件服装应降价13元.解析:【试题解析】设每件服装应降价x元,根据总盈利=单件利润×销售数量即可得出关于x的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,根据数量关系列出一元二次方程是解题的关键.24.答案:(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°−(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)解:设圆O的半径为r,在Rt△ABC中,AC=BCtanB=3,根据勾股定理得:AB=2+62=3√5,∴OA=3√5−r,,在Rt△ACD中,tan∠1=tanB=12∴CD=ACtan∠1=1.5,根据勾股定理得:AD2=AC2+CD2=9+2.25=11.25,在Rt△ADO中,OA2=OD2+AD2,即(3√5−r)2=r2+11.252,解得:r=9√5,8∴⊙O的半径为9√5.8解析:(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.25.答案:解:(1)y=x+2,令x=0,则y=2,令y=0,则x=−2,故点A、B的坐标分别为(−2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=−b2a≥0,而b=2a+1,即:−2a+12a ≥0,解得:a≥−12,故:a的取值范围为:−12≤a<0;(3)当a=−1时,二次函数表达式为:y=−x2−x+2,过点P作直线l//AB,作PQ//y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=12×AB×PH=12×2√2×PQ×√22=1,则y P−y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P−y Q|=1,设点P(x,−x2−x+2),则点Q(x,x+2),即:−x2−x+2−x−2=±1,解得:x=−1或−1±√2,故点P(−1,2)或(−1+√2,√2)或(−1−√2,−√2).解析:本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=−b2a≥0,而b=2a+1,即:−2a+12a≥0,即可求解;(3)过点P作直线l//AB,作PQ//y轴交BA于点Q,作PH⊥AB于点H,S△PAB=12×AB×PH=1 2×2√2×PQ×√22=1,则|y P−y Q|=1,即可求解.26.答案:解:(1)设抛物线解析式为y=a(x+1)(x−3),∵抛物线过点C(0,−3),∴−3=a(0+1)(0−3),∴a=1,∴抛物线解析式为y=(x+1)(x−3),∵y=(x+1)(x−3)=(x−1)2−4,∴M(1,−4);(2)如图1,连BC、BM、CM,作MD⊥轴于D,∴S△BCM=S梯形OCMD+S△BMD−S△BCO=12(3+4)×1+12×2×4−12×3×3=72+4−92=3;(3)存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形.①如图2,当Q点在轴下方时,作QE⊥轴于E,∵AC//PQ且AC=PQ,∴OC=EQ=3,当−3=x2−2x−3时,解得:x1=0(舍),x2=2,∴Q(2,−3);②如图2,当Q点在轴上方时,作QF⊥轴于F,∵AC//PQ且AC=PQ,∴Rt△OAC≌Rt△FPQ,∴OC=FQ=3,当3=x2−2x−3时,解得:x1=1−√7,x2=1+√7,∴Q(1−√7,3)或(1+√7,3),综上所述,满足条件的Q点为(2,−3)或(1−√7,3)或(1+√7,3).解析:(1)根据A(−1,0),B(3,0),C(0,−3),设抛物线解析式为y=a(x+1)(x−3),代入(0,−3),解方程即可得出抛物线解析式,进而得到顶点M的坐标;(2)连BC、BM、CM,作MD⊥轴于D,根据S△BCM=S梯形OCMD+S△BMD−S△BCO进行计算即可;(3)分两种情形讨论:①当Q点在x轴下方时,作QE⊥x轴于E;②当Q点在x轴上方时,作QF⊥x 轴于F,分别根据Q的纵坐标,求出点Q的横坐标即可.本题属于二次函数综合题,主要考查了三角形面积、平行线的性质,全等三角形的判定和性质以及解一元二次方程的综合应用,解题的关键是灵活应用待定系数法确定函数解析式,学会利用分割法求三角形的面积,学会分类讨论的思想解决问题.。
湖南省2020年中考数学模拟试题(含答案)
湖南省2020年中考模拟试题数 学一、 选择题:(本题共10小题,每小题4分,共40分)1.2019年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( ) A .1.35×106 B .1.35×105 C .13.5×104 D .135×1032.下列运算正确的是( )A .339x x x =gB .842x x x ÷=C .()236ab ab = D .()3328x x =3.不等式组213312x x ≥-+⎧⎨+⎩< 的解集在数轴上表示正确的是( )10-1 10-1 10-1 10-1A B C D 4.下图是某几何体的三视图,则这个几何体是( ) A .棱柱 B .圆柱 C .棱锥 D .圆锥5.如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°6.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:关于这组文化程度的人数数据,以下说法正确的是:( ) A .众数是20 B .中位数是17 C .平均数是12 D .方差是267.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-8.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米 9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-= B .800800402.25x x-= C .800800401.25x x -= D .800800401.25x x-= 10.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<0二、填空题:(本题共8小题,每小题4分,共32分)。
2018年长沙市中考长郡集团数学模拟试卷五
2018年长沙市中考长郡集团数学模拟试卷(五)数 学时量:120分钟 满分:120分一、选择题(本题共12个小题,每小题3分,共36分)1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人,将264000用科学计数法表示应为( )A .B .C .D .2.下列计算正确的是( )A .32a a a =+B .a a a 6)3()2(=⋅C .236a a a ⋅= D .236()a a =3.下列图形选自历届世博会会徽,其中是轴对称图形的是( )4.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为( )A .2B .3C .4D .55.某篮球队12名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别( )A .16,15B .15,15.5C .15,17D .15,166.如图,等腰直角三角板的顶点A ,C 分别在直线,b 上.若∥b ,,则的度数为( )A .B .C .D .7.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是,则这个正六边形的周长是( )A. B .12 cm C. D .36 cm8.反比例函数2y x=-的图像上有两点111222(,),(,),P x y P x y 若120x x <<,则下列结论正确的是( ) A .120y y << B .120y y <<C .120y y >>D .120y y >> 9.现有A 、B 两种商品,买3件A 商品和2件B 商品用了160元,买2件A 商品和3件B 商品用了190元.如果准备购买A 、B 两种商品共10件,下列方案中费用最低的为( )A .A 商品7件和B 商品3件 B .A 商品6件和B 商品4件C .A 商品5件和B 商品5件D .A 商品4件和B 商品6件326410⨯42.6410⨯52.6410⨯60.26410⨯a a 1=35∠︒2∠35︒15︒10︒5︒10.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚..到第1格,第2格,第 3格,第4格,此时正方体朝上一面的文字为( )A .富B .强C .文D .民11.如图,ABC ∆为等边三角形,点O 在过点A 且平行于BC 的直线上运动,以AB C ∆的高为半径的⊙O 分别交线段AB 、AC 于点E 、F ,则所对的圆周角的度数( )A .从︒0到︒30变化B .从︒30到︒60变化C .总等于︒30D .总等于︒6012.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC .则下列结论:①abc <0;②244b ac a->0;③ac ﹣b +1=0;④OA•OB=c a -.其中正确结论的个数是( ) A .4 B .3 C .2 D .1二、填空题(本题共6个小题,每小题3分,共18分)13x的取值范围是____________.14.分解因式:22a b ab b -+=________________. 15.关于x 的方程0322=+-x kx 有两个不等的实数根,则k 的取值范围是 .16.已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是 .17.如图,在⊙O 中,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 的长为10,4sin 5BOD ∠=, 则AB 的长为________.18.如图,点E 、F 分别是正方形纸片ABCD 的边BC 、CD 上一点,将正方形纸片ABCD 分别沿AE 、AF折叠,使得点B 、D 恰好都落在点G 处,且EG=2,FG=3,则正方形纸片ABCD 的边长为 .三、解答题(本题共2个小题,每小题6分,共12分)19.计算:10(2)1)4cos 45---++︒.20.解不等式组3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩并写出它的所有整数解.四、解答题(本题共2个小题,每小题8分,共16分)21.为创建文明和谐社会,进一步提高我市市民的文明素质,某校对九年级各班文明行为劝导志愿者人数进行了统计,各班志愿者人数有6名,5名、4名、3名、2名、1名共计六种情况,并制成两幅不完整的统计图如下:(1)该年级共有个班级,并将条形图补充完整;(2)求志愿者人数是6名的班级所占圆心角度数;(3)为了了解志愿者在这次活动中的感受,校学生会准备从只有2名志愿者的班级中任选两名志愿者参加座谈会,请用列表或画树状图的方法,求出所选志愿者来自同一个班级的概率.22.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.23.今年3月12日植树节前夕,我校购进A,B两个品种的树苗,已知A种比B种树苗多20元,买一株A种树苗和2株B种树苗共需110元.(1)问A,B两种树苗每株分别是多少元?(2)4月,为美化校园,学校花费4000元再次购入A,B两种树苗,已知A种树苗数量不少于B种数量的一半,则此次至多购买B种树苗多少株?24.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)求证:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.25.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x﹣1,y=,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2﹣bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,求m的取值范围.26.如图,直线y=﹣x +1与x ,y 轴分别交于A 、B 两点,P (a ,b )为双曲线12y x(x >0)上的一动点,PM ⊥x 轴于点M ,交线段AB 于点F ,PN ⊥y 轴于点N ,交线段AB 于点E .(1)求E 、F 两点的坐标(用a ,b 的式子表示);(2)当a =34时,求△EOF 的面积.(3)当P 运动且线段PM 、PN 均与线段AB 有交点时,探究:①BE 、EF 、FA 这三条线段是否能组成一个直角三角形?说明理由;②∠EOF 的大小是否会改变?若不变,求出∠EOF 的度数,若会改变,请说明理由.。
2020届湖南省长沙市中考数学模拟试卷及参考答案(word版)(已纠错)
长沙中考数学测试卷一、选择题1.下列四个数中,最大的数是( ) A.-2 B.31C.0D.6 2.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( ) A .0.955×105 B. 9.55×105 C. 9.55×104 D . 9.5×104 3.下列计算正确的是( ) A .1052=⨯ B. x 8÷x 2=x 4 C. (2a )3=6a 3 D . 3a 3 · 2 a 2=6a 6 4.六边形的内角和是( )A .︒540 B. ︒720 C. ︒900 D . ︒360 5.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )7.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .6 B. 3 C. 2 D . 118.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( ) A .(-2,-1) B. (-1,0) C. (-1,-1) D . (-2,0) 9.下列各图中,∠1与∠2互为余角的是( )10.已知一组数据75, 80,85,90,则它的众数和中位数分别为( )A .75, 80 B. 80,85 C. 80,90 D . 80,80 11.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的 仰角为︒30,看这栋楼底部C 处的俯角为︒60,热气球A 处与楼的水 平距离为120 m ,则这栋楼的高度为( )A .1603m B. 1203m C .300 m D . 1602m12.已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c=0无实数根;③a -b +c ≥0;④ab cb a -++的最小值为3.其中,正确结论的个数为( )A .1个 B.2个 C.3个 D.4个二、填空题13.分解因式:x 2y -4y =____________.14.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是_________. 15.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为_______.(结果保留π) 16.如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为_____________.17.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.15题图 16题图 17题图18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________. 三、解答题19.计算:4sin60°-︱- 2︳-12+(-1)201620.先化简,再求值:b a a -(a b 11-)+b a 1-.其中,a =2,b =31.21.为积极响应市委市政府“加快建设天蓝·水净·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,为了更好的了解社情民意,工作人员在街道辖区范围内随即抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为_______; (2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;2,求□ABCD的面积.(2)若AB=2,AC=323.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(9)——图形的变化(含解析)
湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(9)——图形的变化一.选择题(共19小题)1.(2020•天心区模拟)在平面直角坐标系中,将点(﹣2,3)先向右平移4个单位长度,再向下平移2个单位长度,得到的点的坐标为( )A .(2,5)B .(﹣6,5)C .(2,1)D .(﹣6,1)2.(2020•雨花区模拟)Rt △ABC ,已知∠C =90,∠B =50°,点D 在边BC 上,BD =2CD (如图).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =( )A .80B .80或120C .60或120D .80或1003.(2020•雨花区校级模拟)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①F 为CD 的中点;①3AM =2DE ;①tan ∠EAF =34;①PN =2√6515;①△PMN ∽△DPE ,正确的结论个数是( ) A .1 B .2 C .3 D .44.(2020•长沙模拟)如图,正方形ABCD 中,以BC 为边向正方形内部作等边△BCE .连接AE .DE ,连接BD 交CE 于F ,下列结论:①∠AED =150°;①△DEF ∽△BAE ;①tan ∠ECD =DD DD ;①△BEC 的面积:△BFC 的面积=(√3+1):2,其中正确的结论有( )个.A .4B .3C .2D .15.(2020•长沙模拟)如图,在平面直角坐标系中,Rt △ABC 的三个顶点的坐标分别为A (1,1),B (4,3),C (4,1),如果将Rt △ABC 绕点C 按顺时针方向旋转90°得到Rt △A ′B ′C ′,那么点A 的对应点A '的坐标是( )A .(3,3)B .(3,4)C .(4,3)D .(4,4) 6.(2020•岳麓区模拟)在△ABC 中,AD 是BC 边上的高,∠C =45°,sin B =13,AD =1.则△ABC 的面积为( )A .1+2√2B .1+√102C .1+2√22D .2√2−17.(2019•开福区校级三模)如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△AB 1C 1,当点C 1、B 1、C 三点共线时,旋转角为α,连接BB 1,交AC 于点D ,下面结论:①△AC 1C 为等腰三角形;①△AB 1D ∽△BCD ;①α=135°;①CA =CB 1;①DD D 1D =√6−√22中,正确结论的个数是( )A .2个B .3个C .4个D .5个8.(2019•滨海新区一模)如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将△BCO 绕点C 按顺时针旋转60°得到△ACD ,则下列结论不正确的是( )A .BO =ADB .∠DOC =60° C .OD ⊥AD D .OD ∥AB9.(2019•雨花区校级二模)如图,考古队在A 处测得古塔BC 顶端C 的仰角为45°,斜坡AD 长10米,坡度i =3:4,BD 长12米,请问古塔BC 的高度为( )米.A .25.5B .26C .28.5D .20.510.(2019•开福区校级模拟)如图,某建筑物AC 直立于水平地面,BC =9m ,∠B =30°,要建造楼梯,使每级台阶高度不超过20cm ,那么此楼梯至少要建( )级(最后一级不足20cm 时,按一级计算,√3≈1.732)A .27B .26C .25D .2411.