高温固相法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高温固相法

氧化铈(CeO2)是一种廉价、用途极广的轻稀土氧化物,已被用于发光材料、抛光剂、紫外吸收剂、汽车尾气净化催化剂、玻璃的化学脱色剂以及耐辐射玻璃等。氧化铈的物理化学性质可能直接影响材料的性能,如超细氧化铈加入不但可以降低陶瓷的烧结温度,还可以增加陶瓷的密度;大比表面积可以提高催化剂的催化活性;且由于铈具有变价性,对发光材料也具有重要意义。铈的抗菌作用早在19世纪晚期就已经被发现,相关研究表明铈对16类种属细菌中39个菌种有抑菌作用,此外铈对于弱酸性的细菌敏感性最为明显。

纳米氧化铈的制备方法主要包括固相法、液相法和气相法。固相法是一种传统的粉体制备工艺,是在高温下通过固-固反应制备产品的方法,具有产量大、制备工艺简单易行等优点,但容易混入杂质等缺点,一般使用较少。液相法相对于固相法和气相法而言,具有不需苛刻的物理条件、易中试放大、操作方便和粒子可控的特点,因而研究广泛。液相法主要包括沉淀法、溶胶-凝胶法、水热法和微乳液法等。沉淀法制备纳米级氧化物粉体工艺中,在沉淀反应、干燥、焙烧三个阶段会导致不同程度的团聚,因此需要解决粒子间的团聚问题。溶胶-凝胶法以易于水解的金属结合物(无机盐或金属醇盐)为原料,使之在某种溶剂中和水发生反应,经过水解和缩聚过程逐渐凝胶化,再经干燥和煅烧得到所需氧化物粉末,可以使得粒子的粒径达到纳米级。水热法是在特制的密闭反应容器里,采用水溶液作为介质,通过对反应

容器加热,创造一个高温高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶,该法应用较为广泛。微乳液法制备的粒子,反应条件容易实现,所得粒子粒度小,且可控制,但是应用这种方法制备超细粒子所消耗的表面活性剂及溶剂的量很多,成本较高。气相法是指两种或两种以上单质或化合物在气相中发生化学反应生成纳米级新化合物的方法,包括溅射法、通电加热蒸发法、挥发性化合物混合法和激光诱导化学气相沉积(LICVD)等,但是需要的条件严苛,对反应条件的控制也更高。

固相法就是把金属盐或金属氧化物按配方充分混合,研磨后进行煅烧,直接得到产物或再研磨得到产物。固相法包括固相热分解法、高温固相化学反应法和室温固相化学反应法等。其中,固相热分解法制备超微粉的工艺比较简单,但生成的粉末易团聚,需要进行二次粉碎;高温固相化学反应法是将金属盐或金属氧化物按定比例充分混合,研磨后进行煅烧,通过发生固相反应直接制得纳米粉末的方法。室温固相化学反应法是近几年发展起来的一种新型合成方法,该法是在室温下对反应物直接进目行研磨,合成一些中间化合物,再对化合物进行适当处理得到最终产物。由于它从根本上消除了溶剂化作用,使反应在全新的化学环境下进行,因而有可能获得在溶液中不能得到的物质。此法成本低,实验设备简单,工艺流程短,操作方便,且粒度分布均匀,无团聚现象,工业化生产前景乐观,是制备纳米材料的重要方法之一。目前,利用室温固相反应法已成功地制备了许多草酸盐、碳酸

盐、硫化物等纳米粒子,但在氧化物纳米粒子的合成中研究成果还很少。

本文目的在于提供使用固相法制备不同形貌纳米氧化铈的方法,并且采用了较为简单的机械研磨,通过固相法制备不同形貌(立方状、球状、棒状/针状)的纳米级氧化铈。固相法的实质虽然和液相法类似,但创新点在于机械研磨固体反应物,使得其吸收机械能诱发化学反应,简单快速而又易于操作;同时,研究了醇类分散剂对氧化铈粒径、晶体类型和颗粒形貌的影响,而一般固相合成氧化铈却极少使用醇类分散剂,该法能对固相制备氧化铈提供理论基础和实践参考。

相关文档
最新文档