(2020•岳麓区校级二模)如图,AB 为①O 的直径,点P 为AB 延长线上的一点,过点P 作①O 的切线PE ,切点为M ,过A 、B 两点分别作PE 的垂线AC 、BD ,垂足分别为C 、D ,连接AM ,则下列结论正确的个数是( )①AM 平分∠CAB ;①AM 2=AC •AB ;①若AB =4,∠APE =30°,则DD̂的长为D 3; ①若AC =3,BD =1,则有DD =DD =√3.A .1B .2C .3D .412.(2020•雨花区校级一模)在平面直角坐标系中,将点(﹣4,3)向右平移2个单位,再向下平移2个单位后,得到的点的坐标为( )A .(﹣6,1)B .(﹣2,1)C .(﹣6,5)D .(﹣2,5)13.(2020•岳麓区校级模拟)如图,点P 是矩形ABCD 内一点,连接P A 、PB 、PC 、PD ,已知AB =3,BC=4,设△P AB 、△PBC 、△PCD 、△PDA 的面积分别为S 1、S 2、S 3、S 4,以下判断:①P A +PB +PC +PD 的最小值为10;①若△P AB ≌△PCD ,则△P AD ≌△PBC ;①若S 1=S 2,则S 3=S 4;①若△P AB ∽△PDA ,则P A =2.4.其中正确的是( )A .①①①B .①①①C .①①D .①①①①14.(2020•雨花区校级一模)如图,直线a ∥b ∥c ,则下列结论不正确的为( )A .DD DD =DD DDB .DD DD =DD DDC .DD DD =DD DD D .DD DD =DD DD15.(2020•岳麓区校级模拟)已知某几何体的三视图如图所示,则这个几何体是( )A .B .C .D .16.(2020•长沙模拟)“五一”期间,小明和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE 的高度.他从点D 处的观景塔出来走到点A 处.沿着斜坡AB 从A 点走了8米到达B 点,此时回望观景塔,更显气势宏伟.在B 点观察到观景塔顶端的仰角为45°且AB ⊥BE ,再往前走到C 处,观察到观景塔顶端的仰角30°,测得BC 之间的水平距离BC =10米,则观景塔的高度DE 约为( )米.(√2=1.41,√3=1.73)A .14B .15C .19D .2017.(2020•天心区校级模拟)把△ABC 各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的( ) A . B .C .D .18.(2019•长沙模拟)如图,AC ⊥BC ,AC =BC ,D 是BC 上一点,连接AD ,与∠ACB 的平分线交于点E ,连接BE ,若S △ACE =67,S △BDE =314,则AC =( ) A .12 B .1 C .32 D .219.(2019•岳麓区校级三模)如图,以原点O 为位似中心,把△ABO 缩小为原来的12后得到△A 'B 'O ,若B点坐标为(4,﹣5),则B '的坐标为( )A .( 2,﹣2.5)B .(﹣2,2.5)C .( 2,﹣2.5)或 (﹣2,2.5)D .( 2,2.5)或 (﹣2,2.5)二.填空题(共12小题)20.(2020•岳麓区校级二模)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A ′的坐标是 .21.(2020•雨花区校级一模)如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△A 1B 1C 1,当C ,B 1,C 1三点共线时,旋转角为α,连接BB 1,交于AC 于点D ,下面结论: ①△AC 1C 为等腰三角形;①CA =CB 1;①α=135°;①△AB 1D ∽△ACB 1;①DD D 1D =√6−√22中,正确的结论的序号为 .22.(2020•望城区模拟)如图,在矩形ABCD 中,AB =3,BC =4,点E 为射线CB 上一动点(不与点C 重合),将△CDE 沿DE 所在直线折叠,点C 落在点C ′处,连接AC ′,当△AC ′D 为直角三角形时,CE 的长为 .23.(2020•雨花区校级模拟)如图,正△ABC 的边长为4,过点B 的直线l ⊥AB ,且△ABC 与△A ′BC ′关于直线l 对称,D 为线段BC ′上一动点,则AD +CD 的最小值是 .24.(2020•望城区模拟)如图,△ABC 中,以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于E 、F点,分别以点E 、F 为圆心,以大于12EF 的长为半径作弧,两弧交于点G ,做射线BG ,交AC 于点D ,过点D 作DH ∥BC 交AB 于点H .已知HD =3,BC =7,则AH 的长为 .25.(2020•岳麓区校级模拟)我国魏晋时期数学家刘徽编撰的最早一部测量数学著作《海岛算经》中有一题:今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直.从前表却行一百二十三步,人目着地,取望岛峰,与表末参合.从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合.问岛高几何?译文:今要测量海岛上一座山峰AH 的高度,在B 处和D 处竖立标杆BC 和DE ,标杆的高都是3丈,B 和D 两处相隔1000步(1丈=10尺,1步=6尺),并且AH ,CB 和DE 在同一平面内.从标杆BC 后退123步的F 处可以看到顶峰A 和标杆顶端C 在同一直线上;从标杆ED 后退127步的G 处可以看到顶峰A 和标杆顶端E 在同一直线上.则山峰AH 的高度是 .26.(2020•开福区校级三模)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB方向前进20m 到达点C ,再次测得A 点的仰角为60°,则物体的高度为 m .27.(2020•天心区校级模拟)如图,在平行四边形ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若DD DD =13,AD =4厘米,则CF = 厘米.28.(2019•岳麓区校级二模)如图,矩形AOBC 的边OA ,OB 分别在x 轴,y 轴上,点C 的坐标为(﹣2,4),将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为 .29.(2020•雨花区模拟)如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,下列结论:①∠BAE =30°;①△ABE ∽△AEF ;①CD =3CF ;①S △ABE =4S △ECF .其中正确的有 (填序号).30.(2020•雨花区校级模拟)如图,在△ABC 中,AB =AC ,sin B =45,延长BC 至点D ,使CD :AC =1:3,则tan ∠CAD = .31.(2020•天心区校级模拟)如图,在矩形ABCD 中,AB =4,BC =3,点P 、Q 分别为直线AB 、BC 上的动点,且PD ⊥PQ ,当△PDQ 为等腰三角形时,则AP 的长为 .三.解答题(共9小题)32.(2020•雨花区模拟)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?33.(2019•岳麓区校级二模)今年“五一”假期,某教学活动小组组织一次登山活动,他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示,斜坡AB的长为200√13米,斜坡BC的长为200√2米,坡度是1:1,已知A点海拔121米,C点海拔721米(1)求B点的海拔;(2)求斜坡AB的坡度;(3)为了方便上下山,若在A到C之间架设一条钢缆,求钢缆AC的长度.34.(2018•雨花区模拟)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,G在BC上移动,P是线段DF的中点,连接PG,PC.(1)求∠DBF的大小;(2)证明:DB∥PG;(3)若∠BEF=60°,求PG:PC的值.35.(2018•长沙模拟)某校九年级数学兴趣小组的同学进行社会实践活动时,象利用所学的解直角三角形的知识测量某大楼高度,如图所示,大楼AB的正前方有一斜坡CD,坡长CD=4米,坡角∠DCE=30°,他们先在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°(1)求斜坡CD的高度DE;(2)求楼AB的高度(结果保留根号).36.(2020•岳麓区校级二模)如图,热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为120m.(1)求∠ABC的角度;(2)这栋高楼有多高?(结果保留根号)37.(2020•岳麓区校级三模)如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交汇处的东北角,投资160亿元人民币,总建筑面积达98万平方米,其主楼BC是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,其高度为332米,在楼DE底端D点测得A 的仰角为71.5°,在高楼DE的顶端E点测得B的仰角为37°,B,E之间的距离为200米.(1)求九龙仓国际金融中心主楼BC的高度(精确到1米);(2)求发射塔AB的高度(精确到1米);(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin71.5°≈0.95,cos71.5°≈0.32,tan71.5°≈3.00)38.(2020•雨花区校级一模)如图,AB为①O的直径,点C、D在①O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.39.(2020•长沙模拟)如图,四边形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC.(1)求出sin∠DBC的值;(2)若AD=2,把∠BOC绕点O顺时针旋转θ(0°≤θ≤60°),交AB于点M,交BC于点N(如图),求证:四边形OMBN的面积为一个定值,并求出这个定值.40.(2020•长沙模拟)如图,某货船以24海里/时的速度将一批货物从A处运往正东方向的M处,在点A 处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上.(1)求∠ACB的度数;(2)已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无触礁危险?试说明理由.(参考:√2≈1414、√3≈1.732)湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(9)——图形的变化参考答案与试题解析一.选择题(共19小题)1.【答案】C【解答】解:将点P(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度所得到的点坐标为(﹣2+4,3﹣2),即(2,1),故选:C.2.【答案】B【解答】解:当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AB边上的B′点位置,如图1,∴∠BDB′=m,DB′=DB,∴∠1=∠B=50°,∴∠BDB′=180°﹣∠1﹣∠B=80°,即m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点位置,如图2,∴∠BDB′=m,DB′=DB,∵BD=2CD,∴DB′=2CD,∴∠CB′D=30°,则∠B′DC=60°,∴∠BDB′=180°﹣∠B′DC=120°,即m=120°,综上所述,m的值为80°或120°.故选:B.3.【答案】D【解答】解:①∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,{DDD =∠D DD =DD DDDD =DDDD,∴△ADF ≌△DCE (ASA ),∴DF =CE =1,AF =DE ,∴DF =CF .故①正确;①∵AB ∥DF ,∴△ABM ∽△FDM ,∴DD DD =DD DD =21, ∴DD DD =23. ∴DD DD =23,即3AM =2DE .故①正确;①由勾股定理可知:AF =DE =AE =√12+22=√5,∵12×AD ×DF =12×AF ×DN ,∴DN =2√55, ∴EN =3√55,AN =√DD 2−DD 2=4√55, ∴tan ∠EAF =DD DD =34,故①正确, ①作PH ⊥AN 于H .∵BE ∥AD ,∴DD DD =DD DD =2, ∴P A =2√53, ∵PH ∥EN ,∴DD DD =DD DD =23, ∴AH =8√515,HN =4√515,∴PN =√DD 2+DD 2=2√6515, 故①正确,①∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故①错误.故选:D .4.【答案】A【解答】解:∵△BEC 为等边三角形∴∠EBC =∠BCE =∠ECB =60°,AB =EB =EC =BC =DC∵四边形ABCD 为正方形∴∠ABE =∠ECD =90°﹣60°=30°∴在△ABE 和△DCE 中,AB =DC∠ABE =∠ECDBE =EC∴△ABE ≌△DCE (SAS )∴∠AEB =∠DEC =180°−30°2=75° ∴∠AED =360°﹣60°﹣75°×2=150°故①正确由①知AE =ED∴∠EAD =∠EDA =15°∴∠EDF =45°﹣15°=30°∴∠EDF =∠ABE由①知∠AEB =∠DEC ,∴△DEF ~△BAE故①正确过点F 作FM ⊥DC 交于M ,如图设DM =x ,则FM =x ,DF =√2x∵∠FCD =30°∴MC =√3x则在Rt △DBC 中,BD =√2⋅(√3+1)D∴BF =BD ﹣DF =√2⋅(√3+1)D −√2D则DD DD =√2D √2(√3+1−1)D=√33 ∵tan ∠ECD =tan30°=√33∴tan ∠ECD =DD DD 故①正确如图过点E 作EH ⊥BC 交于H ,过F 作FG ⊥BC 交于G ,得由①知MC =√3D ,MC =FG∴FG =√3D∵BC =DC =(√3+1)x∴BH =√3+12D∵∠EBC =60°∴EH =√3⋅√3+12x , ∴D △DDDD △DDD =12⋅DD ⋅DD 12⋅DD ⋅DD =DD DD =√3⋅√3+12D √3D =√3+12 故①正确故选:A .5.【答案】D【解答】解:旋转后的Rt△A′B′C′如图所示,观察图象可知A′(4,4).故选:D.6.【答案】C【解答】解:在Rt△ABD中,∵sin B=DDDD=13,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD=√32−12=2√2.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2√2+1,∴S△ABC=12•BC•AD=12×(2√2+1)×1=1+2√22,故选:C.7.【答案】C【解答】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故①正确;∵旋转角为α,∴α=120°,故①错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故①正确;过B点作BE⊥AC于E,∵∠BAC=45°,∠ACB=30°,∴AE=BE=√22AB,CE=√3BE,∴CE =√62AB ,∴CB 1=AC =AE +CE =(√22+√62)AB ∴DDD 1D =√6−√22;故①正确; 故选:C .8.【答案】D【解答】解:由旋转的性质得,BO =AD ,CD =CO ,∠ACD =∠BCO ,∠ADC =∠BOC =150°, ∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠DOC =60°,故A ,B 正确;∵∠ODC =60°,∠ADC =∠BOC =150°,∴∠ADO =90°,∴OD ⊥AD ,故C 正确;故选:D .9.【答案】B【解答】解:如图,过点A 作AE ⊥BC 于点E ,过点A 作AF ⊥BD ,交BD 延长线于点F ,由i =3:4,可设AF =3x ,DF =4x ,∵AD =10,∴9x 2+16x 2=100,解得:x =2(负值舍去),则AF =BE =6,DF =8,∴AE =DF +BD =8+12=20,∵∠CAE =45°,∴CE =AE =20,则BC =CE +BE =20+6=26,故选:B .10.【答案】B【解答】解:所有台阶高度和为AC 的长.设此楼梯至少要建x 阶,可得tan30°=20D 900=√33,所以 x =15√3≈26(阶).故选:B .11.【答案】C【解答】解:连接OM ,∵PE 为①O 的切线,∴OM ⊥PC ,∵AC ⊥PC ,∴OM ∥AC ,∴∠CAM =∠AMO ,∵OA =OM ,∠OAM =∠AMO ,∴∠CAM =∠OAM ,即AM 平分∠CAB ,故①正确;∵AB 为①O 的直径,∴∠AMB =90°,∵∠CAM =∠MAB ,∠ACM =∠AMB ,∴△ACM ∽△AMB ,∴DD DD =DD DD ,∴AM 2=AC •AB ,故①正确;∵∠APE =30°,∴∠MOP =∠OMP ﹣∠APE =90°﹣30°=60°,∵AB =4,∴OB =2,∴DD ̂的长为60⋅D ×2180=2D 3,故①错误;∵BD ⊥PC ,AC ⊥PC ,∴BD ∥AC ,∴DD DD=DD DD =13, ∴PB =13P A , ∴PB =12AB ,BD =12OM , ∴PB =OB =OA ,∴在Rt △OMP 中,OM =2BD =2,∴OP =4,∴∠OPM =30°,∴PM =2√3,∴CM =DM =DP =√3,故①正确.故选:C .12.【答案】B【解答】解:将点A (﹣4,3)先向右平移2个单位,再向下平移2个单位,得到B 点的坐标是(﹣4+2,3﹣2),即(﹣2,1),故选:B .13.【答案】D【解答】解:①当点P 是矩形ABCD 两对角线的交点时,P A +PB +PC +PD 的值最小,根据勾股定理得,AC =BD =5,所以P A +PB +PC +PD 的最小值为10,故①正确;①若△P AB ≌△PCD ,则P A =PC ,PB =PD ,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以△P AD ≌△PBC ,故①正确;①如图,若S 1=S 2,过点P 作PH ⊥BC 于H ,HP 的延长线交AD 于G ,则PG ⊥AD .∴四边形ABHG 是矩形,∴GH =AB ,∴S 2+S 4=12AD •PG +12BC •PH =12BC •(PH +PG )=12BC •GH =12BC •AB ,过点P 作PM ⊥AB 于M ,MP 的延长线交CD 于N ,同理S 1+S 3=12BC •AB , ∴S 1+S 3=S 2+S 4,则S 3=S 4,故①正确;①若△P AB ~△PDA ,则∠P AB =∠PDA ,∠P AB +∠P AD =∠PDA +∠P AD =90°,∠APD =180°﹣(∠PDA +∠P AD )=90°,同理可得∠APB =90°,那么∠BPD =180°,B 、P 、D 三点共线,P A 是直角△BAD 斜边上的高,根据面积公式可得P A =2.4,故①正确.故选:D .14.【答案】见试题解答内容【解答】解:A 、∵a ∥b ∥c ,∴DD DD=DD DD ,本选项结论正确,不符合题意; B 、∵a ∥b ∥c , ∴DD DD=DD DD ,本选项结论正确,不符合题意; C 、∵a ∥b ∥c , ∴DD DD =DD DD ,本选项结论正确,不符合题意;D 、连接AF ,交BE 于H ,∵b ∥c ,∴△ABH ∽△ACF ,∴DD DD =DD DD ≠DD DD ,本选项结论不正确,符合题意;故选:D .15.【答案】D【解答】解:由三视图可知,这个几何体是.故选:D.16.【答案】C【解答】解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×√22=4√2,在Rt△ECF中,tan∠ECF=DD DD,则CF=√3EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,√3EF﹣EF=10,解得,EF=5√3+5,则DE=EF+DF=5√3+5+4√2≈19,故选:C.17.【答案】A【解答】解:根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选:A.18.【答案】D【解答】解:过点E作AC,BC的垂线,垂足分别为F,G,设BC=4x,则AC=4x,∵CE是∠ACB的平分线,EF⊥AC,EG⊥BC,∴EF=EG,又S△ACE=67,S△BDE=314,∴BD=14AC=x,∴CD=3x,∵四边形EFCG是正方形,∴EF =FC ,∵EF ∥CD ,∴△AEF ∽△ADC ,∴DD DD =DD DD ,即DD 3D =4D −DD 4D , 解得,EF =127D , 则12×4x ×127x =67, 解得,x =12, 则AC =4x =2,故选:D .19.【答案】C【解答】解:以原点O 为位似中心,把△ABO 缩小为原来的12后得到△A 'B 'O ,若B 点坐标为(4,﹣5), 则B '的坐标为(4×12,﹣5×12)或(﹣4×12,5×12),即( 2,﹣2.5)或 (﹣2,2.5), 故选:C .二.填空题(共12小题)20.【答案】见试题解答内容【解答】解:将点A (﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A ′的坐标是(﹣2+4,3﹣2),即(2,1),故答案为(2,1).21.【答案】见试题解答内容【解答】解:由旋转的性质可知AC 1=AC ,∴△AC 1C 为等腰三角形,即①正确;∵∠ACB =30°,∴∠C 1=∠ACB 1=30°,又∵B 1AC 1=∠BAC =45°,∴∠AB 1C =75°,∴∠CAB 1=180°﹣75°﹣30°=75°,∴CA =CB 1;∴①正确;∵∠CAC 1=∠CAB 1+∠B 1AC 1=120°,∴旋转角α=120°,故①错误;∵∠BAC =45°,∴∠BAB 1=45°+75°=120°,∵AB =AB 1,∴∠AB 1B =∠ABD =30°,在△AB 1D 与△BCD 中,∵∠ABD =∠ACB 1,∠AB 1D =∠BCD =30°,∴△AB 1D ∽△ACB 1,即①正确;在△ABD 与△B 1CD 中,∵∠ABD =∠ACB 1,∠ADB =∠CDB 1,∴△ABD ∽△B 1CD ,∴DDD 1D =DDD 1D ,如图,过点D 作DM ⊥B 1C ,设DM=x,则B1M=x,B1D=√2x,DC=2x,DC=2x,CM=√3x,∴AC=B1C=(√3+1)x,∴AD=AC﹣CD=(√3−1)x,∴DDD1D =DDD1D=√3−√2D=√6−√22,即①正确.故答案为:①①①①.22.【答案】见试题解答内容【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=4,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,设CE=C'E=x,当△AC′D为直角三角形时,则∠AC'D=90°,∴∠AC'D+∠DC'E=180°,∴A、C'、E三点共线,分两种情况:①点E在线段CB上时,如图1所示:则∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'=√DD2−D′D2=√4−3=√7,在Rt△ABE中,BE=4﹣x,AE=x+√7,由勾股定理得:(4﹣x)2+32=(x+√7)2,解得:x=4−√7,∴CE=4−√7;①点E在线段CB的延长线上时,如图2所示:则∠DC'E=∠C=90°,∴AC'=√DD2−D′D2=√42−32=√7,在Rt △ABE 中,BE =x ﹣4,AE =x −√7,由勾股定理得:(x ﹣4)2+32=(x −√7)2,解得:x =4+√7,∴CE =4+√7;综上所述,当△AC ′D 为直角三角形时,CE 的长为4−√7或4+√7;故答案为:4−√7或4+√7.23.【答案】见试题解答内容【解答】解:连接CC ′,如图所示.∵△ABC 、△A ′BC ′均为正三角形,∴∠ABC =∠A ′=60°,A ′B =BC =A ′C ′,∴A ′C ′∥BC ,∴四边形A ′BCC ′为菱形,∴点C 关于BC '对称的点是A ',∴当点D 与点B 重合时,AD +CD 取最小值,此时AD +CD =4+4=8.故答案为:824.【答案】见试题解答内容【解答】解:由题意可知射线BG 是∠ABC 的平分线,∴∠ABD =∠CBD而DH ∥BC∴∠HDB =∠CBD∴∠ABD =∠HDB∴HB =HD =3又∵DH ∥BC∴△AHD ∽△ABC∴DD DD =DD DD 即:DD DD +3=37 得AH =94故答案为94.25.【答案】见试题解答内容【解答】解:由题意,得,AH ⊥HG ,CB ⊥HG ,∴∠AHF =90°,∠CBF =90°,∴∠AHF =∠CBF ,∵∠AFB =∠CFB ,∴△CBF ∽△AHF ,∴DD DD =DD DD , 同理可得 DD DD =DD DD ,∵BF =123,BD =1000,DG =127,∴HF =HB +123,HG =HB +1000+127=HB +1127,∴3DD =123DD +123,3DD =127DD +1127, 解得HB =30750,HA =753丈=1255步,故答案为:1255步.26.【答案】见试题解答内容【解答】解:设AB =x ,在Rt △ADB 中,BD =AB cot ∠ADB =√3x ,在Rt △ACB 中,BC =AB cot ∠ACB =√33x ,则√3x −√33x =20,解得:x =10√3,即物体的高度为10√3m .故答案为:10√3.27.【答案】见试题解答内容【解答】解:∵平行四边形ABCD∴CD ∥AB∴∠FEC =∠F AB ,∠FCE =∠FBA∴△FEC ∽△F AB∴EC :AB =FE :AF =1:3∵AF =EF +AE∴FE :AE =1:2∵AD ∥BC∴∠EAD =∠ECF ,∠EDA =∠ECF∴△ADE ∽△FCE∴CF :AD =FE :EA∵AD =4∴CF =228.【答案】见试题解答内容【解答】解:作DF ⊥x 轴于F ,如图所示:则DF ∥OB ,∵四边形AOBC 是矩形,点C 的坐标为(﹣2,4),∴AC =OB =4,OA =2,AC ∥OB ,∴∠BAC =∠ABO ,由折叠的性质得:∠BAD =∠BAC ,AD =AC =4,∴∠BAD =∠ABO ,∴AE =BE ,设AE =BE =x ,则OE =4﹣x ,在Rt △AOE 中,由勾股定理得:22+(4﹣x )2=x 2,解得:x =2.5,∴AE =2.5,OE =1.5,∵DF ∥OB ,∴△AOE ∽△AFD ,∴DD DD =DD DD =DD DD ,即1.5DD =2DD =2.54, 解得:FD =125,AF =165,∴OF =AF ﹣OA =65,∴点D 的坐标为(65,125);故答案为:(65,125). 29.【答案】见试题解答内容【解答】解:∵四边形ABCD 是正方形,∴∠B =∠C =90°,AB =BC =CD ,∵AE ⊥EF ,∴∠AEF =∠B =90°,∴∠BAE +∠AEB =90°,∠AEB +FEC =90°,∴∠BAE =∠CEF ,∴△BAE ∽△CEF ,∴DD DD =DD DD ,∵BE =CE =12BC , ∴D △DDDD △DDD=(DD DD )2=4, ∴S △ABE =4S △ECF ,故①正确;∴CF =12EC =14CD ,∴CD =4CF ,故①错误;∴tan ∠BAE =DD DD =12,∴∠BAE ≠30°,故①错误;设CF =a ,则BE =CE =2a ,AB =CD =AD =4a ,DF =3a ,∴AE =2√5a ,EF =√5a ,AF =5a ,∴DD DD =√5D √5D =2√55,DD DD =√5D =2√55, ∴DDDD =DDDD ,∴△ABE ∽△AEF ,故①正确.∴①与①正确.故答案为:①①.30.【答案】见试题解答内容【解答】解:过点D 作DE ⊥AC ,与AC 的延长线交于点E ,∵AB =AC ,∴∠B =∠ACB ,∵∠DCE =∠ACB ,∴∠DCE =∠B ,∵sin B =45,∴DDD ∠DDD =DD DD =45, 不妨设DE =4x ,则CD =5x ,∴DD =√DD 2−DD 2=3D ,∵CD :AC =1:3,∴AC =3CD =15x ,∴AE =AC +CE =18x ,∴tan ∠CAD =DD DD =4D 18D =29, 故答案为2931.【答案】见试题解答内容【解答】解:当P 点在边AB 上,如图1,∵四边形ABCD 为矩形,∴AD =BC =3,∠A =∠B =90°,∵PD ⊥PQ ,∴∠DPQ =90°,∵∠APD +∠ADP =90°,∠APD +∠BPQ =90°,∴∠ADP =∠BPQ ,∴Rt △ADP ∽Rt △BPQ ,∴DD DD =DD DD =1,∴PB =AD =3,∴AP =AB ﹣PB =4﹣3=1.当P 点在AB 的延长线上时,如图2,同样方法得到Rt △ADP ∽Rt △BPQ ,∴DD DD =DD DD =1,∴PB =AD =3,∴AP =AB +PB =4+3=7.综上所述,AP 的长度为1或7.故答案为1或7.三.解答题(共9小题)32.【答案】见试题解答内容【解答】解:(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DD DD =10.6,DE =0.3, ∴EH =0.3×0.6=0.18,∵四边形DGFH 是平行四边形,∴FH =DG =0.2,∵AE =4.42,∴AF =AE +EH +FH =4.42+0.18+0.2=4.8,∵DD DD =10.6, ∴AB =4.80.6=8(米). 答:树的高度为8米.(3)由(2)可知:AF =4.8(米),答:树的影子长度是4.8米.33.【答案】见试题解答内容【解答】解:(1)作CD ⊥AM 于点D ,作BE ⊥CD 于点E ,作BF ⊥AM 于点F ,连接AC , ∵斜坡BC 的长为200√2米,坡度是1:1,∴BE =CE =200米,∵A 点海拔121米,C 点海拔721米,∴CD =600米,∴BF =400米,∵121+400=521(米),∴点B 的海拔是521米;(2)∵斜坡AB 的长为200√13米,BF =400米,∴AF =√(200√13)2−4002=600米,∴BF :AF =400:600=2:3,即斜坡AB 的坡度是2:3;(3)∵CD =600米,AD =AF +FD =AF +BE =600+200=800(米),∴AC =√6002+8002=1000米,即钢缆AC 的长度是1000米.34.【答案】见试题解答内容【解答】解:(1)在菱形ABCD 和菱形BEFG 中,∵∠DBC =12∠ABC ,∠FBG =12∠EBG ,∵∠ABC +∠EBG =180°,∴∠DBF =∠DBC +∠FBG =90°;(2)如图,延长GP 交DC 于点H ,∵P 是线段DF 的中点,∴FP =DP ,由题意可知DC ∥GF ,∴∠GFP =∠HDP ,∵∠GPF =∠HPD ,∴△GFP ≌△HDP (ASA ),∴GP =HP ,GF =HD ,∵四边形ABCD 是菱形,∴CD =CB ,∴CG =CH ,∴DD DD =DD DD =1,∵∠HCG =∠DCB ,∴△CHG ∽△CDB ,∴∠CGP =∠CBD ,∴DB ∥PG ;(3)∵CG =CH ,∴△CHG 是等腰三角形,∴PG ⊥PC ,(三线合一)又∵∠ABC =∠BEF =60°,∴∠GCP =12DBCD =60°,∴DD DD =√3.35.【答案】见试题解答内容【解答】解:(1)如图,作DH ⊥AB 于H ,CM ⊥DH 于M .在Rt △CDE 中,∵∠DEC =90°,∠DCE =30°,CD =4米,∴DE =12CD =2(米),CE =2√3(米).(2)在Rt △DHB 中,∵∠BDH =45°,∴BH =DH ,设BH =DH =x 米,则MH =AC =(x ﹣2√3)米,在Rt △ACB 中,∵∠ACB =60°,∴AB =√3AC ,∴x +2=√3(x ﹣2√3),∴x=4(√3+1),∴AB=4(√3+1)+2=(4√3+6)米.36.【答案】(1)60°;(2)160√3m.【解答】解:(1)过点A作AD⊥BC,垂足为D.∵∠BAD=30°,∴∠ABC=90°﹣30°=60°;(2)在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×√33=40√3m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×√3=120√3m,∴BC=BD+CD=40√3+120√3=160√3(m).37.【答案】见试题解答内容【解答】解:(1)过点E作EF⊥AC于点F,则四边形EFCD为矩形,∴DE=CF=332米,∵∠BEF=37°,BE=200米,∴BF=BE•sin37°=200×0.60=120米,∴BC=BF+CF=120+332=452米,答:九龙仓国际金融中心主楼BC的高度为452米;(2)∵BE=200米,∠BEF=37°,∴EF=BE•cos37°=200×0.80=160米,∴DC=160米,在Rt△ADC中,∵tan∠ADC=DD DD,∴AC=160×3.00=480,∴AB=AC﹣BC=480﹣452=28米,故发射塔AB的高度为28米.38.【答案】见试题解答内容【解答】解:(1)∵AC =AD ,AB 是①O 的直径,∴CD ⊥AB ,∴∠AEC =90°,∵AB 是①O 的直径,∴∠ACB =90°,∴∠ACE +∠BAC =∠BAC +∠B =90°,∴∠ACE =∠B ,∴△ACE ∽△ABC .(2)由(1)可知:DD DD =DD DD ,∴AC 2=AE •AB ,∵AC =3,BC =4,∴由勾股定理可知:AB =5,∴AE =95,∴由勾股定理可知:CE =125, ∴由垂径定理可知:CD =2CE =245. 39.【答案】见试题解答内容【解答】解:(1)∵四边形ABCD 中,AD ∥BC ,AB =CD ,∴四边形ABCD 是等腰梯形,∴∠ABC =∠DCB ,∵BD 平分∠ABC ,∴∠DBC =12∠ABC =12∠DCB ,∵BD ⊥CD ,∴∠DBC +∠DCB =90°,∴∠DBC =30°,∴sin ∠DBC =12;(2)∵AD ∥BC ,∴∠ADB =∠DBC =30°,∴∠ADB =∠ABD =30°,∴AB =AD =2,∵AC =BD ,AB =CD ,BC =BC ,∴△ABC ≌△DCB (SSS )∴∠BCA =∠DBC =30°,∠BAC =90°,∴OB =OC ,∵把∠BOC 绕点O 顺时针旋转θ(0°≤θ≤60°),交AB 于点M ,交BC 于点N , ∴∠MON =∠BOC ,∴∠BOM =∠CON ,且OB =OC ,∠ABO =∠OCB ,∴△ONC ≌△OMB (ASA )∴S △ONC =S △OMB ,∴S 四边形OMBN =S △BOC =12OC •AB =12OB ×AB =12×2×2DDD30°=4√33. 40.【答案】见试题解答内容【解答】解:(1)由题意得,∠CAB =30°,∠CBM =60°,∴∠ACB =∠CBM ﹣∠CAB =30°;(2)作CD ⊥AB 于D ,∵∠ACB =∠CAB ,∴BC =AB =24×12=12,在Rt △CBD 中,CD =BC ×sin ∠CBD =6√3≈10.393,∵10.392>9,∴继续向正东方向航行,该货船无触礁危险.。
湖南省长沙市中考数学2020年数学中考仿真模拟卷
湖南省长沙市中考数学2020年数学中考仿真模拟卷姓名:________ 班级:________ 成绩:________一、一.选择题(共10小题,满分30分,每小题3分) (共10题;共28分)1. (3分)下列说法错误的是()A . ﹣2的相反数是2B . 3的倒数是C . (﹣3)﹣(﹣5)=2D . ﹣11,0,4这三个数中最小的数是02. (3分)(2020·建邺模拟) 下列计算结果为a6的是()A . a2+a4B . a2·a3C . a6÷aD . (a2)33. (3分)(2020·河池) 下列立体图形中,主视图为矩形的是()A .B .C .D .4. (3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A . 75,80B . 80,80C . 80,85D . 80,905. (3分) (2019八上·长沙月考) 计算的值是()A .B .C .D .6. (3分)下列方程有解的是()A . x﹣1=1﹣xB . x+4=x﹣4C . |x+1|+1=0D . 2(x+2)=2x7. (2分) (2020八下·海州期末) 平行四边形不一定具有的性质是()A . 对角线互相平分B . 对边平行C . 对角线互相垂直D . 对边相等8. (3分) (2020九上·陆丰月考) 将抛物线y=3x2+1向左平移2个单位长度,再向下平移4个单位长度,所得的抛物线()A . y=3(x+2)2+3B . y=3(x+2)2-3C . y=3(x-2)2+3D . y=3(x-2)2-39. (3分) (2019九上·泰山期末) 在中,,则的度数是()A.30° B.45° C.60° D.90°A . 30°B . 45°C . 60°D . 90°10. (2分) (2020八下·河北期中) 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A .B .C .D .二、二.填空题(共6小题,满分24分,每小题4分) (共6题;共24分)11. (4分) (2019八下·吉安期末) 不等式的解集为________.12. (4分)(2019·海南) 因式分解: ________.13. (4分)(2014·淮安) 若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为________.14. (4分)(2019·淄博模拟) 某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是________.15. (4分) (2020八上·莱山期末) 如图,矩形ABCD中,直线MN垂直平分AC ,与CD , AB分别交于点M , N .若DM=2,CM=3,则矩形的对角线AC的长为________.16. (4分)(2016·青海) 如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为________米.(sin56°≈0.8,tan56°≈1.5)三、三.解答题(共8小题) (共8题;共67分)17. (8分) (2019七上·萧山月考) 计算:(1);(2) .18. (8分) (2017七下·南安期中) 解方程组:19. (2分) (2019八下·江阴期中) 如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标________;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标________.20. (2分)(2018·普陀模拟) 某工厂甲、乙两个部门各有员工 400 人,为了解这两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取 20 名员工,进行了生产技能测试,测试成绩(百分制),通过数据的收集、整理、分析得到下表:成绩 x甲乙40≤x≤490150≤x ≤590060≤x≤691070 ≤x≤7911780 ≤x ≤8971090 ≤ x ≤ 10012部门平均数中位数众数甲78.377.575乙7880.581(说明:成绩 80 分及以上为生产技能优秀,70--79 分为生产技能良好,60--69 分为生产技能合格,60 分以下为生产技能不合格)得出结论:(1)估计乙部门生产技能优秀的员工人数为________;(2)可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)21. (2分)(2016·平房模拟) 在⊙O中,弦AB、CD相交于点E,连接AC、BC,AC=BC,AB=CD.(1)如图1,求证:BE平分∠CBD;(2)如图2,F为BC上一点,连接AF交CD于点G,当∠FAB= ∠ACB时,求证:AC=BD+2CF;(3)如图3,在(2)的条件下,若S△ACF=S△CBD ,⊙O的半径为3 ,求线段GD的长.22. (15分)(2017·怀化) 如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.(1)求证:△ACD∽△BAD;(2)求证:AD是⊙O的切线.23. (15分)(2016·河北) 如图,抛物线L: (常数t>0)与x轴从左到右的交点为B , A ,过线段OA的中点M作MP⊥x轴,交双曲线于点P ,且OA·MP=12.(1)求k值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G ,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0 ,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t 的取值范围.24. (15分)(2020·龙东) 如图①,在中,,,点D、E分别在、边上,,连接、、,点M、N、P分别是、、的中点,连接、、.(1)与的数量关系是________.(2)将绕点C逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.参考答案一、一.选择题(共10小题,满分30分,每小题3分) (共10题;共28分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、二.填空题(共6小题,满分24分,每小题4分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、三.解答题(共8小题) (共8题;共67分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:答案:24-1、答案:24-2、考点:解析:。
湖南省长沙市2018-2019年中考数学模拟试卷
湖南省长沙市2018-2019学年中考数学模拟试卷一、选择题(共12题,共36分)1.下列几种说法正确的是()A.- a一定是负数B.一个有理数的绝对值一定是正数C.倒数是本身的数为1D.0的相反数是02.“五•一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为()A-3.6X104B,o.36x106C,o.36x104 D.36x1033.在下列四个图案中,不是中心对称图形的是()a-^C b O d4.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最D.二个视图的面积相等5.如果100个乒乓球中有20个红色的,那么在随机抽出的20个乒乓球中()A.刚好有4个红球B.红球的数目多于4个C.红球的数目少于4个D.以上都有可能16.若代数式缶在实数范围内有意义,则x的取值范围为()A.x>0B.x>0C.xj OD.x>0且X*17.下列是某同学在一次作业中的计算摘录:①3a+2b=5ab,(2)4m3n-5mn3=-m3n,③4x'・(-2x2)=-6x5,④4a%;(-2a2b)=-2a,⑤(a3)2=a5,⑥(-a)3―(-a)=-a2,其中正确的个数有()A.1个B.2个C.3个D.4个8.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是X人,那么X满足的方程是().48005000R48005000r48005000n48005000 x-a-20x_a+20x-20~'x+20-x9.如图,四边形ABCD内接于。
O,E为AD延长线上一点,若ZCDE=80°,则ZB等于()DEA.60°B.70°C.80°D.90°m把不等式组{W%;的解集表示在数轴上,下列选项正确的是()A.----A I~~B.-?-101?C._>-2-1012D..A__L.>-101?11.已知点A (-2,”),B(3,y2)是反比例函数y=g(k<0)图象上的两点,则有()A.yi<0<y2B.y2<0<yi c.yi<y2<0 D.y2<yi<012.下列各函数中,y随x增大而增大的是()A.y=- x+1R3B y=~r C.y=x2+l D.y=2x-3二、填空题(共6题,共18分)13.如图,在AABC中,ZACB=120°,将它绕着点C旋转30。
2018年湖南长沙中考数学模拟试题
2018年湖南省长沙市中考数学试卷一、选择题(在下列各题地四个选项中,只有一项是符合要求地,请在答题卡中填涂符合题意地选项,本大题共12个小题,每小题3分,共36分) 1.(3.00分)(2018•长沙)﹣2地相反数是()A.﹣2 B.﹣C.2 D.2.(3.00分)(2018•长沙)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()b5E2A.0.102×105B.10.2×103C.1.02×104D.1.02×103 3.(3.00分)(2018•长沙)下列计算正确地是()A.a235B.3 C.(x2)35D.m5÷m324.(3.00分)(2018•长沙)下列长度地三条线段,能组成三角形地是()A.4,5,9.8,8,15 C.5,5,10 D.6,7,1415.(3.00分)(2018•长沙)下列四个图形中,既是轴对称图形又是中心对称图形地是()A.B.C.D.6.(3.00分)(2018•长沙)不等式组地解集在数轴上表示正确地是()9E3dA.B.C.D.7.(3.00分)(2018•长沙)将下列如图地平面图形绕轴l旋转一周,可以得到地立体图形是()A.B.C.D.8.(3.00分)(2018•长沙)下列说法正确地是()A.任意掷一枚质地均匀地硬币10次,一定有5次正面向上B.天气预报说“明天地降水概率为40%”,表示明天有40%地时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,≥0”是不可能事件9.(3.00分)(2018•长沙)估计+1地值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家地距离y与时间x之间地对应关系.根据图象,下列说法正确地是()A.小明吃早餐用了25B.小明读报用了30C.食堂到图书馆地距离为0.8D.小明从图书馆回家地速度为0.811.(3.00分)(2018•长沙)我国南宋著名数学家秦九韶地著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲地是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田地面积为()57 A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(3.00分)(2018•长沙)若对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件地点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)(2018•长沙)化简:=.14.(3.00分)(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去地活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形地圆心角为度.74J0X15.(3.00分)(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应地点A′地坐标是.16.(3.00分)(2018•长沙)掷一枚质地均匀地正方体骰子,骰子地六个面上分别刻有1到6地点数,掷得面朝上地点数为偶数地概率是.62 17.(3.00分)(2018•长沙)已知关于x方程x2﹣30有一个根为1,则方程地另一个根为.118.(3.00分)(2018•长沙)如图,点A,B,D在⊙O上,∠20°,是⊙O地切线,B为切点,地延长线交于点C,则∠度.14三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分.解答时写出必要地文字说明、证明过程或演算步骤)19.(6.00分)(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+445°20.(6.00分)(2018•长沙)先化简,再求值:()2(a﹣b)﹣4,其中2,﹣.2521.(8.00分)(2018•长沙)为了了解居民地环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”地环保知识有奖问答活动,并用得到地数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)6请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取地样本数据地平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?4222.(8.00分)(2018•长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间地公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线行驶,现开通隧道后,汽车可直接沿直线行驶.已知80千米,∠45°,∠30°.y6v389(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)M2623.(9.00分)(2018•长沙)随着中国传统节日“端午节”地临近,东方红商场决定开展“欢度端午,回馈顾客”地让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.0(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?824.(9.00分)(2018•长沙)如图,在△中,是边上地中线,∠∠,∥,交地延长线于点E,8,3.5T(1)求地长;(2)求证:△为等腰三角形.(3)求△地外接圆圆心P与内切圆圆心Q之间地距离.25.(10.00分)(2018•长沙)如图,在平面直角坐标系中,函数(m 为常数,m>1,x>0)地图象经过点P(m,1)和Q(1,m),直线与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上地一个动点,过点M分别作x轴和y轴地垂线,垂足分别为A,B.(1)求∠地度数;(2)当3,1<x<3时,存在点M使得△∽△,求此时点M地坐标;(3)当5时,矩形与△地重叠部分地面积能否等于4.1?请说明你地理由.26.(10.00分)(2018•长沙)我们不妨约定:对角线互相垂直地凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”地有;②在凸四边形中,且≠,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1地⊙O上按逆时针方向排列地四个动点,与交于点E,∠﹣∠∠﹣∠,当6≤22≤7时,求地取值范围;(3)如图2,在平面直角坐标系中,抛物线2(a,b,c为常数,a>0,c <0)与x轴交于A,C两点(点A在点C地左侧),B是抛物线与y轴地交点,点D地坐标为(0,﹣),记“十字形”地面积为S,记△,△,△,△地面积分别为S1,S2,S3,S4.求同时满足下列三个条件地抛物线地解析式;7①=;②=;③“十字形”地周长为12.2018年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题地四个选项中,只有一项是符合要求地,请在答题卡中填涂符合题意地选项,本大题共12个小题,每小题3分,共36分)702E 1.(3.00分)(2018•长沙)﹣2地相反数是()A.﹣2 B.﹣C.2 D.【考点】14:相反数.【分析】根据只有符号不同地两个数互为相反数,可得答案.【解答】解:﹣2地相反数是2,故选:C.【点评】本题考查了相反数,在一个数地前面加上负号就是这个数地相反数.2.(3.00分)(2018•长沙)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()1A.0.102×105B.10.2×103C.1.02×104D.1.02×103【考点】1I:科学记数法—表示较大地数.【专题】1 :常规题型.【分析】科学记数法地表示形式为a×10n地形式,其中1≤<10,n为整数.确定n地值时,要看把原数变成a时,小数点移动了多少位,n地绝对值与小数点移动地位数相同.当原数绝对值>10时,n是正数;当原数地绝对值<1时,n是负数.3v1【解答】解:10200=1.02×104,故选:C.【点评】此题考查科学记数法地表示方法.科学记数法地表示形式为a×10n地形式,其中1≤<10,n为整数,表示时关键要正确确定a地值以与n地值.143.(3.00分)(2018•长沙)下列计算正确地是()A.a235B.3 C.(x2)35D.m5÷m32【考点】35:合并同类项;47:幂地乘方与积地乘方;48:同底数幂地除法;78:二次根式地加减法.【专题】1 :常规题型.【分析】直接利用合并同类项法则以与幂地乘方运算法则、同底数幂地乘除运算法则分别计算得出答案.【解答】解:A、a23,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)36,故此选项错误;D、m5÷m32,正确.故选:D.【点评】此题主要考查了合并同类项以与幂地乘方运算、同底数幂地乘除运算,正确掌握相关运算法则是解题关键.54.(3.00分)(2018•长沙)下列长度地三条线段,能组成三角形地是()A.4,5,9 B.8,8,15 C.5,5,10 D.6,7,146e5【考点】K6:三角形三边关系.【专题】1 :常规题型.【分析】结合“三角形中较短地两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.【点评】本题考查了三角形地三边关系,解题地关键是:用较短地两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.7775.(3.00分)(2018•长沙)下列四个图形中,既是轴对称图形又是中心对称图形地是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】1 :常规题型.【分析】根据轴对称图形与中心对称图形地概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形地概念.轴对称图形地关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.V7l486.(3.00分)(2018•长沙)不等式组地解集在数轴上表示正确地是()8359W9A.B.C.D.【考点】C4:在数轴上表示不等式地解集;:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)与应用.【分析】先求出各不等式地解集,再求出其公共解集即可.【解答】解:解不等式2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组地解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.【点评】本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(3.00分)(2018•长沙)将下列如图地平面图形绕轴l旋转一周,可以得到地立体图形是()A.B.C.D.【考点】I2:点、线、面、体.【专题】55:几何图形.【分析】根据面动成体以与圆台地特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.【点评】本题考查立体图形地判断,关键是根据面动成体以与圆台地特点解答.8.(3.00分)(2018•长沙)下列说法正确地是()A.任意掷一枚质地均匀地硬币10次,一定有5次正面向上B.天气预报说“明天地降水概率为40%”,表示明天有40%地时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,≥0”是不可能事件【考点】X1:随机事件;X3:概率地意义.【专题】1 :常规题型.【分析】直接利用概率地意义以与随机事件地定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀地硬币10次,一定有5次正面向上,错误;B、天气预报说“明天地降水概率为40%”,表示明天有40%地时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,≥0”是必然事件,故此选项错误.故选:C.【点评】此题主要考查了概率地意义以与随机事件地定义,正确把握相关定义是解题关键.9.(3.00分)(2018•长沙)估计+1地值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【考点】2B:估算无理数地大小.【分析】应先找到所求地无理数在哪两个和它接近地整数之间,然后判断出所求地无理数地范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.【点评】此题主要考查了估算无理数地能力,要求学生正确理解无理数地性质,进行估算,“夹逼法”是估算地一般方法,也是常用方法.4310.(3.00分)(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家地距离y与时间x之间地对应关系.根据图象,下列说法正确地是()A.小明吃早餐用了25B.小明读报用了30C.食堂到图书馆地距离为0.8D.小明从图书馆回家地速度为0.8【考点】E6:函数地图象.【专题】17 :推理填空题.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17,A错误;小明读报用了(58﹣28)=30,B正确;食堂到图书馆地距离为(0.8﹣0.6)=0.2,C错误;小明从图书馆回家地速度为0.8÷10=0.08,D错误;故选:B.【点评】本题考查地是函数图象地读图能力.要能根据函数图象地性质和图象上地数据分析得出函数地类型和所需要地条件,结合题意正确计算是解题地关键.2011.(3.00分)(2018•长沙)我国南宋著名数学家秦九韶地著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲地是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田地面积为()7A A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【考点】1O:数学常识;:勾股定理地应用.【专题】1 :常规题型.【分析】直接利用勾股定理地逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.【点评】此题主要考查了勾股定理地应用,正确得出三角形地形状是解题关键.12.(3.00分)(2018•长沙)若对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件地点P()0U1A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【考点】H5:二次函数图象上点地坐标特征.【专题】2B :探究型.【分析】根据题意可以得到相应地不等式,然后根据对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P地坐标,从而可以解答本题.9【解答】解:∵对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P地坐标为(﹣7,0)或(﹣2,﹣15)故选:B.【点评】本题考查二次函数图象上点地坐标特征,解答本题地关键是明确题意,利用二次函数地性质解答.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)(2018•长沙)化简:=1.【考点】6B:分式地加减法.【专题】11 :计算题.【分析】根据分式地加减法法则:同分母分式加减法法则:同分母地分式想加减,分母不变,把分子相加减计算即可.4k【解答】解:原式1.故答案为:1.【点评】本题考查了分式地加减法法则,解题时牢记定义是关键.14.(3.00分)(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去地活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形地圆心角为90度.1【考点】:扇形统计图.【专题】542:统计地应用.【分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形地圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.【点评】本题考查地是扇形统计图地综合运用,读懂统计图是解决问题地关键,扇形统计图直接反映部分占总体地百分比大小.15.(3.00分)(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应地点A′地坐标是(1,1).0【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型.【分析】直接利用平移地性质分别得出平移后点地坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应地点A′地坐标是:(1,1).故答案为:(1,1).【点评】此题主要考查了平移,正确掌握平移规律是解题关键.16.(3.00分)(2018•长沙)掷一枚质地均匀地正方体骰子,骰子地六个面上分别刻有1到6地点数,掷得面朝上地点数为偶数地概率是.315【考点】X4:概率公式.【专题】1 :常规题型;543:概率与其应用.【分析】先统计出偶数点地个数,再根据概率公式解答.【解答】解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数地概率为=,故答案为:.【点评】此题考查了概率地求法:如果一个事件有n种可能,而且这些事件地可能性相同,其中事件A出现m种结果,那么事件A地概率P(A)=.h8c5217.(3.00分)(2018•长沙)已知关于x方程x2﹣30有一个根为1,则方程地另一个根为2.v4【考点】:根与系数地关系.【专题】17 :推理填空题.【分析】设方程地另一个根为m,根据两根之和等于﹣,即可得出关于m地一元一次方程,解之即可得出结论.J049【解答】解:设方程地另一个根为m,根据题意得:13,解得:2.故答案为:2.【点评】本题考查了根与系数地关系,牢记两根之和等于﹣是解题地关键.18.(3.00分)(2018•长沙)如图,点A,B,D在⊙O上,∠20°,是⊙O地切线,B为切点,地延长线交于点C,则∠50度.9【考点】M5:圆周角定理;:切线地性质.【专题】1 :常规题型.【分析】由圆周角定理易求∠地度数,再根据切线地性质定理可得∠90°,进而可求出求出∠地度°°9C6【解答】解:∵∠20°,∴∠40°,∵是⊙O地切线,B为切点,∴∠90°,∴∠90°﹣40°=50°,故答案为:50.【点评】本题考查了圆周角定理、切线地性质定理地运用,熟记和圆有关地各种性质和定理是解题地关键.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分.解答时写出必要地文字说明、证明过程或演算步骤)919.(6.00分)(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+445°【考点】2C:实数地运算;6E:零指数幂;T5:特殊角地三角函数值.【专题】1 :常规题型.【分析】本题涉与零指数幂、乘方、二次根式化简和特殊角地三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数地运算法则求得计算结果.8T7【解答】解:原式=1﹣2+1+4×=1﹣2+1+2=2.【点评】本题主要考查了实数地综合运算能力,是各地中考题中常见地计算题型.解决此类题目地关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点地运算.81D720.(6.00分)(2018•长沙)先化简,再求值:()2(a﹣b)﹣4,其中2,﹣.4B7a99h【考点】4J:整式地混合运算—化简求值.【专题】1 :常规题型.【分析】首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入a、b地值,进而可得答案.68【解答】解:原式2+22﹣b2﹣42﹣,当2,﹣时,原式=4+1=5.【点评】此题主要考查了整式地混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母地值代入求整式地值.621.(8.00分)(2018•长沙)为了了解居民地环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”地环保知识有奖问答活动,并用得到地数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)546请根据图中信息,解答下列问题:(1)本次调查一共抽取了50名居民;(2)求本次调查获取地样本数据地平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?461【考点】V5:用样本估计总体;:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【专题】542:统计地应用.【分析】(1)根据总数=个体数量之和计算即可;(2)根据平均数、总数、中位数地定义计算即可;(3)利用样本估计总体地思想解决问题即可;【解答】解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;众数:得到8分地人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,故500人时,需要一等奖奖品500×20100(份).【点评】本题考查地是条形统计图和扇形统计图地综合运用,读懂统计图,从不同地统计图中得到必要地信息是解决问题地关键.条形统计图能清楚地表示出每个项目地数据;扇形统计图直接反映部分占总体地百分比大小.4422.(8.00分)(2018•长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间地公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线行驶,现开通隧道后,汽车可直接沿直线行驶.已知80千米,∠45°,∠30°.3(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)E836L115【考点】:勾股定理地应用;T8:解直角三角形地应用.【专题】55:几何图形.【分析】(1)过点C作地垂线,垂足为D,在直角△中,解直角三角形求出,进而解答即可;S423M(2)在直角△中,解直角三角形求出,再求出,进而求出汽车从A地到B 地比原来少走多少路程.501【解答】解:(1)过点C作地垂线,垂足为D,∵⊥,30°=,80千米,∴•30°=80×(千米),(千米),80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵30°=,80(千米),∴•30°=80×(千米),∵45°=,40(千米),∴(千米),∴40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:﹣136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走地路程为27.2千米.【点评】本题考查了勾股定理地运用以与解一般三角形,求三角形地边或高地问题一般可以转化为解直角三角形地问题,解决地方法就是作高线.1923.(9.00分)(2018•长沙)随着中国传统节日“端午节”地临近,东方红商场决定开展“欢度端午,回馈顾客”地让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.0(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?0w【考点】9A:二元一次方程组地应用.【专题】34 :方程思想;521:一次方程(组)与应用.【分析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y 地二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数﹣打折后购买所需钱数,即可求出节省地钱数.【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.【点评】本题考查了二元一次方程组地应用,解题地关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.224.(9.00分)(2018•长沙)如图,在△中,是边上地中线,∠∠,∥,交地延长线于点E,8,3.(1)求地长;(2)求证:△为等腰三角形.(3)求△地外接圆圆心P与内切圆圆心Q之间地距离.【考点】:平行线地性质;:等腰三角形地判定与性质;:三角形地外接圆与外心;:三角形地内切圆与内心.【专题】11 :计算题.【分析】(1)证明为△地中位线得到26;(2)通过证明△≌△得到;(3)如图,连接、、,先利用勾股定理计算出5,设⊙P地半径为R,⊙Q地半径为r,在△中利用勾股定理得到(R﹣3)2+422,解得,则,再利用面积法求出,即,然后计算即可.【解答】(1)解:∵是边上地中线,∴,∵∥,∴为△地中位线,∴26;(2)证明:∵,∠∠,,∴△≌△,∴,∴△为等腰三角形.(3)如图,连接、、,在△中,5,设⊙P地半径为R,⊙Q地半径为r,在△中,(R﹣3)2+422,解得,∴﹣﹣3=,∵S△△△△,∴•r•5+•r•8+•r•5=•3•8,解得,即,∴.答:△地外接圆圆心P与内切圆圆心Q之间地距离为.【点评】本题考查了三角形内切圆与内心:三角形地内心到三角形三边地距离相等;三角形地内心与三角形顶点地连线平分这个内角.也考查了等腰三角形地判定与性质和三角形地外接圆.7925.(10.00分)(2018•长沙)如图,在平面直角坐标系中,函数(m 为常数,m>1,x>0)地图象经过点P(m,1)和Q(1,m),直线与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上地一个动点,过点M分别作x轴和y轴地垂线,垂足分别为A,B.(1)求∠地度数;(2)当3,1<x<3时,存在点M使得△∽△,求此时点M地坐标;(3)当5时,矩形与△地重叠部分地面积能否等于4.1?请说明你地理由.【考点】:反比例函数综合题.【专题】153:代数几何综合题.【分析】(1)想办法证明即可解决问题;(2)设M(a,),由△∽△,推出,由此构建方程求出a,再分类求解即可解决问题;1(3)不存在分三种情形说明:①当1<x<5时,如图1中;②当x≤1时,如图2中;③当x≥5时,如图3中;8I【解答】解:(1)设直线地解析式为,则有,解得,∴﹣!,令0,得到1,∴D(0,1),令0,得到1,∴C(1,0),∴,∵∠90°,∴∠45°.。
湖南省长沙市2020年中考数学仿真模拟试题(详细参考答案)
湖南省长沙市2020年中考数学仿真模拟试题详细参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:2020的相反数是:﹣2020.答案:B.2.解:将116000000用科学记数法表示应为1.16×108.答案:D.3.解:A、原式=﹣a,符合题意;B、原式=a2+2a+1,不符合题意;C、原式=4a2,不符合题意;D、原式不能合并,不符合题意,答案:A.4.解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.答案:B.5.解:设这三个内角度数分别为x、x、2x,则x+x+2x=180°,解得x=45°,∴2x=90°,∴这个三角形是等腰直角三角形,答案:D.6.解:A、打开电视,正在播放新闻,是随机事件;B、买一张电影票,座位号是奇数号,是随机事件;C、任意画一个三角形,其内角和是180°,是必然事件;D、掷一枚质地均匀的硬币,正面朝上,是随机事件;答案:C.7.解:A、上面小下面大,侧面是曲面,故A正确;B、上面大下面小,侧面是曲面,故B错误;C、是一个圆台,故C错误;D、下、上面一样大、侧面是曲面,故D错误;答案:A.8.解:∵y=4(x+1)(x﹣3)=4(x﹣1)2﹣16,∴a=4>0,该抛物线的开口向上,故选项A错误,与x轴的交点坐标是(﹣1,0)、(3,0),故选项B错误,当x<1时,y随x的增大而减小,故选项C正确,图象的对称轴是直线x=1,故选项D错误,答案:C.9.解:由作法得GF垂直平分AB,∴FB=F A,AG=BG=2,∴∠FBA=∠A,∵∠ABC=90°,∴∠A+∠C=90°,∠FBA+∠FBC=90°,∴∠C=∠FBC,∴FC=FB,∴FB=F A=FC=3,∴AC=6,AB=4,∴BC===2答案:C.10.解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).答案:C.11.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.答案:B.12.解:由折叠可得DF=EF,设AF=x,则EF=8﹣x,∵AF2+AE2=EF2,∴x2+42=(8﹣x)2,解得x=3.答案:A.二.填空题(共6小题,满分18分,每小题3分)13.解:∵在实数范围内有意义,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.14.解:a3+2a2+a=a(a2+2a+1)=a(a+1)2,故答案为:a(a+1)215.解:,由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2.故答案为:1<x≤2.16.解:依题意得杯口朝上频率逐渐稳定在0.22左右,估计任意抛掷一只纸杯,杯口朝上的概率约为0.22.故答案为:0.22.17.解:设方程的两根分别为x1、x2,∵a=2,b=3,c=1,∴x1+x2=﹣=﹣.故答案为:﹣18.解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(m﹣n),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.三.解答题(共8小题,具体分值在各小题号后,满分66分)19.解:原式=1﹣2+1+4×=1﹣2+1+2=2.20.解:∵解不等式①得:x≥﹣2,解不等式②得:x<2,∴原不等式组的解为:﹣2≤x<2,在数轴上表示为:.21.(1)解:(1)本次接受随机抽样调查的学生人数6÷15%=40(人),8÷40=20%,m=20,故答案为40,20;(2)观察条形统计图,,∴这组数据的平均数是5.8.∵在这组样本数据中,5出现了12次,出现的次数最多,∴这组样本数据的众数为5.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6,有,∴这组样本数据的中位数为6.(3)∵在所抽取的样本中,一周在校参加体育锻炼的时间大于6h的学生人数比例为30%,∴估计该校1000名学生中一周在校参加体育锻炼的时间大于6h的人数比例约为30%,于是,有1000×30%=300.∴该校一周在校参加体育锻炼的时间大于6h的学生约为300人.22.解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在Rt△BHD中,∵∠BHD=90°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10 ≈47.3.∴河的宽度为47.3米.23.解:(1)设购进A种服装x件,购进B种服装y件,根据题意得:,解得:.答:购进A种服装40件,购进B种服装20件.(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).答:服装店比按标价出售少收入1040元.24.(1)解:∵AD是边BC上的中线,∴BD=CD,∵CE∥AD,∴AD为△BCE的中位线,∴CE=2AD=6;(2)证明:∵CE∥AD,∴∠BAD=∠E,∠CAD=∠ACE,而∠BAD=∠CAD,∴∠ACE=∠E,∴AE=AC,而AB=AE,∴AB=AC,∴△ABC为等腰三角形.(3)如图,连接BP、BQ、CQ,在Rt△ABD中,AB==5,设⊙P的半径为R,⊙Q的半径为r,在Rt△PBD中,(R﹣3)2+42=R2,解得R=,∴PD=P A﹣AD=﹣3=,∵S△ABQ+S△BCQ+S△ACQ=S△ABC,∴•r•5+•r•8+•r•5=•3•8,解得r=,即QD=,∴PQ=PD+QD=+=.答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为.25.(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.故答案为假,假,真.(2)证明:如图1中,连接BD,B1D1.∵∠BCD=∠B1C1D1,且=,∴△BCD∽△B1C1D1,∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,∵==,∴=,∵∠ABC=∠A1B1C1,∴∠ABD=∠A1B1D1,∴△ABD∽△A1B1D1,∴=,∠A=∠A1,∠ADB=∠A1D1B1,∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,∴四边形ABCD与四边形A1B1C1D1相似.(3)如图2中,∵四边形ABCD与四边形EFCD相似.∴=,∵EF=OE+OF,∴=,∵EF∥AB∥CD,∴=,==,∴+=+,∴=,∵AD=DE+AE,∴=,∴2AE=DE+AE,∴AE=DE,∴=1.26.解:(1)∵B(3,0),对称轴为直线x=,∴A(﹣2,0),∴抛物线的解析式为y=a(x+2)(x﹣3)=ax2﹣ax﹣6a,令x=0,则y=﹣6a,∵B(3,0),∴OB=3,∵OC=OB,∴OC=3,∴C(0,﹣3),∴﹣6a=﹣3,∴a=,∴抛物线的解析式为y=x2﹣x﹣3;(2)如图1,∵∠P AB=∠CAB,∴所以,作射线AP与y轴的交点记作点C',∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,∴△AOC≌△AOC'(ASA),∴OC'=OC=3,∴C'(0,3),∵A(﹣2,0),∴直线AP的解析式为y=x+3,∵点P(m,n)在直线AP上,∴n=m+3,∵B(3,0),C(0,﹣3),∴直线BC的解析式为y=x﹣3,过点P作y轴的平行线交BC于F,∴F(m,m﹣3),∴PF=m+3﹣(m﹣3)=m+6,∴S=S△PBC=OB•PF=×3(m+6)=m+9(m>﹣2);(3)由(1)知,抛物线的解析式为y=x2﹣x﹣3①由(2)知,直线AP的解析式为y=x+3②,联立①②解得,或,∴P(6,12),如图2,当∠C'PB'=90°时,取B'C'的中点E,连接PE,则B'C'=2PE,即:B'C'2=4PE2,设B'(x1,y1),C'(x2,y2),∵直线B'C'的解析式为y=x+t③,联立①③化简得,x2﹣3x﹣(2t+6)=0,∴x1+x2=3,x1x2=﹣(2t+6),∴点E(,+t),B'C'2=(x1﹣x2)2+(y1﹣y2)2=2(x1﹣x2)2=2[(x1+x2)2﹣4x1x2]=2[9+4(2t+6)]=16t+66,而PE2=(6﹣)2+(12﹣﹣t)2=t2﹣21t+,∴16t+66=4(t2﹣21t+),∴t=6(此时,恰好过点P,舍去)或t=19,当∠PC'B'=90°时,延长C'P交BC于H,交x轴于G,则∠BHC=90°,∵OB=CO,∠BOC=90°,∴∠OBC=45°,∴∠PGO=45°,过点P作PQ⊥x轴于Q,则GQ=PQ=12,∴OG=OQ+GQ=18,∴点G(18,0),∴直线C''G的解析式为y=﹣x+18④,联立①④解得或∴C''的坐标为(﹣7,25),将点C''坐标代入y=x+t中,得25=﹣7+t,∴t=32,即:满足条件的t的值为19或32.。
湖南省长沙市数学中考模拟试卷(5月)
湖南省长沙市数学中考模拟试卷(5月)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·河北模拟) 在﹣4,2,﹣1,3这四个数中,最小的数是()A . -1B . 3C . 2D . -42. (2分) (2019九上·萧山开学考) 下列图形中,轴对称图形是()A .B .C .D .3. (2分)“天上的星星有几颗,7后跟上22个0”这是国际天文学联合大会上宣布的“在现代望远镜力所能及的范围内计算出的相对准确的数字”.如果用科学记数法表示宇宙星星颗数为()A . 700×1020B . 7×1022C . 7×1023D . 0.7×10234. (2分)下面计算正确的是()A . 3x2﹣x2=3B . 3a2+2a3=5a5C . 3+x=3xD . ﹣0.25ab+ba=05. (2分)(2014·金华) 一个几何体的三视图如图,那么这个几何体是()A .B .C .D .6. (2分) (2017八下·丽水期末) “I am a good student.”这句话中,字母”a“出现的频率是()A . 2B .C .D .7. (2分)(2017·怀化) 如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A .B .C .D .8. (2分)国家统计局发布的统计公报显示:2001到2005年,我国GDP增长率分别为8.3%,9.1%,10.0%,10.1%,9.9%.经济学家评论说:这五年的年度GDP增长率之间相当平稳,从统计学的角度看,“增长率之间相当平稳”说明这组数据较小的是().A . 方差B . 中位数C . 平均数D . 众数9. (2分)(2018·衡阳) 下列命题是假命题的是A . 正五边形的内角和为540°B . 矩形的对角线相等C . 对角线互相垂直的四边形是菱形D . 圆内接四边形的对角互补10. (2分)(2019·仙居模拟) 张阿姨到某水果店购买苹果,老板用电子秤称得重量为5千克.张阿姨怀疑重量不对,把苹果放入自带的重为0.6千克的水果篮中,要求放在电子秤上再称一遍,称得重量为5.75千克.老板客气的说“除去篮子后重量5.15千克,老顾客了,多0.15千克就算了”,张阿姨高兴的付了钱.则以下说法正确的是()A . 张阿姨赚了,苹果的实际质量为5.15 千克B . 张阿姨不赚也不亏,苹果的实际质量为5千克C . 张阿姨亏了,苹果的实际质量为4.85千克D . 张阿姨亏了,苹果的实际质量为4千克11. (2分) (2020九上·路桥期末) 如图,点A,B,C都在⊙O上,若∠C=30°,则∠AOB的度数为()A . 30°B . 60°C . 150°D . 120°12. (2分)(2016·毕节) 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题 (共5题;共5分)13. (1分)(2019·颍泉模拟) 因式分解:5a2﹣20a+20=________.14. (1分) (2017八上·安定期末) 已知△ABC≌△DEF,∠A=80°,∠C=75°则∠E=________°15. (1分) (2018八上·姜堰期中) 若,则 =________.16. (1分) (2019七下·遂宁期中) 一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是________.17. (1分) (2020七上·天桥期末) 下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,则第20个图中小正方形的个数是________三、解答题 (共9题;共90分)18. (5分)解下列不等式及不等式组,并把解在数轴上表示上出来:19. (5分) (2020八上·乌海期末) 解方程:20. (5分)(2017·成华模拟) 如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)21. (10分)(2018·高阳模拟) 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数为________;运动员乙测试成绩的中位数为________;运动员丙测试成绩的平均数为________;(2)经计算三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22. (10分) (2019九上·宝安期末) 如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若,,求的面积.23. (10分)在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)求∠D的度数.(2)若OE=1cm,求劣弧BD的长.24. (15分) (2016九上·东海期末) 某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.25. (15分) (2017九上·遂宁期末) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD= ,AE=3,求AF的长.26. (15分)(2017·老河口模拟) 如图,▱ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.(1)求证:DE⊥BC;(2)若OE⊥CD,求证:2CE•OE=CD•DE;(3)若OE⊥CD,BC=3,CE=1,求线段AC的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共90分)18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
2020届中考模拟湖南省长沙市中考数学模拟试卷及参考答案(word版)
长沙中考数学测试卷一、选择题1.下列四个数中,最大的数是( ) A.-2 B.31C.0D.6 2.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( ) A .0.955×105B. 9.55×105C. 9.55×104 D . 9.5×1043.下列计算正确的是( ) A .1052=⨯B. x 8÷x 2=x 4C. (2a )3=6a 3 D . 3a 3 · 2 a 2=6a64.六边形的内角和是( ) A .︒540B. ︒720C. ︒900 D . ︒3605.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )7.若一个三角形的两边长分别为3和7,则第三边长可能是( ) A .6B. 3C. 2 D . 118.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( ) A .(-2,-1)B. (-1,0)C. (-1,-1) D . (-2,0)9.下列各图中,∠1与∠2互为余角的是( )10.已知一组数据75, 80,85,90,则它的众数和中位数分别为( ) A .75, 80B. 80,85C. 80,90 D . 80,8011.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的 仰角为︒30,看这栋楼底部C 处的俯角为︒60,热气球A 处与楼的水 平距离为120 m ,则这栋楼的高度为( )A .1603m B. 1203m C .300 m D . 1602m12.已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c=0无实数根;③a -b +c ≥0;④ab cb a -++的最小值为3.其中,正确结论的个数为( )A .1个 B.2个 C.3个 D.4个 二、填空题13.分解因式:x 2y -4y =____________.14.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是_________. 15.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为_______.(结果保留π) 16.如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为_____________.17.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.15题图 16题图 17题图18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________. 三、解答题19.计算:4sin60°-︱- 2︳- 12+(-1)201620.先化简,再求值:b a a -(a b 11-)+b a 1-.其中,a =2,b =31.21.为积极响应市委市政府“加快建设天蓝·水净·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,为了更好的了解社情民意,工作人员在街道辖区范围内随即抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为_______;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;2,求□ABCD的面积.(2)若AB=2,AC=323.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
2018年长沙市初中毕业学业水平考试模拟试卷数学五(word版 无答案)
2018年长沙市初中毕业学业水平考试模拟试卷数学五(word版无答案)2018 年长沙市初中毕业学业水平考试模拟试卷数学(五)注意事项:1. 答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2. 必须在答题卡上答题,在草稿纸、试题卷上答题无效;3. 答题时,请考生注意各大题题号后面的答题提示;4. 请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5. 答题卡上不得使用涂改液、涂改胶和贴纸;6. 本学科试卷共26 个小题,考试时量120 分钟,满分120 分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大题共12 个小题,每小题3 分,共36 分)1. 下列各数中,在1 与2 之间的数是()A. -1B.C.73 D. 32. 下列运算正确的是()A. a2 ⋅a3 =a6B. (a2 )3 =a5C. 2a + 3a = 5aD. a3 -a =a23. 如图,将三角尺的直角顶点放在直尺的一边上,∠1 = 30︒,∠2 = 50︒,则∠3的度数等于()A. 50︒B. 30︒C. 20︒D. 15︒4. 下列美丽的图案中,既是轴对称图形又是中心对称图形的个数为()A. 1B. 2C. 3D. 45. 不等式组2030xx-⎧⎨-⎩fp的解集是()A. x > 2B. 2 <x < 3C. x < 3D. 无解6. 使分式424x -有意义的 x 的取值范围是( ) A. x = 2 B. x ≠ 2 C. x = -2 D. x ≠ -2 7. 如果一个正多边形的内角和为 720︒ ,那么这个正多边形的每一个外角是()A. 45︒B. 60︒C. 120︒D. 135︒8. 如 图 , 已 知⊙O 的 两 条 弦 AC 、 BD 相 交 于 点 E ,∠A = 70︒,∠C = 50︒ ,则 sin ∠AEB 的值为( )A. 12B.C.2 D.9. 某农机厂四月份生产零件 50 万个,第二季度共生产零件 182 万个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(5)——二次函数一.选择题(共19小题)1.(2020•雨花区校级三模)已知抛物线L :y =ax 2﹣2ax +5(a ≠0)的顶点为A ,抛物线M 与抛物线L 关于B (2,0)成中心对称,若抛物线M 经过点A ,则a 的值为( )A .﹣2B .52C .﹣5D .53 2.(2020•天心区模拟)已知抛物线y =ax 2+2ax ﹣b (a ≠0),它关于点(0,12)对称的抛物线为y 1,其顶点为A 1;关于点(0,22)对称的抛物线为y 2,其顶点为A 2;…;关于点(0,n 2)对称的抛物线为y n ,其顶点为A n …(n 为正整数).则A 2020A 2021的长为( )A .2020B .2021C .8080D .80823.(2020•雨花区校级二模)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;①4a +2b +c >0;①9a ﹣b +c =0;①若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;①若方程|ax 2+bx +c |=1有四个根,则这四个根的和为﹣8.其中正确的结论有( )个A .2B .3C .4D .54.(2020•雨花区校级一模)对于函数y =x 2﹣2|x |﹣3,下列说法正确的有( )个①图象关于y 轴对称;①有最小值﹣4;①当方程x 2﹣2|x |﹣3=m 有两个不相等的实数根时,m >﹣3;①直线y =x +b 与y =x 2﹣2|x |﹣3的图象有三个交点时,−134<b ≤﹣3. A .1 B .2 C .3 D .4 5.(2020•岳麓区校级一模)已知抛物线y =ax 2+bx +c (a >0)与直线y =k (x ﹣1)−k 24,无论k 取任何实数,此抛物线与直线都只有一个公共点.那么,抛物线的解析式是( )A .y =x 2B .y =x 2﹣2xC .y =x 2﹣2x +1D .y =2x 2﹣4x +26.(2020•雨花区模拟)已知二次函数y =ax 2+bx +c 自变量x 与函数值y 之间满足下列数量关系:x 2 4 5y 0.38 0.38 6则(a +b +c )(−k +√k 2−4kk 2k +−k −√k 2−4kk 2k )值为( )A .24B .36C .6D .47.(2020•天心区模拟)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如下表,且当x =−12时,与其对应的函数值y >0,有下列结论:(1)abc >0;(2)﹣2和3是关于x 的方程ax 2+bx +c =t 的两个根;(3)0<m +n <203,其中,正确结论的个数是( ) x … ﹣2﹣1 0 1 2 … y =ax 2+bx +c… t m ﹣2 ﹣2 n …A .3B .2C .1D .08.(2020•雨花区校级模拟)将二次函数y =ax 2的图象先向下平移2个单位,再向右平移3个单位,截x 轴所得的线段长为4,则a =( )A .1B .13C .29D .12 9.(2020•雨花区校级模拟)已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),交x 轴于A ,B 两点,交y 轴于C .则:①b =﹣2; ①该二次函数图象与y 轴交于负半轴; ①存在这样一个a ,使得M 、A 、C 三点在同一条直线上; ①若a =1,则OA •OB =OC 2.以上说法正确的有( )A .①①①①B .①①①C .①①①D .①①①10.(2019•长沙模拟)将二次函数y =x 2﹣4x ﹣5向右平移1个单位,得到的二次函数为解析式为( )A .y =x 2﹣4x ﹣6B .y =x 2﹣4x ﹣4C .y =x 2﹣6xD .y =x 2﹣6x ﹣511.(2019•长清区一模)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =1,下列结论:①2a +b =0;①9a +c >3b ;①若点A (﹣3,y 1)、点B (−12,y 2)、点C (72,y 3)在该函数图象上,则y 1<y 3<y 2:①若方程ax 2+bx +c =﹣3(a ≠0)的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<3<x 2;①m (am +b )﹣b <a .其中正确的结论有( )A .1个B .2个C .3个D .4个12.(2019•雨花区校级模拟)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”,例如P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣6mx +9m +2(m <0)与x 轴交于点A 、B 两点,若该抛物线在A ,B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .﹣2<m ≤﹣1B .﹣2≤m <﹣1C .﹣1<m <−12D .﹣1≤k <−12 13.(2019•雨花区校级模拟)抛物线y =a (x +2m )2+m (a ≠0)的顶点,当m 取不同实数时,其顶点在下列( )上移动.A .y =12kB .y =2xC .y =2kD .y =−12k 14.(2019•开福区校级模拟)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0),有下列说法:①abc <0;①a +b =0;①a +c <b ;①8a +7b +2c >0.则上述说法正确的个数是( )A .1个B .2个C .3个D .4个15.(2018•雨花区校级二模)已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),交x 轴于A ,B 两点,交y 轴C ,则下列说法正确的有( )①a +c =0;①b =﹣2①若a =1,则OA •OB =OC 2①无论a 取何值,此二次函数图象与x 轴必有两个交点,函数图象截x 轴所得的线段长度必大于2A .①①①①B .①①①C .①①①D .①①①16.(2018•雨花区校级二模)对于二次函数y =2(x ﹣3)2+4,下列说法中哪个是正确的( )A.有最大值4B.有最小值4C.有最小值3D.无法确定最值17.(2018•雨花区校级一模)若直线l:y=−12x+a与抛物线y=x2+2x﹣3交于M、N两点,则当∠MON<90°时,a的取值范围为()A.−√152<k<√152B.k<−√152或k>√152C.−7316<k<−√152或k>√152D.k<−7316或k>√15218.(2018•雨花区模拟)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y 轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc<0;①9a+3b+c=0;①4ac﹣b2<2a;①2b=3a.其中正确的结论是()A.①①B.①①C.①①D.①①19.(2018•天心区校级一模)如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C 时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图2(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①BE=BC;①当t=6秒时,△ABE≌△PQB;①点P运动了18秒;①当t=272秒时,△ABE∽△QBP;其中正确的是()A.①①B.①①①C.①①D.①①①二.填空题(共1小题)20.(2020•长沙模拟)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;①5a﹣b+c<0;①方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;①若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.三.解答题(共22小题)21.(2020•开福区校级二模)如图,抛物线y =mx 2+4mx ﹣12m (m <0)与x 轴相交于点A 、B (点A 在点B的右边),顶点为C .(1)求A 、B 两点的坐标;(2)若△ABC 为等边三角形,点M (x 0,y 0)为抛物线y =mx 2+4mx ﹣12m (m <0)上任意一点,总有n −856≥16√33my 02+40√3y 0﹣298成立,求n 的最小值; (3)若m =−12,点P 为x 轴上一动点,若α=∠CAB +∠CPB ,当tanα=4时,求P 点的坐标. 22.(2020•开福区校级二模)定义:正实数a 、b 、c 满足其中一个数的平方等于另外两个数的乘积,则称实数a 、b 、c 为比例实数组.(1)若a =4,b =9,且实数a 、b 、c 为比例实数组.求c 的值;(2)四边形ABCD ,AD ∥BC ,AD ⊥CD ,BC >AD ,AB ⊥AC ,BD 平分∠ABC ,求证:△ABC 的三边长是比例实数组;(3)已知抛物线y =ax 2+(b +1)x +(b ﹣1)与直线y =x 相交于点为A 、B ,且A 、B 两点关于直线y =﹣cx +a ﹣1对称,当b 最大时,实数a 、b 、c 是否为比例实数组,请说明理由.23.(2020•雨花区校级二模)如图,点A 是直线y =kx (k >0)上一点,且在第一象限,点B ,C 分别是x ,y 正半轴上的点,且满足∠BAC =90°.(1)如图1,当k =1时,求证:AB =AC ;(2)如图2,记∠AOB =α,①根据所学,不难得到tanα= ,(用含k 的式子表示);①若k =25,求kk kk 的值;(3)如图3,若k =12,连接BC ,OA ⊥BC ,已知抛物线y =ax 2+bx +c 经过O ,A ,B 三点,与直线BC 相交于点B ,D ,连接OD ,△OBD 的面积为8532,求抛物线的函数表达式.24.(2020•雨花区校级一模)如图,在平面直角坐标系中,抛物线y =ax 2+2ax +a +2与x 轴相交于A 、B 两点,与y 轴交于点C ,顶点为点D .点P 为x 轴上的一个动点.(1)求点D 的坐标;(2)如图1,当点P 在线段AB 上运动时,过点P 作x 轴的垂线,分别交直线AD 、BD 于点E 、F ,试判断PE +PF 是否为定值,若是,请求出这个定值,若不是,请说明理由.(3)如图2,若点P 位于点A 的左侧,满足∠ADP =2∠APD 且AP =1+√32AB 时,求抛物线的解析式. 25.(2020•雨花区校级一模)如图1,已知抛物线y =ax 2﹣12ax +32a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)连接BC ,若∠ABC =30°,求a 的值.(2)如图2,已知M 为△ABC 的外心,试判断弦AB 的弦心距d 是否有最小值,若有,求出此时a 的值,若没有,请说明理由;(3)如图3,已知动点P (t ,t )在第一象限,t 为常数.问:是否存在一点P ,使得∠APB 达到最大,若存在,求出此时∠APB 的正弦值,若不存在,也请说明理由.26.(2020•望城区模拟)武汉“新冠肺炎”发生以来,某医疗公司积极复工,加班加点生产医用防护服,为防控一线助力.以下是该公司以往的市场调查,发现该公司防护服的日销售量y (套)与销售单价x (元)之间满足一次函数关系,如下图所示,关于日销售利润w (元)和销售单价x (元)的几组对应值如下表:销售单价x (元)85 95 105 日销售利润w (元)875 1875 1875 (注:日销售利润=日销售量×(销售单价一成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围);(2)根据函数图象和表格所提供的信息,填空:该公司生产的防护服的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元;(3)该公司复工以后,在政府部门的帮助下,原材料采购成本比以往有了下降,平均起来,每生产一套防护服,成本比以前下降5元.该公司计划开展科技创新,以降低该产品的成本,如果在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?27.(2020•长沙模拟)为构建“魅力雨花,和谐雨花,人文雨花”,规划在圭塘河上修建一座观光人行桥(如图1),此工程由桥梁工程与桥上拱形工程组成,桥上拱形工程包含三组完全相同的拱形,观光人行桥的正规图如图2所示,已知桥面上三组拱桥都为相同的抛物线k =−116(k −k )2+k 的一部分,拱高(抛物线最高点到桥面的距离)为16米,三条抛物线依次与桥面AB 相交于点A ,C ,D ,B .(1)求桥长AB ;(2)已知一组桥拱的造价为a 万元,桥面每米的平均造价为b 万元.若一组桥拱的造价为整个桥面造价的14,这座观光桥的总造价为504万元,求a ,b 的值.28.(2019•天心区校级一模)如图,抛物线y =ax 2+6x +c 交x 轴于A ,B 两点,交y 轴于点C .直线y =x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)若点N 为抛物线上动点,当∠NBA =∠OAC 时,求点N 的坐标,(3)过点A 的直线交直线BC 于点M ,当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,Q ,P 为顶点的四边形是平行四边形,求点P 的横坐标.29.(2019•开福区校级三模)定义:如图1,对于直线MN同侧的A、B两点,若在MN上的点P满足∠APM =∠BPN,则称P为A、B两点在MN上的反射点,P A与PB的和称为A、B两点的反射距离.(1)如图2,在边长为2的正方形ABCD中,E为CD的中点,P为A、E两点在直线BC上的反射点,求A、E两点的反射距离;(2)如图3,△ABC内接于①O,直径AB为4,∠CAB=50°,点D为劣弧BC上一动点,点P为C、D两点在AB上的反射点,当C、D两点的反射距离最大时,求劣弧BD的长;(3)如图4,在平面直角坐标系中,抛物线y=−1kx2+2x(m>0)与x轴正半轴交于点A,顶点为B,若点C为点A、D在OB上的反射点,同时点D为点C、B在OA上的反射点.①请判断线段AC和BD的位置关系,并给出证明;①求C、B两点的反射距离与A、D两点的反射距离的比值.30.(2019•天心区校级三模)如图①①,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点,按顺时针方向旋转180o到△C'DE的位置.(1)求经过三点O、A、C'的抛物线的解析式;(2)如图①,①G是以AB为直径的圆,过B的直线BF与①G相切,求直线BF的解析式;(3)抛物线上是否存在一点,使得S△AMF=2S△OAB,若存在,请求出点M的坐标,若不存在,请说明理由.31.(2019•长沙一模)在平面直角坐标系中,O是坐标原点,直线y=mx+n分别交x轴,y轴于A(4,0)、B(0,3)两点.(1)求直线y=mx+n的解析式;(2)点C为直线AB上一动点,以C为顶点的抛物线y=x2+bx+c与直线AB的另一交点为D(如图1),连OC、OD,在点C的运动过程中△COD的面积S是否变化,若变化,求出S的范围;若不变,求出S 的值;(3)平移(2)中的抛物线,使顶点为(0,﹣4),抛物线与x轴的正半轴交于点G(如图2),M,N为抛物线上两点,若以MN为直径的圆经过点G,求直线MN经过的定点Q的坐标.32.(2019•雨花区校级三模)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、梯形、菱形、正方形”中,一定不是“美丽四边形”的有;①若矩形ABCD是“美丽四边形”,且AB=3,则BC=;(2)如图1,“美丽四边形”ABCD内接于①O,AC与BD相交于点P,且对角线AC为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为15√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.33.(2019•岳麓区校级二模)如图1,在平面直角坐标系中,抛物线y=ax2﹣4ax﹣6(a>0)与x轴交于A,B两点,且OB=3OA,与y轴交于点C,抛物线的顶点为D,对称轴与x轴交于点E.(1)求该抛物线的解析式,并直接写出顶点D的坐标;(2)如图2,直线y=−12k+n与抛物线交于G,H两点,直线AH,AG分别交y轴负半轴于M,N两点,求OM+ON的值;(3)如图1,点P在线段DE上,作等腰△BPQ,使得PB=PQ,且点Q落在直线CD上,若满足条件的点Q有且只有一个,求点P的坐标.34.(2019•岳麓区校级二模)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足AC条件的长;(2)如图,点A在以BC为直径的圆上,BD平分∠ABC,AD∥BC,∠ADC=90°.①求证:△ABC为比例三角形;①求kkkk的值.(3)若以点C为顶点的抛物线y=mx2﹣4mx﹣12m(m<0)与x轴交于A、B两点,△ABC是比例三角形,若点M(x0,y0)为该抛物线上任意一点,总有n−√3≤−16√33my02﹣40√3y0+298成立,求实数n的最大值.35.(2019•雨花区校级模拟)已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A为(﹣1,0),与y轴负半轴交于点C(0,﹣2),其对称轴是直线x=32.(1)求二次函数y=ax2+bx+c的解析式;(2)圆O′经过点△ABC的外接圆,点E是AC延长线上一点,∠BCE的平分线CD交圆O′于点D,连接AD、BD,求△ACD的面积;(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.36.(2019•雨花区校级模拟)OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA =10,OC =6.(1)如图,在AB 取一点M ,使得△CBM 沿CM 翻折后,点B 落在轴上,记作B ′点,求B ′点的坐标;(2)求折痕CM 所在直线的解析式;(3)作痕B ′G ∥AB 交CM 于点G ,若抛物线y =16x 2+m 过点G ,求抛物线的解析式; (4)判断以原点O 圆心,OG 为半径的圆与抛物线除交点G 外,是否还有交点?若有,请直接写出交点坐标.37.(2018•长沙模拟)如图所示,抛物线y =x 2+bx +c 经过A 、B 两点,A 、B 两点的坐标分别为(﹣1,0),(0,﹣3).(1)求抛物线的函数解析式;(2)点E 为抛物线的顶点,点C 为抛物线与x 轴的另一交点,点D 为y 轴上一点,且DC =DE ,求出点D 的坐标;(3)在x 轴下方,当12k ≤k ≤2k +13时,抛物线y 随x 的增大而增大,求出此时满足条件的整数a 的值.38.(2018•长沙模拟)已知y 是x 的函数,若函数图象上存在一点P (a ,b ),满足b ﹣a =2则称点P 为函数图象上“梦幻点”.例如:直线y =2x +1上存在的“梦幻点”P (1,3) (1)求直线y =12x +3上的“梦幻点”的坐标;(2)在双曲线y =k k (k ≥﹣1且k ≠0)上是否存在梦幻点?若存在,请求出梦幻点的坐标(用k 表示)若不存在,请说明理由.(3)若二次函数y =14x 2+(m ﹣t +1)x +n +t 的图象上存在唯一的梦幻点,且﹣2≤m ≤3时,n 的最小值为t ,求t 的值. 39.(2018•雨花区校级一模)如图,已知直线y =kx 与抛物线y =mx 2+n 交于点A 、C . (1)若m =﹣1,且点A 坐标为A (1,2),求抛物线解析式与点C 坐标; (2)如图1,若k =1,将直线y =x 沿着x 轴翻折,在第四象限交抛物线于点P ,若kk kk=12,求mn 的值;(3)如图2,已知抛物线与直线解析式分别为y =−√33k 2+4√33与y =√3x ,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (t ,0)是x 轴正半轴上的动点,记S △AEB =S 1,S △EOD =S 2,OE =s ,OD =t ,当满足∠BAE =∠BED =∠AOD 的E 点有两个时,求S 1•S 2﹣(k4S 1+k 22k)+√3的最小值,并求出此时E 的坐标.40.(2018•开福区校级三模)若在某区间内某函数的图象均在x 轴或x 轴的上方,则该区间称为这个函数的正能量区间.如当x ≥12时,函数y =2x ﹣1的图象均在x 轴上或x 轴的上方,则x ≥12叫做函数y =2x ﹣1的正能量区间.(1)求反比例函数k =k k 的正能量区间;(2)经过点(2,3)的一次函数的正能量区间为x ≥1,求一次函数的解析式; (3)如果抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (x 1,0)和点B (x 2,0),那么我们把A 、B 两点之间的距离叫做抛物线在x 轴上的“截距”,设m ,n 为正整数,且m ≠2,抛物线y =x 2+(3﹣mt )x ﹣3mt 在x 轴上的“截距”为d 1,抛物线y =﹣x 2+(2t ﹣n )x +2nt 在x 轴上的“截距”为d 2,k =k 12−k 22,试表示出s 与t 之间的函数关系式,若全体实数为该函数的正能量区间,求m ,n 的值.41.(2018•开福区校级三模)如图,已知抛物线k =14k 2−14(k +1)k +k4(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C . (1)点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);(2)若点P 在第一象限,使得△PBC 是以点P 为直角顶点的等腰直角三角形,求直线OP 的解析式; (3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO ,△QOA 和△QAB 中的任意两个角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.42.(2018•雨花区校级一模)定义:若同一函数图象上存在A(x1,y1)、B(x2,y2)、C(x3,y3)三点,满足y2﹣y1=y3﹣y2,则称ABC三点为等差点,称B为AC的等差中心.(1)A(2,y1)、B(3,y2)、C(4,y3)是否为一次函数y=kx+2的图象上以B为等差中心的等差点?判断并说明理由;(2)若双曲线y=|k|k上存在以B为等差中心A(x1,y1)、B(x2,y2)、C(x3,y3)的三点,其中A(x1,y1)、C(x3,y3)为反比例函数与一次函数y=nx+3的交点,若B到原点的距离为√3,求m的值与n的取值范围;(3)若直线y=x与抛物线y=ax2﹣2ax+b(b>2)交于A(x1,y1)、C(x3,y3),且满足0<x2<x3<1k,点B(x2,y2)在直线y=x上,且为A、C的等差中心.①证明:2<x2<1k①设k=−k22+6k(1k1+1k3)+2015,当s能取得最大值时,求s的最大值的取值范围.湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(5)——二次函数参考答案与试题解析一.选择题(共19小题) 1.【答案】C【解答】解:∵抛物线L :y =ax 2﹣2ax +5=a (x ﹣1)2+5﹣a , ∴顶点A (1,5﹣a ),∵抛物线M 与抛物线L 关于B (2,0)成中心对称,∴抛物线M 的开口大小相同,方向相反,顶点为(3,a ﹣5) ∴M 的解析式是:y =﹣a (x ﹣3)2+a ﹣5, ∵抛物线M 经过点A ,∴5﹣a =﹣4a +a ﹣5,解得a =﹣5, 故选:C . 2.【答案】D【解答】抛物线y =ax 2+2ax ﹣b 的顶点坐标为(﹣1,﹣a ﹣b ),∵点(﹣1,﹣a ﹣b )关于点(0,n 2)的对称点为(1,a +b +2n 2), ∴抛物线y n 的顶点坐标A n 为(1,a +b +2n 2),同理:A n +1(1,a +b +2(n +1)2),∴A n A n +1=a +b +2(n +1)2﹣(a +b +2n 2)=4n +2. ∴A 2020A 2021的长为:4×2020+2=8082, 故选:D . 3.【答案】C 【解答】解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0, ∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ),∴−k 2k =−2,4kk −k 24k=−9a ,∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以①结论正确, 9a ﹣b +c =9a ﹣4a ﹣5a =0,故①结论正确, ∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0), ∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论①正确, 若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则k 1+k 22=−2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =﹣1的两根分别为x 3,x 4,则k 3+k 42=−2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8,故结论①正确, 故选:C . 4.【答案】B【解答】解:①∵a 2﹣2|a |﹣3=(﹣a )2﹣2|﹣a |﹣3, ∴y =x 2﹣2|x |﹣3的图象关于y 轴对称, 故①正确;①∵y =x 2﹣2|x |﹣3=(|x |﹣1)2﹣4,∴当|x |=1即x =±1时,y 有最小值为﹣4, 故①正确;①当m =﹣4时,方程x 2﹣2|x |﹣3=m 为x 2﹣2|x |﹣3=﹣4,可化为(|x |﹣1)2=0,解得x =±1,有两个不相等的实数根,此时m =﹣4<﹣3, 故①错误;①∵直线y =x +b 与y =x 2﹣2|x |﹣3的图象有三个交点,∴方程x 2﹣2|x |﹣3=x +b ,即x 2﹣2|x |﹣x ﹣3﹣b =0有3个解,∴方程x 2﹣3x ﹣3﹣b =0(x ≥0)与方程x 2+x ﹣3﹣b =0(x <0)一共有3个解,∴当方程x 2﹣3x ﹣3﹣b =0(x ≥0)有两个不相等的非负数根,则方程x 2+x ﹣3﹣b =0(x <0)有两个相等的负数根;或当方程x 2﹣3x ﹣3﹣b =0(x ≥0)有两个不相等的非负数根,则方程x 2+x ﹣3﹣b =0(x <0)有一个负数根;或方程x 2﹣3x ﹣3﹣b =0(x ≥0)有一个非负数根或两个相等的非负数根,则方程x 2+x ﹣3﹣b =0(x <0)有两个不相等的负数根.即{ △1=9+12+4k >0k 1⋅k 2=−3−k ≥0△2=1+12+4k =0k 3⋅k 4=−3−k >0或{ △1=9+12+4k >0k 1⋅k 2=−3−k ≥0△2=1+12+4k >0k 3⋅k 4=−3−k ≤0或{△1=9+12+4k ≥0k 1⋅k 2=−3−k ≤0△2=1+12+4k ≥0k 3⋅k 4=−3−k ≥0,解得,b =−134,或b =﹣3, ∴当b =−134或b =﹣3时,直线y =x +b 与y =x 2﹣2|x |﹣3的图象有三个交点, 故①错误; 故选:B . 5.【答案】C【解答】解:联立方程组{k =kk 2+kk +kk =k (k −1)−k 24,∴ax 2+bx +c =k (x ﹣1)−14k 2,整理得,ax 2+(b ﹣k )x +c +k +14k 2=0,∵无论k 为何实数,直线与抛物线都只有一个交点, ∴△=(b ﹣k )2﹣4a (c +k +14k 2)=(1﹣a )k 2﹣2k (2a +b )+b 2﹣4ac =0,可得1﹣a =0,2a +b =0,b 2﹣4ac =0, 解得a =1,b =﹣2,c =1,∴抛物线的解析式是y =x 2﹣2x +1, 故选:C . 6.【答案】B 【解答】解:由表格数据可知抛物线的对称轴为x =−k 2k =2+42=3, ∴−kk =6,∴x =1与x =5时的函数值相等, ∴x =1时,y =6,即a +b +c =6, ∴(a +b +c )(−k +√k 2−4kk2k+−k −√k 2−4kk2k)=6×(−kk )=6×6=36.故选:B .7.【答案】B【解答】解:当x =0时,c =﹣2, 当x =1时,a +b ﹣2=﹣2, ∴a +b =0, ∴b =﹣a , ∴ab <0, ∴abc >0, ①正确;∵y =ax 2+bx +cx =ax 2﹣ax ﹣2,∴x =12是对称轴,∵x =﹣2时y =4a +2a ﹣2=6a ﹣2=t , ∴x =3时,y =9a ﹣3a ﹣2=6a ﹣2=t ,∴﹣2和3是关于x 的方程ax 2+bx +c =t 的两个根; ①正确;∵m =a +a ﹣2,n =4a ﹣2a ﹣2, ∴m =n =2a ﹣2, ∴m +n =4a ﹣4, ∵当x =−12时,y >0, ∴a >83,∴m +n >203, ①错误; 故选:B . 8.【答案】D【解答】解:二次函数y =ax 2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y =a (x ﹣3)2﹣2,当y =0时,ax 2﹣6ax +9a ﹣2=0,设方程ax 2﹣6ax +9a ﹣2=0的两个根为x 1,x 2, 则x 1+x 2=6,x 1x 2=9k −2k ,∵平移后的函数截x 轴所得的线段长为4, ∴|x 1﹣x 2|=4,∴(x 1﹣x 2)2=16,∴(x 1+x 2)2﹣4x 1x 2=16,∴36﹣4×9k −2k =16, 解得,a =12,故选:D . 9.【答案】C【解答】解:∵二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2), ∴{k −k +k =2k k +k +k =−2k ①﹣①,得2b =﹣4,解得b =﹣2,故①b =﹣2正确; ①+①,得2(a +c )=0, ∴a +c =0, ∵a >0,∴c =﹣a <0,故①正确; 设过点M (﹣1,2),点C (0,c )的直线的解析式为y =kx +m ∴{−k +k =2k =k, 解得,{k =k −2k =k∴y =(c ﹣2)x +c , ∵c =﹣a ,∴y =(﹣a ﹣2)x ﹣a , 当y =0时,x =−kk +2,将x =−k k +2代入y =ax 2﹣2x ﹣a ,得y =−2k 2(k +2)2,令−2k 2(k +2)2=0,得a =0,∵a >0,∴a =0不符题意,故①错误;当a =1时,二次函数的解析式为:y =x 2﹣2x ﹣1,∴当y =0时,设x 2﹣2x ﹣1=0的两根为x 1,x 2, ∴k 1⋅k 2=−11=−1, ∴OA •OB =|x 1|•|x 2|=|﹣1|=1=(﹣1)2=OC 2,故①正确; 故选:C . 10.【答案】C【解答】解:抛物线y =x 2﹣4x ﹣5=(x ﹣2)2﹣9的顶点坐标为(2,﹣9),把点(2,﹣9)向右平移1个单位后所得对应点的坐标为(3,﹣9),所以平移后的抛物线解析式为y =(x ﹣3)2﹣9,即y =x 2﹣6x . 故选:C . 11.【答案】C【解答】解:①由题意可知:对称轴x =1, ∴−k2k =1,∴2a +b =0,故①正确; ①当x =﹣3时,y <0,∴y =9a ﹣3b +c <0,故①错误;①(72,y 3)关于直线x =1的对称点为(−32,y 3), 由图可知:x <1时,y 随着x 的增大而减小, 由于﹣3<−32<−12,∴y 1<y 3<y 2,故①正确; ①设y =ax 2+bx +c ,y =﹣3,由于图象可知:直线y =﹣3与抛物线y =ax 2+bx +c 有两个交点, ∴方程ax 2+bx +c =﹣3(a ≠0)的两根为x 1和x 2, ∴x 1<﹣1<3<x 2,故①正确;①当x =1时,y =a +b +c ,此时a +b +c 为最大值, 当x =m 时,y =am 2+bm +c , ∴am 2+bm +c ≤a +b +c ,即m (am +b )﹣b ≤a ,故①错误; 故选:C . 12.【答案】D【解答】解:由已知可得y =mx 2﹣6mx +9m +2=m (x ﹣3)2+2, ∴函数的顶点是(3,2), ∴点(3,2),(3,1),(3,0)三点必在抛物线在A ,B 之间的部分与线段AB 所围成的区域(包括边界)的区域内,又∵在此区域内有7个整点, ∴必有点(2,0),(4,0),(2,1),(4,1), ∴当点(2,1)在边界上时,m =﹣1, ∴m ≥﹣1y =m (x ﹣3)2+2与x 轴的交点A 的横坐标1<x A <2, ∴﹣2<m <−12,综上所述,﹣1≤m <−12.故选:D . 13.【答案】D【解答】解:由抛物线y =a (x +2m )2+m (a ≠0,a ,m 为常数)可知:顶点(﹣2m ,m ), A .当x =﹣2m 时,y =﹣m ≠m , B .当x =﹣2m 时,y =﹣4m ≠m ; C .当x =﹣2m 时,y =−1k ≠m ; D .当x =﹣2m 时,y =m , 故选:D .14.【答案】C【解答】解:①由图象可知:a <0,c >0, 对称轴x =−k2k>0, ∴b >0,∴abc <0,故①正确; ①由对称轴可知:−k2k =12, ∴b +a =0,故①正确;①(2,0)关于直线x =12的对称点为(﹣1,0), ∴当x =﹣1时,y =a ﹣b +c =0,故①错误; ①由于a +b =0,a ﹣b +c =0, ∴c =﹣2a ,b =﹣a∴8a +7b +2c =8a ﹣7a ﹣4a =﹣3a >0,故①正确; 故选:C . 15.【答案】A【解答】解:①∵二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2), ∴{2=k −k +k −2=k +k +k, 两式相加解得a +c =0,两式相减解得b =﹣2, 故①①正确;由①可知a +c =0,即c =﹣a ,∴当a =1时,c =﹣1,∴该抛物线的解析式为y =x 2﹣2x ﹣1 当y =0时,0=x 2﹣2x +c ,利用根与系数的关系可得 x 1•x 2=c , 即OA •OB =|c |,当x =0时,y =c ,即OC =|c |=1=OC 2, ∴若a =1,则OA •OB =OC 2, 故①正确;∵c =﹣a ,b =﹣2, ∴b 2﹣4ac =4+4a 2>0,∴此二次函数图象与x 轴必有两个交点, 设抛物线于x 轴的交点为(x 1,0),(x 2,0), 由根与系数的关系可得x 1+x 2=−kk ,x 1•x 2=kk,∵b =﹣2,c =﹣a , ∴x 1+x 2=2k,x 1•x 2=﹣1, ∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=2k 2+4>4, ∴|x 1﹣x 2|>2,∴函数图象截x 轴所得的线段长度必大于2, 故①正确, 故选:A . 16.【答案】B【解答】解:因为a =2>0,所以二次函数y =2(x ﹣3)2+4的最小值为4, 故选:B . 17.【答案】C【解答】解:如图:连接MO ,NO ,作MD ⊥AB ,NE ⊥AB设M (m ,−12m +a ),N (n ,−12n +a )∵y =−12x +a 与抛物线y =x 2+2x ﹣3交于M 、N 两点∴−12x +a =x 2+2x ﹣3即x 2+52x ﹣3﹣a =0∴m +n =−52,mn =﹣3﹣a△=254+12+4a >0即a >−7316若∠MON =90°,则∠MOD +∠NOE =90°且∠MOD +∠DMO =90° ∴∠NOE =∠DMO 且∠MDO =∠NEB ∴△MDO ∽△NOE ∴−k−12k +k =−12k +k k∴−54mn =a 2−12a (m +n ) ∴a 2=154 ∴a =±√152∴若∠MON <90°则a >√152或−7316<a <−√152 故选:C . 18.【答案】D【解答】解:①∵抛物线开口向上,对称轴为直线x =1,与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点), ∴a >0,−k2k=1,c <0, ∴b =﹣2a <0,∴abc >0,结论①错误;①∵二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),对称轴为直线x =1, ∴二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的另一个交点为(3,0), ∴9a +3b +c =0,结论①正确;①∵二次函数y =ax 2+bx +c (a ≠0)的图象与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点), ∴抛物线顶点纵坐标4kk −k 24k<−1,∵a >0,∴4ac ﹣b 2<﹣4a <2a ,结论①正确; ①∵抛物线对称轴为直线x =1, ∴−k2k =1,b =﹣2a ,结论①错误. 综上所述,正确的结论有:①①. 故选:D .19.【答案】A【解答】解:观察图象可知,AD =BC =5×2=10,BE =1×10=10,ED =4×1=4,AE =10﹣4=6, ∴BE =BC ,故①正确,如图1中,当t =6秒时,点P 在BE 上,点Q 静止于点C 处,在△ABE 与△PQB 中, {kk =kk =6k1=k2kk =kk, ∴△ABE ≌△PQB (SAS ),故①正确,在Rt △ABE 中,AB =√kk 2−kk 2=√102−62=8, ∴BE +DE +DC =10+4+8=22, ∴点P 运动了22秒,故①错误, 当t =272秒时,点P 在线段DE 上,点Q 与点C 重合,此时∠PQB ≠90°, ∴△ABE 与△QBP 不相似,故①错误. ∴①①正确, 故选:A .二.填空题(共1小题) 20.【答案】见试题解答内容 【解答】解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0, ∴abc <0,所以①结论正确;∵抛物线的顶点坐标(﹣2,﹣9a ),∴−k2k =−2,4kk −k 24k=−9a ,∴b =4a ,c =﹣5a ,∴5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0, 故①结论正确;∵抛物线y =ax 2+bx +c =ax 2+4ax ﹣5a , 当y =0时,ax 2+4ax ﹣5a =0,即a (x +5)(x ﹣1)=0, ∴x =﹣5或1,∴方程ax 2+bx +c =0的两个根x 1=﹣5,x 2=1, 故结论①正确;若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2, 则k 1+k 22=−2,可得x 1+x 2=﹣4, 设方程ax 2+bx +c =﹣1的两根分别为x 3,x 4, 则k 3+k 42=−2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8, 故结论①错误, 故答案为①①①.三.解答题(共22小题) 21.【答案】(1)点A 、B 的坐标分别为(2,0)、(﹣6,0);(2)n 的最小值为256;(3)点P 的坐标为(34,0).【解答】解:(1)令y =mx 2+4mx ﹣12m =0,解得x =2或﹣6, 故点A 、B 的坐标分别为(2,0)、(﹣6,0);(2)由点AB 的坐标知,AB =8,函数的对称轴为x =﹣2, 当x =﹣2时,y =mx 2+4mx ﹣12m =﹣16m ,∵△ABC 为等边三角形,则y C =AC sin ∠CAB =AB sin60°=8×√32=4√3,故点C 的坐标为(﹣2,4√3), 则﹣16m =4√3,解得m =−√34,则抛物线的最大值为4√3,即y 0≤4√3, 设t =16√33my 02+40√3y 0﹣298, 则t =﹣4y 02+40√3y 0+2=﹣4(y 0﹣5√3)2﹣298≥﹣4(4√3−5√3)2+2=﹣10, 故有n −856≥−10,解得n ≥256, 故n 的最小值为256;(3)连接BC 并延长交y 轴于点M ,设直线CP 与y 轴交于点H ,过点H 作HK ⊥CM 于点K ,由点B 、C 的坐标得,直线BC 的表达式为y =2x +12,则点M (0,12), 则tan ∠CBA =2,则tan ∠CMH =12,由点C 、M 的坐标得,CM =√(−2)2+(8−12)2=√20, 根据函数的对称性,BC =CA ,则∠ABC =CAB , 则α=∠CAB +∠CPB =∠CBA +∠CPB =∠MCH , 在△CHM 中,tan ∠CMH =12,tan ∠MCH =tanα=4,则设HK =4x ,则CK =x ,MK =8x ,则CM =CK +KM =x +8x =9x =√20,解得x =√209,HM =√kk 2+kk 2=√80x =409,则OH =12−409=689,故点H (0,689),由点C 、H 的坐标得,直线CH 的表达式为y =−29x +689, 令y =0,则x =34,故点P 的坐标为(34,0).22.【答案】(1)c =169或c =814或c =6;(2)证明见解析过程;(3)实数a 、b 、c 是比例实数组,理由见解析过程.【解答】解:(1)∵a =4,b =9,且实数a 、b 、c 为比例实数组,∴a 2=bc 或b 2=ac 或c 2=ab ,∵a =4,b =9,∴c =169或c =814或c =6;(2)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵AD ∥BC ,∴∠ADB =∠CBD ,∴∠ADB =∠ABD ,∴AD =AB ,∵AD ∥BC ,∴∠DAC =∠ACB ,又∵∠ADC =∠CAB =90°,∴△ADC ∽△CAB ,∴kk kk =kk kk ,∴AC 2=DA •BC =AB •BC ,∴△ABC 的三边长是比例实数组;(3)实数a 、b 、c 是比例实数组,理由如下:∵抛物线y =ax 2+(b +1)x +(b ﹣1)与直线y =x 相交于点为A 、B ,且A 、B 两点关于直线y =﹣cx +a ﹣1对称,∴直线y =﹣cx +a ﹣1与直线y =x 互相垂直,如图:设直线y =﹣cx +a ﹣1与x 轴交于E 点,与y 轴交于点F ,与直线y =x 交于点H ,∴点F (0,a ﹣1),∴OF =a ﹣1,∵直线y =x 与x 轴所成锐角∠HOE =45°,EF ⊥OH ,∴∠FEO =45°,∴∠EFO =∠FEO =45°,∴OE =OF =a ﹣1,∴点E (a ﹣1,0),∴0=﹣c (a ﹣1)+a ﹣1,∴c =1,∵点A 、B 在一次函数y =x 上,A 、B 两点关于直线y =﹣x +a ﹣1对称,∴x A +x B =a ﹣1,令ax 02+(b +1)x 0+(b ﹣1)=x 0,则x A +x B =−k k , ∴a ﹣1=−k k ,∴b =﹣a 2+a =﹣(a −12)2+14,∴当a =12时,b 有最大值为14,∵(12)2=14×1,∴a 2=b •c ,∴实数a 、b 、c 是比例实数组.23.【答案】(1)见解答;(2)①k ,①25; (3)y =2√23x 2−56x .【解答】解:(1)如图1,过点A 作x 轴和y 轴的垂线,垂足分别为点M 、N ,当k =1时,直线OA 的表达式为y =x ,则AM =AN ,∵∠CAN +∠NAB =90°,∠NAB +∠BAM =90°,∴∠CAN =∠BAM ,∴Rt △ANC ≌△Rt △AMB ,∴AC =AB ;(2)①根据(1)知,tanα=k ,故答案为k ;①如图1,过点A 作x 轴和y 轴的垂线,垂足分别为点M 、N ,同理可得:∠CAN =∠BAM ,∴Rt △ANC ∽Rt △AMB ,∴kk kk =kk kk =kk kk =tan ∠AOB =k =25, 故kk kk 的值为25;(3)设直线OA 交BC 于点E ,连接AB ,过点A 作AM ⊥x 轴于点M ,在Rt △BOC 中,∵∠EOB +∠COE =90°,∠COE +∠ECO =90°,∴∠ECO =∠EOB =α,同理∠ACE =∠EAB ,∵∠COB =∠CAB =90°,∴C 、O 、A 、B 四点共圆,则BC 是圆的直径,故∠OCB =∠OAB =α,∴∠AOB =∠OAB =α,∴OB =AB ,∴△ACO 为等腰三角形,∵AB =OB ,BC =BC ,∴Rt △CBO ≌Rt △CBA (HL ),∴CO =CA ,而OB =AB ,故BC ⊥OA ,∵tanα=k =12,则sinα=5,cosα=5, 设点B (m ,0)(m >0), 在Rt △BCE 中,OE =OB =m ,则OE =OB cosα=5,则OA =2OE =5, 在Rt △AOM 中,AM =OA sinα=4k5, 同理可得:OM =8k 5,故点A (4k 5,8k 5), ∵tanα=k =12=tan ∠AOB ,则tan ∠EBO =2,故设直线BD 的表达式为y =﹣2(x ﹣m )①,设抛物线的表达式为y =a (x ﹣x 1)(x ﹣x 2)=ax (x ﹣m )①,将点A 的坐标代入上式得:8k 5=a (4k 5)(4k 5−m )①, 联立①①并整理得:ax 2+(2﹣am )x ﹣2m =0, 则x B x D =−2k k ,即m •x D =−2kk ,解得x D =−2k ,当x =−2k 时,y D =﹣2(x ﹣m )=4k +2m , 则△OBD 的面积=12×OB ×y D =12×m ×(4k +2m )=8532①, 联立①①并解得{k =2√23k =5√28, 故抛物线的表达式为y =2√23x 2−56x .24.【答案】(1)点D (﹣1,2);(2)是定值,理由见解析过程;(3)抛物线解析式为y =−12x 2﹣x +32. 【解答】解:(1)∵y =ax 2+2ax +a +2=a (x +1)2+2,∴点D (﹣1,2);(2)是定值,理由如下:如图1,过点D 作DH ⊥AB 于H ,∴AH =BH =12AB ,DH =2, ∴∠DAB =∠DBA ,∵tan ∠EAP =kk kk ,tan ∠FBP =kk kk , ∴EP =AP •tan ∠EAP ,PF =BP •tan ∠FBP ,∵∠EAP =∠FBP ,∴tan ∠DBH =tan ∠EAP =tan ∠FBP =kk kk =212kk =4kk , ∴kk kk =kk kk =4kk , ∴kk +kk kk +kk =kk +kk kk =4kk ,∴PF +PF =4;(3)如图2,作AP 的垂直平分线,交AP 于Q ,交PD 于M ,过点D 作DH ⊥AB ,∴PM =MA ,PQ =AQ ,∴∠MP A =∠MAP ,∴∠DMA =∠MPQ +∠MAP =2∠MP A ,∵∠ADP =2∠APD ,∴∠ADP =∠AMD ,∴AM =AD =PM ,∵∠DPH =∠MPQ ,∠DHP =∠MQP =90°,∴△PMQ ∽△PDH ,∴kk kk =kk kk ,∵AP =1+√32AB ,AH =BH ,PQ =QA , ∴PQ =QA =1+√32AH , ∴PH =(2+√3)AH , ∴1+√32kk (2+√3)kk =kk2,∴MQ =√3−1,∵MQ 2+AQ 2=AM 2=AD 2=AH 2+DH 2,∴(√3−1)2+(1+√32AH )2=AH 2+4,∴AH =2,∴点A (﹣3,0),∵抛物线y =ax 2+2ax +a +2过点A ,∴0=9a ﹣6a +a +2,∴a =−12, ∴抛物线解析式为y =−12x 2﹣x +32.25.【答案】(1)∠APB 达到最大; (2)当a =√28时,有k 最小=4√2;(3)√22. 【解答】解:(1)连接BC ,令y =0,得y =ax 2﹣12ax +32a =0,解得,x =4或8,∴A (4,0),B (8,0),令x =0,得y =ax 2﹣12ax +32a =32a ,∴C (0,32a ), 又∠ABC =30°, ∴tan ∠ABC =kk kk =32k 8=√33,解得,a =√312; (2)过M 点作MH ⊥AB 于点H ,连接MA 、MC ,如图2,。